用户名: 密码: 验证码:
济宁青山羊皮肤毛囊的发育性变化与MTR-1A、IGF-1和TYR基因的差异表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为揭示济宁青山羊皮肤毛囊的发育性变化规律及其候选基因的差异表达对皮肤毛囊生长和发育的影响,本研究采用组织学和实时荧光定量PCR等分子细胞生物学技术,对青山羊不同发育阶段皮肤毛囊的组织结构及其发育性变化规律和皮肤组织中褪黑素受体1A(MTR-1A)、类胰岛素生长因子1(IGF-1)和酪氨酸酶(TYR)基因的mRNA差异表达量进行了比较研究。主要研究结果如下:一、采用组织学与显微观测技术,比较研究了济宁青山羊胎儿羊(妊娠80-85d)、小猾皮(出生后3d)、大猾皮(出生后30d)和1龄成年羊皮肤毛囊的组织学结构,以及成年羊皮肤不同部位的组织学差异,结果表明:
     (1)胎儿羊(妊娠80-85d)胚胎性表皮分化为三层并增厚,真皮分化为两层,交织分布着成纤维细胞。在表皮区可以发现次级毛囊毛基的发生。
     (2)小猾皮毛囊层中的胶原纤维平行纵横交错,与网状层相比排列较为紧密;而网状层中的胶原纤维呈水平走向,为平行交织状排列。毛囊层内的弹性纤维细而弯曲,相互交织,纵横排列。网状层内无弹性纤维的分布。小猾皮的毛囊组织间隙较大,密度较稀,初级毛囊发达,次级毛囊较少。小猾皮每个毛囊群仅由2-3个初级毛囊和1-2个次级毛囊组成。
     (3)大猾皮毛囊层和网状层明显增厚,有粗大的胶原纤维束分布其中。大猾皮的毛囊密度和毛囊群直径极显著地大于小猾皮。次级毛囊密集排列在初级毛囊的周围。大猾皮毛囊群由1-5个初级毛囊和若干个次级毛囊组成,其中3毛囊群最多,发达的毛囊群使大猾皮表面粗糙。
     (4)成年羊皮肤毛囊层的厚度超过网状层,毛囊层内含有较多的结缔组织、胶原纤维和弹性纤维,形成致密的弹性纤维网。网状层中的胶原纤维粗大,胶原纤维呈平行疏松排列。成年羊皮肤初级毛囊较粗长,具有皮脂腺等附属结构,毛干有髓质;次级毛囊没有髓质且毛球较小,皮脂腺不发达或缺如。成年羊毛囊群和大猾皮相似,3毛囊群最多,占81.32%。
     (5)成年羊颈、背、腹和臀四个部位的皮肤厚度、表皮厚、真皮各层厚均以颈部最厚,背部次之,腹部最薄,颈部与背部、腹部差异极显著,背部与臀部差异不显著;四个部位的羊毛密度,以背部最密,腹部最稀(P>0.05)。羊毛细度在各个部位的差异不显著。毛囊群直径,以腹部最粗,背部次之,臀部最细(P<0.01)。初级毛囊和次级毛囊的深度,均以颈部最深,背部次之,臀部最浅(P<0.01)。
     二、采用实时荧光定量PCR技术,研究了MTR-1A、IGF-1和TYR基因在济宁青山羊胎儿羊、小猾皮、大猾皮和1龄成年羊背部皮肤组织中mRNA的差异表达量,结果表明:
     (1)MTR-1A在大猾皮的表达量极显著地高于其他三个时期(P<0.01),为胎儿期的19.5倍,为小猾皮的14.98倍,为1龄成年羊的8.87倍;IGF-1在大猾皮的表达量极显著地高于其他三个时期(P<0.01),为胎儿期的39.26倍,为小猾皮的24.61倍,为1龄成年羊的19.52倍;表明,MT和IGF-1参与调控次级毛囊的分化与发育。在大猾皮时期,MTR-1A和IGF-1的高表达说明,在此时期大量初级毛囊的毛纤维生长和次级毛囊毛基的发育启动了次级毛囊的毛纤维的发生和生长。
     (2)MTR-1A在1龄成年羊皮肤颈部和背部的表达量与臀部的表达量差异显著(P<0.05);IGF1在1龄成年羊皮肤颈部、背部和臀部的表达量与腹部的表达量差异显著(P<0.05)。成年羊皮肤组织中MTR-1A和IGF-1的差异表达以及毛囊群分布提示MT对初级毛囊的作用大于IGF-1。
     (3)MTR-1A和IGF-1的表达量与成年羊的羊毛细度存在一定的相关性(P>0.05),说明MT和IGF-1是影响羊毛细度的重要候选基因。
     (4)TYR在小猾皮和成年羊皮肤组织的表达量极显著地高于胎儿期和大猾皮阶段(P<0.01),其在小猾皮和成年羊背部皮肤中的表达量分别为胎儿期的14.4倍和10.89倍。TYR在小猾皮中的高表达说明,胎儿出生后,由于光照等环境因素的影响,位于毛囊乳头顶部的黑素细胞活化,皮肤组织中有大量黑素颗粒生成,在毛干堆积影响毛纤维的颜色。TYR在成年羊腹部皮肤的低表达与青山羊腹部羊毛多为白色有关。
     以上研究结果为揭示青山羊皮肤毛囊发育的分子遗传机理以及进一步揭示济宁青山羊毛色花纹品质形成的遗传机理奠定了基础。
To reveal the developmental changes of hair follicle and cytokines effected on the differentiation of hair follicle in Jining Gray goat skins. The tissue slice methods were used to study the skin and hair follicle structures at different stages; and real-time quantitative PCR technique was applied to detect the MTR-1A, IGF-1 and TYR mRNA expressions of skins. The main results are as follows:
