用户名: 密码: 验证码:
绒山羊转胰岛素样生长因子Ⅰ基因体细胞核移植胚胎的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因动物技术自上世纪八十年代确立以来,在医药、农业以及基础生物学领域都有十分广泛的研究和应用,也取得了令人瞩目的成绩。在畜牧业生产中,这项技术的应用方兴未艾。在改良动物遗传性状以提高生产性能、加强畜禽抗病育种以及通过乳腺生物反应器生产药用蛋白等非常规畜牧生产方面,转基因技术正显示出广阔的应用前景。但是,只有当体细胞核移植技术真正确立以后,转基因家畜的研究和制备效率才得以大幅提高。利用转染了外源基因的体细胞通过核移植技术获得转基因克隆动物是目前转基因动物制备的主要技术路线。本研究即采用了这种转基因方法,以毛囊特异表达的启动子pKAP6-1、pUHS分别引导胰岛素样生长因子(IGF1)基因,以新霉素抗性基因和红色荧光蛋白基因作为双选择标记,首次构建成功2个毛囊细胞中特异性表达IGF1的表达载体;利用体外转染技术将此2个表达载体分别导入绒山羊胎儿成纤维细胞,通过G418筛选出稳定表达红色荧光蛋白的2种克隆细胞;以体细胞核移植技术制备绒山羊转基因克隆胚胎。本研究为转基因绒山羊的培育,以及探讨IGF1在绒山羊毛囊发育和生长周期中的调控作用提供了研究基础。
     1.IGF1毛囊细胞特异性表达载体的构建
     通过PCR和RT-PCR方法从绵羊总DNA和总RNA中分别扩增出角蛋白关联蛋白6-1基因(KAP6-1)启动子区序列和绵羊胰岛素样生长因子(IGF1)编码区cDNA序列,以pMD19T为克隆骨架构建成中间克隆载体p19TKI。将CMV启动子序列连接在pDsRed2-1表达框架的红色荧光蛋白报告基因(Red2)上游KpnⅠ+SmaⅠ位点构成pCDsRed2;pCDsRed2经EcoRⅠ酶切,与p19TKI的KI片段连接构成IGF1毛囊细胞特异表达的第一种载体pCDsR-KI。
     以PCR方法从小鼠基因组DNA扩增出超高硫角蛋白基因(UHS)启动子区序列,与pMD19T、IGF1 cDNA(SalI+SphI酶切片段)构建成中间克隆载体p19TUI;pCDsRed2经SacⅠ+EcoRⅠ酶切、Klenow Fragment补平EcoRⅠ端,与p19TUI的UI片段(经过SacⅠ+SphⅠ酶切、Klenow Fragment补平SphⅠ端)连接构成毛囊细胞特异表达的第二种载体pCDsR-UI。
     限制性内切酶分析和部分序列测定结果表明,本研究所构建的两个表达载体pCDsR-KI和pCDsR-UI,其结构与序列均与预期设计完全符合。
     2.绒山羊胎儿成纤维细胞的分离与体外培养
     绒山羊胎儿成纤维细胞以组织块贴附方法进行分离,在DMEM/F12+10%FBS培养液,37℃、5%CO_2、饱和湿度条件下进行体外培养。原代成纤维细胞以DMEM/F12+20%FBS+DMSO培养液冷冻保存。在显微镜下观察和记录了绒山羊胎儿成纤维细胞的形态和生长特性,绘制出第1、2和6代胎儿成纤维细胞的生长曲线,通过制作第2、第6代细胞中期染色体标本,分析核型特征。经以上分析证明,我们分离和培养的绒山羊胎儿成纤维细胞在体外培养环境下,其生长力旺盛,1、2、6代细胞生长曲线的各个时期特征基本保持一致,随代次增加,生长速度渐缓;第2、6代细胞的染色体数目正常(2n=60),染色体正常比率分别为82.0%和77.6%。
     3.绒山羊胎儿成纤维细胞的外源基因转染
     脂质体Lipofectamine~(TM) 2000与线性化表达载体pCDsR-KI混合(转基因A组)、脂质体Lipofectamine~(TM) Reagent与线性化表达载体pCDsR-UI混合(转基因B组)后,分别转染至第2代绒山羊胎儿成纤维细胞。并对转染条件进行了优化,探明了脂质体和DNA的最佳组合条件及转染时间。以800μg/ml G418作为抗性筛选的浓度,在DMEM/F12+10%FBS培养液、37℃、5%CO_2、饱和湿度条件下连续培养12~15天,分别获得了两组表达红色荧光蛋白的转基因克隆细胞,其中A转染组共有23个阳性克隆、B转染组有11个阳性克隆。经过比较转基因细胞和对照组细胞的生长曲线和染色体核型分析证实,转基因和体外筛选过程并没有导致细胞生长和染色体核型的异常。通过对两组转基因细胞基因组DNA特异性区域的PCR扩增,证实外源基因IGF1及其表达控件已稳定整合在转基因细胞基因组中。
     4.绒山羊转基因胎儿成纤维细胞的核移植
     在非繁殖季节,从136个绒山羊卵巢采集到卵母细胞复合体738枚;在繁殖季节,从384个卵巢共采集卵母细胞复合体1915枚。经体外成熟培养,非繁殖季节的卵母细胞成熟率为73.4%(542/738),略高于繁殖季节的成熟率65.5%(1254/1915);体外成熟培养时间分别设定为18、20和24hr进行分组培养,其中20hr组成熟率80.6%(79/98)、24hr组成熟率82.2%(83/101)均显著高于18hr组成熟率67.1%(51/76),P<0.05。以7%乙醇7 min+2mM 6-DMAP 4 hr和5μMIA23187 5min+2mM 6-DMAP 4hr两种激活方法处理成熟卵母细胞进行孤雌激活,48hr后统计卵裂率为86.4%和88.7%,二者之间差异不显著(P>0.05)。选择IA23187激活方法用于重构胚的激活。分别设定三种不同强度的融合条件(130V/mm、190V/mm和200V/mm)进行电融合率,融合率分别为32.8%、62.4%和42.9%。分别以转染有pCDsR-KI的A组成纤维细胞和转有pCDsR-UI的B组细胞作为核供体,以去核成熟卵母细胞作为胞质受体制备转基因克隆胚胎。以SOFaa+BSA培养液培养48hr,统计卵裂率,结果A组为79.3%(161/203),B组为62.5%(40/64)。经过SOFaa+4%FBS体外培养7~9天,A组转基因得到囊胚数为31枚,囊胚发育率为15.3%(31/203);B组转基因未能获得囊胚,得到桑椹胚2枚,桑椹胚发育率为3.1%(2/64)。所得到的31枚囊胚中,表达红色荧光蛋白的囊胚数17枚,而B组桑椹胚不表达红色荧光。从红色荧光囊胚中挑选2枚以PCR方法检测外源基因整合情况,结果全部为阳性。以OPS玻璃化冷冻方法保存了部分转基因克隆囊胚。
Transgenic animal technology has got a broad application and a great progress in many fields such as biomedicine,agriculture and even in basic biology since it was established in the early 1980s.And the application of this technology is ascending in the field of animal husbandry.The use of gene transfer exhibits a broad prospect in unconventional animal production lies in three aspects:the improvement of product quality and quantity,disease resistance,and the production of valuable proteins in the mammary gland.However,only after the somatic cells cloning technology was established,the study on the transgenic animals could really exhibit more extensive application prospects in large animals.At present,transgenic animals are obtained utilizing somatic cells transferred with exogenous genes through nuclear transplantation technique,which is the main technical route of making transgenic animals.This technique is adopted in our research.Two expression vectors which specifically expressed insulin like growth factorⅠ(IGF1) in follicle cells were constructed initially and successfully.The pKAP6.1 and pUHS,which express specifically in hair follicles,were used as the promoters of IGF1.And,the neomycin resistance gene(neo~r) and a red fluorescence protein gene DsRed2 were used as selectable marker.The two expression vectors were transfected in fetal fibroblasts of Cashmere goat in vitro.The positive clones with red fluorescence were screened by G418.The transgenic cloning embryos of cashmere goats were obtained by somatic cell nuclear transfer technique firstly.Our research lays a foundation for finally acquiring the transgenic cashmere goats and for the further study of effects of IGF1 on regulating hair follicle development and growth cycle.
     1 The construction of hair follicle cells specific expression vectors for IGF1
     The DNA sequence of the promoter of keratin associated proteins 6.1 gene and IGF1 cDNA sequence were obtained from ovine total DNA and total RNA by PCR and RT-PCR respectively,then linked with T-vector pMD19T to get an intermediate construction p19TKI.At the next step,the foundation of pCDsRed2 makes a good winning by way that the CMV promoter sequence is linked on the upstream of DsRed2 reporter gene between KpnⅠand SmaⅠsites.Then,one of the hair follicle cells specific expression vectors,pCDsR-KI was accomplished by linkage of pCDsRed2 which was linearized with EcoRⅠand KI fragment digested from p19TKI.