     The histology methods and micro-observation approach were used to compare the characteristics of skin and hair follicle structures of Jining Gray goats within 85-days fetus, 3-days-old, 1-month-old, and one-year-old.
     (1) 85d fetal skin epidermis differentiated into three layers and thickening, dermis divided into upper and lower levels, interlacing with fibroblasts. Secondary follicle placode can be found in the cuticle. All placodes of primary follicle in fetus had formed before birth, placodes of secondary follicle were decreased with the birth to 1 month and developed into wool fiber.
     (2) In kid-skins, collagen fibers in follicle layer were interlaced level while in the plexiform layer parallel intertwined. Elastic fibers in follicle layer were thin and curved interwoven arrangement while reticular layer of inelastic fibers distributed. The numbers of primary follicles were larger than secondary follicles. The density of hair follicle was smaller. Hair folliculus group was made up from 2-3 primary follicle and 1-2 secondary follicle.
     (3) In lamb-skins, follicle and reticular layer were thickening with collagen fibers. Hair folliculus group was made up from 1-5 primary follicles and several secondary follicles and the most of follicle groups were three.
     (4) In adult-skins, the thickness follicle layer contained more connective tissue, collagen and elastic fibers was larger than reticular layer’s. Adult medullary primary follicle was large with sebaceous glands and other accessory structures around distributed; secondary follicle without medulla and hair bulb was small. Hair folliculus group was same with lamb.
     (5) In different parts of adult-skins, epidermis, derma, follicle layer and reticular layer thickness of cervical skin were larger than back’s, abdomen’s were the smallest, there was extremely significant difference between cervical, back and abdomen; wool density of adult back skins was larger than other positions (P>0.05); different parts of wool fineness were no significant difference; abdomen follicle groups diameter was larger than back’s, buttocks’was the smallest (P<0.01); cervical primary and secondary follicles depth were deeper than back’s, buttocks’was the smallest (P>0.01).
     Real-time quantitative PCR was used to study MTR-1A, IGF-1 and TYR mRNA expressions in skins of Jining Gray goats within 85-days fetus, 3-days-old, 1-month-old, and one-year-old.