     The DNA suquence of the another promoter of murine ultra high sulfur keratin proteins(UHS) was amplified by PCR from murine genomic DNA.Then PCR products and IGF cDNA fragments,as well as the cloning vector pMD19T were linked to be an intermediate vector p19TUI.IGF1 cDNA fragment which was digested by SalI/SphI(then formed a blunt end in the SphⅠsite by Klenow fragment treatment) from p19TKI,and pCDsRed2 linearized by SacⅠ/EcoRⅠ,then formed a blunt end in the EcoRⅠsite by Klenow Fragment to form pCDsR-UI,another hair follicle cells specific expression vector for IGF1.The evidence from restriction analysis and partial DNA sequencing showed that the two expression vectors were both consistent with anticipation.
     2 Isolation and in vitro culture of cashmere goat fetal fibroblast cells
     The hircine fetal fibroblast cells(HFFCs) were successfully isolated by attachment of tissue pieces from a fetus of cashmere goat.The isolated cells were purified and proliferated in DMEM/F12+ 10%FBS media at 37℃in a humidified 5% CO2 incubator.Then the cells were cryopreserved within primary passage in DMEM/F12+20%FBS media which contains 10%of DMSO.Morphology and growth character were observed and recorded,the growth curves of the cells within 1~(st),2~(nd) and 6~(th) passages were drawn and the chromosomal analysis of the cells within 2~(nd) and 6~(th) passages were performed.The result showed the growth of the cells were prosperous and the similar trendline of cell growth were observed among 1st,2nd and 6th passaage although the speed was slow down with the passage number increased.Both the 2nd and 6th passage cells contained normal chromosome number consisting of 60 chromosomes(2n=60).The rates of the chromosomal normality were 82.0%and 77.6%accordingly.
     3 Gene transfection into cashmere goat fetal fibroblast cell
     The 2~(nd) passage of HFFCs were transfected with the mixture of linearized pCDsR-KI and Lipofectamine~(TM) 2000,and the mixture of linearized pCDsR-UI and Lipofectamine~(TM) respectively.The ratio between the liposome and DNA,as well as the transfecting duration time were optimized in our experiments.After screening the two group cells with 800μg/ml of genetycin for 12 to 15 days at 37℃in a humidified 5%CO_2 condition,23 from KI and 11 from UI cell colonies with red fluorescent were obtained.Comparative analysis suggested that the transgene and in vitro screening did not caused abnormally growing and exceptional karyotype. Identification of the genomic DNA of two group cells by ploymerase chain reaction proved that the exogenous gene have been integrated into genomes of the two groups of cells respectively.
     4 The transgenic fetal fibroblast cells nuclear transfer of cashmere goat
     A total of 738 cumulus oocyte complexies(COCs) were collected from 136 cashmere goat ovaries during the non-breeding season,and 1915 COCs were collected from 384 ovaries during the breeding season comparatively.The maturation rate of COCs from the non-breeding season was 73.4%,which was a little bit higher than COCs from the beeding season that was 65.5%.In vitro maturation of COCs were divided into three groups in 18h,20h and 24h.The rate of maturation for oocytes from 20h(80.6%) and 24h(82.2%) were both significantly higher than 18h (67.1%),P<0.05.Parthenogenetic ooctyes were used as models to investigate the effect of two different activation methods with the parameters of 7%ethanol for 7 minutes plus 2mM 6-DMAP for 4h,and 5μM IA23187 for 5rain plus 2mM 6-DMAP for 4hr,the cleavage rates after 48h were 86.4%and 88.7%accordingly with no significant difference,P>0.05.Three different fusion condition(130V/mm,190V/mm and 200V/mm) were investigated,and the result were 32.8%、62.4%和42.9%. Cleavage rates after 48h IVD in SOFaa containing BSA following nuclear transfer were KI group(79.3%) and UI group(62.5%).The cleaved embryos were transferred into SOFaa containing 4%FBS for 7 to 9 days.There was a difference in blastocyst developmental result between the KI and UI group.A total 31(15.3%) blastocysts were obtained from KI group whereas there is no balstocyst but only two(3.1%) morula stage embryos from UI group.Seventeen out of the 31 blastocysts expressing red fluorescence but there is no expression in UI group.The identification of integration was performed in 2 out of the 17 red fluorescent embryos by polymesrase chain reaction showed were all positive.OPS vitrification method was used for cryopreservation of some of the transgenic embryos.The survival rate after thawing was 80%.
引文
[1]Gordon J W.Genetic transformation of mouse embryos by microinjection of puried DNA.Proc.Natl.Acad.Sci.USA,1980,77:7380-7384.
    [2]Wagner TE,Hoppe PC,Jollick JD,Scholl DR,Hodinka RL,Gault JB.Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring.Proc Natl Acad Sci US A 1981;78:6376-6380.
    [3]Palmiter RD,Brinster RL,Hammer RE,et al.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormonefusiongenes.Nature,1982,300(5893):611-615.
    [4]Wilmut I,Schnieke AE,McWhir WA,et al.Viable offspring derived from fetal and adult mammalian cells.Nature.1997,385:810-813
    [5]Schieke AS,Kind AJ,Ritchie WA,et al.Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science.1997,278:2130-2133
    [6]Cibelli J B,Stice S L,Golueke P J,et al.Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science,1998,280:1256-1258.
    [7]Baquisi A,Behboodi E,Melican DT,et al.Production of goats by somatic cell nuclear transfer.Nat Biotechnol.1999,17:456-461.
    [8] Lai L,Kolber-Simonds D,Park KW.et al.Production of alpha-1,3-galactosyl transferase knockout pigs by nuclear transfer cloning.Science,2002,295:1089-1092.
    