     (1) MTR-1A and IGF-1 in lamb-skins were extremely larger than other developmental phases, 19.5 and 39.26 times than fetus. MTR-1A and IGF-1 largely mRNA expressions in lamb-skins indicated that they played a role in promoting the development of secondary follicle.
     (2) MTR-1A expressed in one year old adult cervical and back skins were different with buttocks (P<0.05).IGF-1 expressed in cervical, back and buttocks skin were larger than abdomen (P<0.05). MTR-1A and IGF-1 differential expression and distribution of hair follicle group indicated MT play an important role in primary hair follicle than IGF-1.
     (3) MTR-1A and IGF-1 differential expression related with wool fineness (P>0.05), they are important candidate genes effecting wool fineness.
     (4) TYR mRNA expressed in kid and adult-skins were significant larger than lamb-skins’, because of lighting the main activity of the skin was the occurrence of melanin granules after birth, melanocyte at the top of the dermal papilla generated melanin granules effecting the colour of wool fiber.
     The results lay the foundation to reveal the developmental pattern of Jining Gray goat’s hair follicle. Furthermore, these results also reveal the genetic mechanism of Jining Gray goat’s pattern quality.
引文
崔景香,尹逊河,王慧.动物毛囊器官的分化与体外培养研究进展[J].山东农业大学学报(自然科学版), 2008, 39(03): 489-491.
    陈志伟,许惠玉,金香兰.褪黑素的抗衰老作用及其应用前景[J].齐齐哈尔医学院学报, 2001, 22(2): 232-233.
    窦全林,杨发龙,王杰,钟金诚,郑玉才,陈刚.藏系绵羊IGF-1基因表达水平的实时荧光定量PCR检测[J].动物医学进展, 2008, 29(7): 27-30.
    高萍,傅伟龙,朱晓彤,刘丽,江青艳.蓝塘仔猪IGF-1水平与组织IGF-1、GHR基因的表达[J].畜牧兽医学报, 2005, 36(1): 38-42.
    高莉,董常生,赫晓燕,贺俊平,耿建军,范瑞文,游蓉丽.羊驼酪氨酸酶基因家族在不同毛色个体中的基因表达水平[J].畜牧兽医学报, 2008, 39(7): 895-899.
    郭旭东,尹俊,旭日干,杨东山,毛舒燕,宝明涛. IGF-1毛囊特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究[J].畜牧兽医学报, 2009, 40(10): 1460-1467.
    季从亮,储明星,陈囯宏.褪黑激素受体基因的研究进展[J].遗传, 2003(2): 221-224.
    贾志海.不同光周期和褪黑激素对绒山羊生产性能影响[J].中国畜牧杂志, 1995, 31(4): 8-10.
    蒋琼.家畜的毛色遗传探究[J].安徽农业, 2004, 4: 34.
    蒋英.中国山羊[M].西安:陕西科学技术出版社, 1998, 245-283.
    李国强,纪影畅,李宇.毛囊形态发生的分子机制[J].国外医学:皮肤性病学分册, 2004, 30(1): 38-40.
    李玉荣,范文斌,李长青,尹俊,张燕军,李金泉.内蒙古绒山羊次级毛囊组织形态周期性变化研究[J].中国农业科学, 2008, 41(11): 3920-3926.
    李志农.中国养羊学[M].北京:农业出版社, 1993: 65-66.
    李岩,廖和荣,李知勉,孙杰,李大全. IGF-1对不同绵羊皮肤中5个毛囊相关生长因子基因表达的影响[J].中国农业科学, 2007, 40(3):594-600.
    刘德武,赵云翔,任光彩,张豪,吴珍芳.蓝塘猪和长白猪肝脏和肌肉中IGF-1、IGF-1R和IGFBP3基因表达的发育性变化[J].畜牧兽医学报, 2008, 39(7): 866-872.
    刘国庆,黄治国,刘振山,王新华,刘守仁,杨利国.羔羊肝脏IGF-1和IGF-1R基因表达的发育性变化研究[J].中国农业科学, 2006, 39(12): 2577-2581.