    [9] Dai Y,Vaught TD,Boone J,et al.Targeted disruption of the alpha1-3-galactosyl transferase gene in cloned pigs.Nat Biotechnol,2002,20(3):251-255.
    
    [10] M. Skrzyszowska, Z. Smora.g, R. S1'omski, et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biology of Reproduction, 2006, 74,1114-1120.
    
    [11] Nezer C ,Moreau L, Brouwers B,et al. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGFI locus in pigs. Nature Genetics ,1999,21:155 — 156.
    
    [12] Damak S, Su HY, Jay NP, et al. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology, 1996,14:185-188.
    
    [13] Bawden C.S., Powell B.C., Walker S.K., et al. Expression of a wool intermediate filament keratin transgenic in sheep fibre alters structure. Transgenic Research, 1998, 7:273-287.
    
    [14] Hammer R.E., Pursel VG, Rexroad C.E. Genetic engineering of mammalian embryos. J Anim Sci. 1986,63 (1):269-278.
    
    [15] Golding MC, Long CR, Carmell MA,Suppression of prion protein in livestock by RNA interference. PNAS, 2007,103(14):5285-5290.
    
    [16] Wright G, Carver A, Cottom D,et al. High expression of active human α 1-antitrypsin in the milk of transgenic sheep.Biotechnology ,1991 ,9:830 - 834.
    
    [17] Meade H , Gates L , Lacy E , et al. Bovine α s1-casein gene sequence direct high level expression of human urokinase in mouse milk. Biotechnology, 1990,300 :511 - 515.
    
    [18] McCreath K J , Howcroft J ,Campbel L KH, et al . Production of gene targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000,405:1066-1069.
    
    [19] van Berkel PHC, Welling MM, Geerts M, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol, 2002,20: 484-487.
    
    [20] Brophy B., Smolenski G., Wheeler T., et al. Cloned transgenic cattle produce milk with higher levels of casein and casein. Nature Biotechnology., 2003,21:157 -162.
    
    [21] Reh W. A.,. Maga E. A, Collette N. M. B., et al. Hot Topic: Using a Stearoyl-CoA Desaturase Transgene to Alter Milk Fatty Acid Composition. J. Dairy Sci. 2004, 87:3510-3514.
    
    [22] Maga E.A.,ShoemakerC.F.,RoweJ.D.,et al. Production and Processing of Milk from Transgenic Goats Expressing Human Lysozyme in the Mammary Gland. J. Dairy Sci. 2006, 89:518-524.
    [23]魏泓.转基因动物的经济开发前景.中国实验动物学杂志.2000,10(1):32-36.
    [24]Bawden C.S.,Sivaprasad A.V.,Verma P.J.,Walker S.K.and G.E.Rogers,Expression of bacterial cysteine biosynthesis genes in transgenic mice and sheep:toward a new in vivo amino acid biosynthesis pathway and improved wool growth.Transgenic Research.1995,4(2):87-104.
    [25]Bawden CS,Powell BC,Walker SK,Rogers GE,Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure.Transgenic Res.1998 Jul;7(4):273-87.
    [26]Adams N R,Briegel J R.Multiple effects of an additional growth hormone gene in adult sheep.J Anim Sci 2005:83:1868-1874.
    [27]赵改民,田伟,苏兰丽.羊毛生长的内分泌调节研究进展.中国畜牧杂志.1998.
    [28]Danilenko DM,Ring BD,Yanagihara D,et al.Keratinocyte growth factor is an important endo genous mediator of hair follicle growth,development,and differentiation.Normalization of the nulnu follicular differentiation defect and amelioration of chemotherapy-induced alopecia.Am J Path 1995,147:145-154.
    [29]Sundberg JP,Rourk MH,Boggess D,et al.Angora mouse mutation:altered hair cycle,Vet.Pathol.1997.34:171-179.
    [30]C.E.Stewart and P.Rotwein.Growth,differentiation,and survival:multiple physiological functions for insulin-like growth factors.Physiological Review.1996,76:1005-1026.
    [31]白波,姚裕家,李炜如.胰岛素样生长因子与胎儿生长发育.国外医学,2000,27(1):4-7.
    [32]Krause K,Foitzik K.Biology of the Hair Follicle:The Basics.Seminars in Cutaneous Medicine and Surgery 2006;25:2-10.
    [33]Harris PM,McBride BW,Gumsey MP.Direct infusion of a variant of insulin like growth factor Ⅰ into skin of sheep and effects on local blood flow,amino acid utilisation and cell replication.Endocrinology,1993,139:463 472.
    [34]Hung-Yi Su,Jonathan G H Hickford,Pauline H B The,et al.Increased Vibrissa Growth in Transgenic Mice Expressing Insulin-like Growth Factor 1.The Journal of Investigative Dermatology,1999,112(2):245-248.
    [35]毛怀志,岳文斌,冯旭芳.绵、山羊品种资源及利用大全.北京,中国农业出版社,2006,p169.
    [36]尹长安.绒山羊饲养与疾病防治.北京,中国农业出版社,2003.
    [37]刘晓芳,张萍,刘少卿等.内蒙古白绒山羊保种及开发利用的研究与应用.种业研究.20056:35-37.
    [1].McLaren R J,Rogers GR,Davies KP,et al.Linkage mapping of wool keratin and keratin associated protein genes in sheep.Mammalian Uenome,1997,8:938-940.
    [2].Wood L,Mills M,Vogelis G,et al.Serine-rich Ultra High Sulfur Protein Gene Expression in Murine Hair and Skin during the Hair Cycle.The Journal of Biological Chemistry,1990,265(34):21375-21360.
    [3].C.E.Stewart and P.Rotwein.Growth,differentiation,and survival:multiple physiological functions for insulin-like growth factors.Physiological Review.1996,76:1005-1026.
    [4]白波,姚裕家,李炜如.胰岛素样生长因子与胎儿生长发育.国外医学儿科学分册,2000,27(1):4-7.
    [5].Harris PM,McBride BW,Gurnsey MP.Direct infusion of a variant of insulin like growth factor Ⅰ into skin of sheep and effects on local blood flow,amino acid utilisation and cell replication.Endocrinology,1993,139:463 472.
    [6]Galbraith H.The effects of diet on nutrient partition in scottish cashmere and angora goats.European fine fibre network,Occasional publication.1995.No.3:23-48.
    [7]Sami Damak,Hung-Yi Su,Nigel P Jay,et al.Improved wool production in transgenic sheep expressing insulin-like growth factor 1.Biotechnology,1996,14:185-188.
    [8]Fratini A,Powell BC,Rogers GE.Sequence,Expression,and Evolutionary Conservation of a Gene Encoding a Glycine/Tyrosine-rich Keratin-associated Protein of Hair.The Journal of Biological Chemistry,1993,268(6):4511-4518.
    [9]Powell BC.The keratin proteins and genes of wool and hair.Wool Technology and Sheep Breeding.1996,44:100-118.
    [10]尹俊,扈庭茂,李金泉等.与绵羊KAP6-1相似的6个绒山羊全长cDNA的克隆与序列分析.遗传学报,2004,31(5):502-507.
    [11]P.J.Mackinnon,B.C.Powell,and G.E.ogers.Structure and Expression of Genes for a Class of Cysteine-rich Proteins of the Cuticle Layers of Differentiating Wool and Hair Follicles.The Journal of Cell Biology,1990,111(6):2587-2600.
    [12]Alistai R.M,P Andrus,T.E.Wagner.Hair-specific expression of chloramphenicol acetyltransferase in transgenic mice under the control of an ultra-high-sulfur keratin promoter.Developmental Biology,1990,87:6848-6852.