    刘辉,刘勇. G蛋白耦联受体下调机制的最新研究进展[J].医学综述,2002, 8(3): 125-127.
    柳建昌,桂荣,赵青山.褪黑素对内蒙阿白山羊在非生绒季节促进绒生长及绒产量的影响[J].动物学杂志, 1994, 29(3): 46-50.
    柳建昌,尹协镇,方天祺.褪黑素对中国绒山羊非生绒期促绒生长与绒产量的影响[J].动物学杂志, 1998, 3(3): 8-12.
    王林枫,卢德勋,孙海洲,赵秀英,珊丹.光照和褪黑激素对内蒙古绒山羊氮分配和产绒性能的影响[J].中国农业科学, 2006, 39(5): 1004-1010.
    王林枫,卢德勋,孙海洲,赵秀英,珊丹.光照和褪黑激素对内蒙古绒山羊氮分配的影响[J].畜牧兽医学报, 2005, 36(12): 1300-1306.
    吴磊,范卫新.毛囊色素[J].国际皮肤性病学杂志, 2006, 32(3): 171-173.
    徐娜.拯救宝贵的白化动物[J].生命与灾害, 2009, 2: 29-30.
    杨舒黎,毛华明,舒文,邓卫东.云南乌骨绵羊乌质性状与TYR基因多态性的相关分析[J].遗传, 2006, 28(3): 291-298.
    于秀菊,范阔海.毛囊的黑色素沉着[J].《畜牧兽医科技信息》, 2009, 4: 16.
    岳春旺,张微,孔祥浩,刘海英,贾志海.褪黑激素对内蒙古白绒山羊产绒性能的影响[J].反刍动物营养, 2007, 43(7): 32-34.
    张燕军,尹俊,李金泉,李长青.内蒙古阿尔巴斯绒山羊毛囊结构及形态发生过程研究[J].中国农业科学, 2007, 40(5): 1017-1023.
    张兆远.济宁青山羊皮肤毛囊体外培养和基因表达差异研究[D].山东农业大学硕士学位论文, 2008, 6, 10-22.
    张兆远,王树迎,王慧,赵晶.济宁青山羊大小猾子皮的差异表达基因研究[J].山东农业大学学报(自然科学版), 2009, 03: 7-10.
    赵改名,田玮,苏兰丽.羊毛生长的内分泌调节研究进展[J].中国畜牧杂志, 2003, 39(3): 44.
    赵瑛,陈向芳,石勇铨,邹俊杰,陆祖谦,辜荣飞,张慧,张立斌,刘颖. 褪黑素受体基础与临床研究[J].第二军医大学学报, 2003, 24(5): 558-560.
    钟白玉,吕中法,伍津津,刘荣卿.毛囊真皮鞘成纤维细胞的培养[J].第三军医大学学报, 1999, 21: 935-936.
    周杰,赵茹茜,韦习会,夏东,胥清富,陈杰.二花脸和大白猪的脂肪组织中GHR、IGF-1和IGF-1R基因表达的发育性变化[J].遗传学报, 2003, 30(7): 657-662.
    邹锋,郝飞.毛囊生物学特性的某些研究进展[J].中华医学美学美容杂志, 2006, 12(5): 315-317.
    于宗贤.青山羊及青猾子皮的品质[J].畜牧兽医学报, 1982, 13(2): 79-86.
    郑丕留.中国羊品种志[M].上海:上海科学技术出版社, 1989: 98-101.
    Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide [J]. Nat Biotechnol, 2000, 18(1): 43-47.
    Allain D, Rougeot J. Induction of autumn moult in mink with melatonin [J]. Reproductive Nutrition Development, 1980, 20: 197.
    Aoki N, Ito M. Isolation and characterization of mouse high-glycine / tyrosine proteins [J]. J Biol Chem, 1997, 272(48): 30512-30518.