    [13]Hung-Yi Su,Jonathan G H Hickford,Pauline H B The,et al.Increased Vibrissa Growth in Transgenic Mice Expressing Insulin-like Growth Factor 1.The Journal of Investigative Dermatology,1999,112(2):245-248.
    [14]钟卫鸿,陈建孟,陈伟.珊瑚和海葵来源红荧光蛋白的研究和应用.中国生物工程杂志 2005,25(5):10-14.
    [15]Yarbrough D,Wachter RD,Kallio K.Refined crystal structure of DsRed,a red fluorescent protein from coral,at 2.0-A resolution.PNAS,2001.98(2):462-467.
    [16]杨兴坤,黄天华,谢庆东.脂质体介导的精原细胞基因转移.癌变畸变突变.2006.18(4):277-280
    [1]Wilmut I,Schnieke AE,McWhir WA,et al.Viable offspring derived from fetal and adult mammalian cells.Nature.1997,385:810-813
    [2]Wells,D.N.,Misica,P.M.,McMillan,W.H.and Tervit,H.R,Production of cloned bovine fetues following nuclear transfer with cells from a fetal fibroblast cell line.Theriogenology,1998,49:330(Abstr.).
    [3]Kato Y,Tani T,Sotomaru Y,et al.Eight calves cloned from somatic cells of a single adult.Science,1998,282:2095-2089
    [4]Baguisi,A.,Behboodi,E.,Melican,D.T.,Production of goats by somatic cell nuclear transfer.Nature Biotechnology,1999,17:456-461.
    [5]Polejaeva I A,Chen S H,Vaught T D,et al.Cloned pigs produced by nuclear transfer from adult somatic cells.Nature,2000,407:86-90
    [6]Shin,T.,Kraemer,D.,Pryor,J.,Liu,L.,Rugila,L.,Buck,S.,Murphy,K.,Lyons,L.and Westhusin,M.(2002)."A cat cloned by nuclear transplantation.Nature 415:859.
    [7]Woods GL,White KL,Vanderwall DK,et al.A mule cloned from fetal cells by nuclear transfer.Science.2003,301(5636):1063.
    [8]Wakayama T,Perry AC,Zuccotti M,et al.Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.Nature 1998,394:369-374
    [9]Kasinathan P,Knott JG,Wang Z,et al.Production of calves from G1 fibroblasts.Nat Biotechnol.2001,19(12):1176-1178
    [10]Ohkoshi K,Takahashi S,Koyama S,et al.In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.Cloning Stem Cells,2003,5(2):109-115
    [11]Cibelli JB,Stice SL,Golueke PJ,et al.Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science.1998;280:1256-1258
    [12]Kato Y,Tani T,Sotomaru Y,et al.Eight calves cloned from somatic cells of a single adult.Science.1998,282:2095-2089
    [13]Schieke AS,Kind AJ,Ritchie WA,et al.Human factor Ix transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science.1997,278:2130-2133
    [14]Baquisi A,Behboodi E,Melican DT,et al.Production of goats by somatic cell nuclear transfer. Nat Biotechnol.1999,17:456-461.
    [15]Cibelli J B,Stice S L,Golueke P J,et al.Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science,1998,280:1 256-1 258.
    [16]McCeath KJ,Howcroft J,Campbell KHS,et al.Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Nature.2000,405:1066-1069
    [17]Lai L,Kolber-Simonds D,Park KW,et al.Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science,2002,295:1089-1092
    [18]Dai Y,Vaught TD,Boone J,et al.Targeted disruption of the alphal,3-galactosyltransferase gene in cloned pigs.Nat Biotechnol,2002,20(3):251-255
    [19]Phelps CJ,Koike C,Vaught TD,et al.Production of alphal,3-galactosyltransferase-deficient pigs.Science,2003,299:411-414
    [20]杨东山,杜晨光,高飞等.牛胎儿成纤维细胞的组织块贴附法分离培养与电穿孔法基因转染.动物学研究,2006,27(1):41-47.
    [21]薛庆善.体外培养的原理与技术.北京,科学出版社.2001.958-961.
    [22]马玉珍,扈廷茂,王建国等.绵羊胎儿成纤维细胞体外培养及转基因研究.中国实验动物学报.2003,11(4):195-198.
    [23]林吉茂,卿素珠,成醒民等.山羊胚胎皮肤的发育及β1整合素在发育中的表达.中国组织工程研究与临床康复,2007,11(37):7337-7340
    [24]Kubota C,Yamakachi H,Todoroki J,et al.Six cloned calves produced from adult fibroblast cells after long term culture.Proc Natl Acad Sci USA,2000,97:990-995
    [25]雷雪芹,孙美玲,雷初朝.安哥拉山羊染色体核型分析.畜牧兽医杂志.2001,20(6):10-11.
    [26]雷初朝,刘爱锋,陈宏等.布尔山羊的染色体核型分析.中国草食动物.2001,3(1):3-5.
    [27]安玉君,娜仁花,王志新.内蒙古不同类型白绒山羊染色体组型分析研究.内蒙古农牧学院学报.1998,19(3):12-16.
    [1]F.M.Ausubel,Roger Brcnt,R.E.Kinston,et al.Short protocols in molecular biology.4th edition.John Wiley & Sons,Inc.1999.
    [2].Zhang Yunhai,Pan Dengke,Sun Xiuzhu,et al.Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer.Science in China:Series C Life Sciences.2006,49(1):1-8.
    [3].K Bondioli,J Ramsoondar,B Williams,ct al,Cloned pigs generated from cultured skin fibroblasts derived from a h-transferase transgcnic boar.Molecular Reproduction and Development.2001 60:189-195.