    Barrett P, Conway S, Jockers R, Strosberg AD, Guardiola-Lemaitre B, Delagrange P, Morgan PJ. Cloning and functional analysis of a polymorphic variant of the ovine Mel 1a melatonin receptor [J]. Biochimica et Biophysica Acta, 1997, 1356(3): 299-307.
    Botchkarev VA, Botchkareva NV, Roth W. Noggin is a mesenchymally derived stimulator of hair-follicle induction [J]. Nature Cell Biol, 1999, 1: 158-164.
    Cotsarelis G, Sun TT, Lavker RM. Label retaining cells residue in the bulgearea of pil osebaceous unit: implications for follicular stem cells, hair cycle and skin carcinogenesis [J]. Cell, 1990, (61): 1329-1337.
    Cotsarelis G. Hair follicle development, cycling and stem cells [J]. Prog Dermatol, 1998, (32): 1-8.
    Damak S, Jay NP, Barrell GK, Bullock DW. Targeting gene expression to the wool follicle in transgenic sheep [J]. Bio/Technology, 1996, (14): 181-184.
    Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA, 1996, 93(12): 6025-6030.
    Di-Po? N, Ng C Y, Tan N S, Yang ZZ, Hemmings B A, Desvergne B, Michalik L, Wahli W. Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptorβ/δduring hair follicle development [J]. Molecular and Cellular Biology, 2005, 25: 1696-1712.
    Federico Goodsaid. Quantitative real time polymerase chain reaction in drug development [J]. Drug Development Research, 2004, 62: 151-158.
    Gat U, Dasgupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin [J]. Cell, 1998, 95: 605-614.
    George E. Rogers. Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered [J]. Experimental Dermatology, 2006, 15: 931-949.
    Harris PM, McBride BW, Gurnsey MP. Direct infusion of a variant of insulin-like growth factor-I into skin of sheep and effects on local blood flow, amino acid utilisation and cell replication [J]. Endocrinology, 1993, 139(3): 463-472.
    Jahoda CAB, Oliver RF, Reynolds AJ, Forrester JC, Gillespie JW, Cserhalmi-Friedman PB, Christiano AM, Horne KA. Trans-species hair growth induction by human hair follicle dermal papillae [J]. Exp Dermatol, 2001, (10): 229-237.
    Joshua S. Yuan, Donglin Wang, C. Neal Stewart Jr. Statistical methods for efficiency adjusted real-time PCR quantification [J]. Biotechnology, 2008,3(1): 112-123.
    Jung HS, Francis-West PH, Widelitz RB, Jiang TX, Ting-Berreth S, Tickle C, Wolpert L. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning [J]. Dev Biol, 1998, 196 (1): 11-23.
    Kijas JM, Wales R, Tornsten A, Chardon P, Moller M, Andersson L. Melanocortin receptor 1(MC1R) mutation and coat color in pig [J]. Genetics, 1998, (150): 1177-1185.
    Kim KS, Mendez EA, Marklund S, Clutter AC, Pomp D, Rothschild MF. Rapid communication: Linkage mapping of the porcine Agouti gene [J]. Anim. sci., 2000, (78): 1395-1396.
    Kumamoto T, Shalhevet D, Matsue H, Mummert ME, Ward BR, Jester JV. Hair follicles serve as local reservoirs of skin mast cell precursors [J]. Blood, 2003, 102: 1654-1660.
    Langbein L, Rogers MA, Winter H, Praetzel S, Schweizer J. The catalog of human hair keratins II. expression of the six Type II members in the hair follicle and the combined catalog of human Type I and II keratins [J]. The Journal of Biological Chemistry, 2001, 276: 35123-35132.
    Livak, KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△Ct method [J]. Methods, 2001, 25: 402-408.
    Lush JL. Inheritance of horns, wattles, and color in grade Toggenburg Goats [J]. Jour. Hered., 1926, (17): 73-91.
    Ma DR, Yang EN, Lee ST. A Review: The Location, Molecular Characterisation and Multi potency of Hair Follicle Epidermal Stem Cells [J]. Ann Acad Med Singapore, 2004, (33): 784-788.