    [4].W.A.Ritchie,C.Neil,T.King,et al.Transgenic embryos and mice produced from low titre lentiviral vectors.Alexion Pharmaceuticals,Inc.,Cheshire,Connecticut,2001.
    [5].C.Bethune,T.Bui,M.L.Liu,et al.Development of a High-Performance Liquid hromatographic Assay for G418 Sulfate(Gcneticin).Antimicrobial agents and chemotherapy,1997,41(3):661-664.
    [6].薛庆善.体外培养的原理与技术.北京,科学出版社.2001.958-961.
    [7].周雪雁,关伟军.脂质体介导转染法原理及其研究进展.中国家禽.2005,27(7):43-45.
    [8]C.A.Pinkert,Transgenic animal technology:a laboratory handbook.,2~(nd) edition,
    [9].A.B.Auerbach.Production of functional transgcnic mice by DNA pronuclear microinjection.Acta biochimica polonica.2004,51(1):9-31.
    [10]张梅英,李华,董婉维等.抗G418小鼠胚胎干细胞饲养层的制备.中国医科大学学报.2005,34(1):1-3.
    [11]何孟栖,陈利国.血管内皮细胞原代培养方法的改良及应用.陕西医学杂志.2004,33(7):581-582.
    [12]马玉珍,扈廷茂,王建国等.绵羊胎儿成纤维细胞体外培养及转基因研究.中国实验动物 学报.2003,11(4):195-198.
    [13]A.Ogura,K.Inoue.N.Ogonuki,et al.Production of male cloned mice from fresh,cultured,and cryoprescrved immature sertoli cells.Biol.Reprod.,2000,62(6):1579-1584.
    [14]V Zakhartehenko,S.Mueller,R.Alberio,et al.Nuelcar transfer in cattle with non transfccted and transfected fetal or cloned transgcnic fetal and postnatal fibroblasts.Mol ReProd Dev,2001,60(3):362-369.
    [15]Gong G.C,Dai YP,Fan BL,et al.Birth of Calves Expressing the Enhanced Green Fluorescent Protein After Transfer of Fresh or Vitrified/Thawed Blastocysts Produced by Somatic Cell Nuclear Transfer.Mol Repd Dev,2004,69:278-288.
    [1]Wilmut I,Schnieke AE,McWhir WA,et al.Viable offspring derived from fetal and adult mammalian cells.Nature.1997,385:810-813
    [2]Schieke AS,Kind A J,Ritchie WA,et al.Human factor Ix transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science.1997,278:2130-2133
    [3]McCeath KJ,Howcroft J,Campbell KHS,et al.Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Nature.2000,405:1066-1069.
    [4]Cibelli J B,Stice S L,Golueke P J,et al.Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science,1998,280:1 256-1 258.
    [5]Baquisi A,Behboodi E,Melican DT,et al.Production of goats by somatic cell nuclear transfer.Nat Biotechnol.1999,17:456-461.
    [6]Lai L,Kolber-Simonds D,Park KW,et al.Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science,2002,295:1089-1092.
    [7]Dai Y,Vaught TD,Boone J,et al.Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs.Nat Biotechnol,2002,20(3):251-255.
    [8]Phelps CJ,Koike C,Vaught TD,et al.Production of alpha1,3-galactosyltransferase-deficient pigs.Science,2003,299:411-414.
    [9]Wright G,Carver A,Cottom D,et al.High expression of active human α 1-antitrypsin in the milk of transgenic sheep.Biotechnology,1991,9:830-834.
    [10]van Berkel PHC,Welling MM,Geerts M,et al.Large scale production of recombinant human lactoferrin in the milk of transgenic cows.Nat Biotechnol,2002,20:484-487.
    [11]Brophy B.,Smolenski G.,Wheeler T.,et al.Cloned transgenic cattle produce milk with higher levels of beta casein and kappa casein.Nature Biotechnology.,2003,21:157-162.
    [12]Damak S,Su HY,Jay NP,et al.Improved wool production in transgenic sheep expressing insulin-like growth factor 1.Biotechnology,1996,14:185-188.
    [13]Philpott MP,Sanders D,Kealey T.Effects of Insulin and Insulin-Like Growth Factors on Cultured Human Hair Follicles:IGF-I at Physiologic Concentrations Is an Important Regulator of Hair Follicle Growth In Vitro.J Invest Dermatol,1994,102:857-861.
    [14]Harris PM,McBride BW,GumseyMP.Direct infusion of a variant of insulin like growth factor Ⅰ into skin of sheep and effects on local blood flow,amino acid utilisation and cell replication.Endocrinology,1993,139:463 472.
    [15]姜怀志,葛晨霞,戢爽等.辽宁绒山羊母羊繁殖规律的研究.吉林农业大学学报 2006,28(1):77-79.
    [16]陈大元.受精生物学-受精机制与生殖工程,北京,科学出版社,2000.p13-14
    [17]张周,昝林森,田万强.哺乳动物卵母细胞成熟及调节机制.中国农学通报,2005,21(10):16-18.
    [18]郭继彤,李裕强,张涌.从屠宰山羊卵巢制备核移植受体卵母细胞的研究.西北农业学报,1998,7(5):127-130.
    [19]王雪红,董雅娟,柏学进.山羊卵母细胞体外成熟过程中细胞核迁移的研究.生物技术通报,2006增刊,412-415.
    [20]Guo JT,An ZX,Li Y,et al.Cloned goats(capra hircus) from adult ear cells.Science in China(Series C).2002.45(3):260-267.
    [21]Lan GC,Chang ZL,Luo MJ.Production of cloned goats by nuclear transfer of cumulus cells and long-term cultured fetal fibroblast cells into abattoir-derived oocytes.Molecular Reproduction and development.2006.73:834-840.
    [22]赵晓娥,王妍,张涌.山羊卵母细胞孤雌激活及孤雌胚的体外培养.动物医学进,2006,27(5):77-80.
    [23]Cuthbertson KS,Whittingham DG,Cobbold PH.Free Ca2+ increase in exponential phases during mouse oocyte activation.Nature,1981,294(5843):754-757.
    [24]Presicce GA,Yang X.Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment.Mol Reprod Dev 1994;37:61-68.
    [25]Tian XC,Lonergan P,Jeong BS,et al.,Association of MPF,MAPK,and nuclear progression dynamics during activation
    [26]Booth P J,Holm P,Vaita G.,Comparison between 6-dimethylaminopurine and cycloheximide activation treatments for bovine nuclear transfer.,Theriogenology,1999,51:197.
    [27]Liu L,Yang X.Interplay of maturation2promoting factor and mitogen activated protein kinase inactivation during metaphase interphase transition of activated bovine oocytes.Biol Reprod,1999,61:127.
    [28]李光鹏,孟庆刚,魏鹏.亚胺环己酮对猪卵母细胞人工孤雌激活作用的研究.畜牧兽医学报,2001,32(5),4162420]
    [29]Sun QY,LAX Y,Rubinstein S,et al.Mitogen activated protein kinase and cell cycle progression during mouse egg activation induced by various stimuli.Z N atur f orsch,1999,54(3/4):2852294.
    [30]Kood B,Chaas JI,Kim JS,et al.Inactivation of MPF and MAP kinase by single electrical stimulus for parthenogenetic development of porcine oocytes.Mol Reprod Dev,2005,72(4):542-549.
    [31]Loi P,ClintonM,BarboniB,et al.Nuclei of nonviable ovine somatic cells develope into lambs after nucler transplantation.Bio 1 Rep rod,2002,67:126-132
    [32]Tervit HR,Whittingham DG,Rowson LEA.Successful culture in vitro of sheep and cattle ova.J.Reprod Fertil,1972,30:493-497.
    [33]Guo JT,An ZX,Li Y,et al.Cloned goats(Capra hircus) from adult ear cells.Sci China Series C,2002,45(3):260-267.
    [34].刘凤军,王勇胜,华松.培养液及血清浓度对山羊孤雌胚胎体外培养的影响.黑龙江畜牧兽医,2004 2:11-13.
    [35]Roblero LS,Guadarrama A,Ortiz ME,et al.High potassium concentration and the cumulus corona oocyte complex stimulate the fertilizing capacity of human spermatozoa[J].Fertil Steril,1990,54:328-332.
    [36]Wells DN,Laible G,Tucker FC,et al.Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle.Theriogenology,2003,59:45-59.
    [37]Shu-Hung Chen,Todd D.Vaught,Jeff A.Monahan et al.,Efficient Production of Transgenic Cloned Calves Using Preimplantation Screening,Biology of Reproduction,2002(67):1488-1492.
    [1]尹长安.绒山羊饲养与疾病防治.北京,中国农业出版社,2003.
    [2]毛怀志,岳文斌,冯旭芳.绵、山羊品种资源及利用大全.北京,中国农业出版社,2006.
    [3]郑敏,吕中法.皮肤毛囊研究进展.浙江大学学报(医学版),2004,133(4):277-280.
    [4]李桂芳,赵宗胜,李大全.绵羊皮肤结构观察与羊毛生长调控.草食家畜,2002,117(4):56-59.
    [5]邹锋,郝飞.毛囊生物学特性的某些研究进展.中华医学美学美容杂志.2006,12(5):315-317.
    [6]高爱琴.FGF5 cDNA序列的克隆测序及不同山羊和绵羊品种中FGF5的多态性研究.内蒙古农业大学博士学位论文.呼和浩特,2005.
    [7]王丽,彭丽琴,张文彬等.内蒙古白绒山羊皮肤毛囊发生发育规律的研究.畜牧兽医学报,1996,27(6):524-530.
    [8]孙海洲,侯先志,红梅.内蒙古阿尔巴斯白绒山羊皮肤毛囊发育及其活性变化规律的研究.内蒙古畜牧科学.1998,4:3-6.
    [9]Cotsarelis G,Sun TT,Lavker RM.Label-retaining cells reside in the bulge area of pilosebaceous unit:implications for follicular stem cells,hair cycle,and skin carcinogenesis.Cell,1990,61:1329-1337.
    [10]Stenn KS,Paus R.Control of hair follicle cycling.Physiol Rev,2001,81:449-494.
    [11]Paus R,Cotsarelis G.The biology of hair follicles.N Engl J Med,1999,341:391-498.
    [12]McDonald,B.J.,et al.Cyclical fleece growth in cashmere goats.Aust J.Aagric.Res.,1987,38:597-609.
    [13]Ryder,M.L.Coat structure and seasonal shedding in goats[J].Anim.Prod.,1966,8:289-302.
    [14]Holst P.J,Clarke WH,Maddocks IG et al.Skin and fleece characteristics of two groups of feral goats.Aust.J.Exp.Agric.Anim.Husb.,1982,22:173-176.
    [15]高文厚.对二狼山白绒山羊被毛脱换的探讨.中国养羊,1996,2:42-43.
    [16]贾志海,蔡青和.山羊绒生长机制及其营养研究进展.动物营养学报.1999.11 Sup:97-102.
    [17]Dicks P.,et al.The effect of melatonin implants given under different daylength regimes on plasma prolactin concentrations and fibre growth and shedding in cashmere goats.Animal Science,1995,60:239-247.
    [18]Langbein L,Rogers MA,Winter H.The Catalog of Human Hair Keratins Ⅱ.Expression of the six type Ⅱ members in the hair follicle and the combined catalog of human type Ⅰ and Ⅱ keratins. J. Biol. Chem, 2001,276 (37): 35123-35132.
    