    Magerl M, Tobin DJ, Muller RS, Hagen E, Lindger G, Mckay IA, Paus R. Patterns of proliferation and apoptosis during murine hair follicle morphogenesis [J]. J Invest Dermatol, 2001, 116: 947-955.
    Mat suzaki T, Yoshizato K. Role of hair papilla cells on indution and regeneration processes of hair follicles [J]. Wound Rep Regen, 1998, (6): 524-530.
    Maurer M , Peters EMJ , Bochkarev VA , Paus R. Intact hair follicle innervation is not essential for anagen induction and development [J] . Arch Dermaltol Rev, 1998, 290: 574.
    McElwee, K., Hoffmann, R. Growth factors in early hair follicle morphogenesis [J]. European Journal of Dermatology, 2000, 10, 5: 341-350.
    Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin [J]. Genes & Dev. 2001, 15: 1688-1705.
    Nanba D, Nakanishi A Hieda Y. Establishment of cadherin-based intercellular junctions in the dermal papilla of the developing hair follicle [J]. The Anatomical Record Part A, 2003, 270A: 97-102.
    Niemann C, Owens DM, Hulsken J, Brichmeier W, Watt FM. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours [J]. Development, 2002, 129, 95-109.
    Nioxn AJ, Ford CA, Oldham JM, Pearson AJ. Localisation of insulin-like growth factor receptors in skin follicles of sheep (Ovis aries) and changes during an induced growth cycle [J]. Comp Biochem Physiol A Physiol, 1997, 118(4): 1247-1257.
    Noramly S, Morgan BA. BMPs mediate lateral inhibition at successive stages in feather tract development [J]. Development, 1998, 125: 3775-3787.
    Nozawa K. Coat- color Polymorphism in the Black Bengal Goats [J]. Rep. Soc. Res. Native Livestock, 1984, (12): 187-1981.
    Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC. Characterization and isolation of stem cell-enriched human hair follicle bulge cells [J]. The Journal of Clinical Investigation, 2006, 116(1): 249-260.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicle from adult multipotent stem cells [J]. Cell, 2001, 104: 233-245.
    Ozeki M, Tabata Y. Promoted growth of murine hair follicles through controlled release of basic fibroblast growth factor [J]. Tissue Eng, 2002,8(3): 359-666.
    Paus R, Cotsarelis G. The biology of hair follicles [J]. The New England Journal of Medicine, 1999, 341: 491-497.
    Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Hofmann U, Mecklenbarg L. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis [J]. J Invest Dermatol, 1999, 523-532.
    Paus R, Muller-Rover S, van der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjisk B. Comprehensive guide for the recognition and classification of distinct stage of hair follicle morphogenesis [J]. Investigative Dernatology, 1999, (113): 523-532.
    Peters EMJ, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R. Hair-cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides [J]. J Invest Dermatol, 2001, 116(2): 236-245.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res, 2001, 29, 45.
    Po-Lin So, Epstein Jr E H. Adult stem cells: capturing youth from bulge [J]. Trends in Biotechnology, 2004, 22: 493-496.
    Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR [J]. J Mol Diagn, 2001, 3: 26-31.
    Rao RK, Philipps AF, Williams CS, McCracken DM, Koldovsky O. Luminal stability of insulin-like growth factors I and II in developing rat gastrointestinal tract [J]. Journal of Pediatric Gastroenterology & Nutrition, 1998, 26(2): 179-185.
    Rebora A, Guarrera M. A new phase of the hair cycle? [J]. Dermatology, 2002, 205(2): 108-110.
    Reppert SM, Weaver DR, Rivkees SA, Stopa EG. Putative melatonin receptors in a human biological clock [J]. Science, 1988, 242: 78-81.
    Risek B, Klier FG, Gilula NB. Multiple gap junction genes are utilized duringrat skin and hair development [J]. Development, 1992, 116: 639.
    Roca A L, Godson C, Weaver DR, Reppert SM. Structure, characterization, and expression of the gene encoding the mouse Mel1a melatonin receptor [J]. Endocrinology, 1996, 137(8): 3469-3477.
    Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis [J]. BioEssays, 2005, 27: 247-261.
    Santiago-Moreno J, Lopez- Sebastian A, Campoa del A, Gonzalez-Bulnes A, Picazo R. Effect of constant-release melatonin implants and prolonged exposure to a long day photoperiod on prolactin secretion and hair growth in mouflon (Ovis gmelinimusimon) [J]. Domest Anim Endocrin, 2004, 26: 303-314.
    Searle AG. Comparative genetics of colour in manimals. Logos Press, London, 1968.
    Slominski A, Wortsman J. Neuroendocrinology of the skin [J]. Endocrine Reviews, 2000, 21: 457-487.
    Stenn K S, Paus R. Controls of hair follicle cycling [J]. Physiological Reviews, 2001, 81: 449-494.
    Stenn KS, Combates NJ, Eilertsen KJ, Gordon JS, Pardinas JR, Parimoo S, Prouty SM. Hair follicle growth controls [J]. Dermatol Clin, 1996, 14: 543.
    Stenn KS, Lawrence L, Veis D, Korsmeyer S, Seiberg M. Expression of the bcl-2 protooncogene in the cycling adult mouse hair follicle [J]. J Invest
    Dermatol, 1994, (103): 107-114. Stenn KS, Paus R. What controls hair follicle cycling [J]. Exp Dermatol, 1999, 8: 220.
    Stewartc EH, Rotwein P. Growth, differentiation, and survival multiple physiological functions for insulin-like growth factors [J]. Physiol Rev, 1996, 76(4): 1005-1026.
    Su HY, Jay NP, Gourley TS, Kay GW, Damak S. Wool production in transgenic sheep: results from first-generation adults and second-generation lambs [J]. Anim Biotechnol, 1998, 9(2): 135-147.
    Su H-Y, Hickford J GH, The PHB, Hill AM ,Frampton CM, Bickerstaffe R:Increased vibrissa growth in transgenic mice expressing insulin–like growth factor 1 [J]. J Invest Dermatol, 1999, (112): 245-248.
    Suzuki S, Ota Y, Ozawa K, Ozawa K. Dual-mode regulation of hair growth cycle by two Fgf-5 gene products [J]. J Invest Dermatol, 2000, 114(3): 456-463.
    Taylor G, Lehrerm S, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis [J]. Cell, 2000, 102(4): 451-461.
    Vanecek J. Melatonin binding sites [J]. Journal of Neurochemistry, 1988, 51(5): 1436-1440.
    Vladimir A. Botchkarev, Ralf Paus. Molecular biology of hair morphogenesis: development and cycling [J]. Journal of experimental zoology, 2003, 298B: 164–180.
    Wang LC, Liu ZY, Gambardella L, Delacour A, Shapiro R, Yang J, Sizing I, Rayhorn P, Garber EA, Benjamin CD, Williams KP, Taylor FR, Barrandon Y, Ling L, Burkly LC. Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration [J]. J Invest Dermatol, 2000, 114(5): 901-908.
    Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts [J]. J Invest Dermatol, 2005, 125(5): 873-882.
    Welch RAS, Gurnsey MP, Betteridge K, Mitchell RJ. Goat fiber respone to melatonin given in spring in two consecutive years [J]. Proc of the New Zealand Society of Animal Production, 1990, 50: 335-338.
    Yoshida H, Kunisada T, Grimm T, Nishimura EK, Nishioka E, Nishikawa SI. Review: melanocyte migration and survival controlled by SCF/c-kit expression [J]. J Investig Dermatol Symp Proc, 2001, 6: 1-5.
    Yuan JS, Reed A, Chen F, Stewart CN. Statistical analysis of real-time PCR data [J]. BMC Bioinformatics, 2006, 7: 85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700