    [19] Woods JL, Orwin DF. Wool proteins of New Zealand Romney sheep. Aust J Biol Sci 1987,40: 1-14.
    
    [20] Rogers GE, Powell BC. Organization and expression of hair follicle genes. J Invest Dermatol 1993,101: 50S-55S.
    
    [21] Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays 2005; 27: 247-261.
    
    [22] Hardy MH. 1992. The secret life of the hair follicle. Trends Genet 8:55-61.
    
    [23] Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002.2:643-653.
    
    [24] Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001.107:69-82.
    
    [25] Yan M, Wang LC, Hymowitz SG, Schilbach S, Lee J, et al. Twoamino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000.290:523-527.
    
    [26] Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM. The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001.276:2668-2677.
    
    [27] Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003. 422:317-322.
    
    [28] Muller-Rover S, Tokura Y, Welker P, Furukawa F, Wakita H, et al. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling. Exp Dermatol 1999. 8:237-246.
    
    [29] Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E, et al. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. GATA-3: an unexpected regulator of cell lineage determination in skin. J Cell Biol 2003.163:609-623.
    
    [30] du Cros D L,Isaacs K,Moore G P. Localization of epidermal growth factor immunoreactivity in sheep skin during wool follicle development. J Invest Dermatol, 1992,98:109-15
    
    [31] Botchlcarev VA, Botchkareva NV, Huber O, Funa K, Gilchrest BA. Modulation of BMP signaling by noggin is required for induction of the secondary (non-tylotrich) hair follicles. J Invest Dermatol 2002.118:3-10.
    [32]Botchkarev VA,Botchkareva NV,Roth W,et al.Noggin is a mesenchymally-derived stimulator of hair follicle induction.Nature Cell Biol 1999x.1:158-164.
    [33]van Balkom ID,Hennekam RC.Dermal eccrine cylindromatosis.J Med Genet 1994.31:321-324.
    [34]Wodarz A,Nusse R.Mechanisms of Wnt signaling in development.Annu Rev Cell Dev Biol 1998.14:59-88.
    [35]van Genderen C,Okamura RM,Farinas I,Quo RG,Parslow TG,et al.Development of several organs that require inductive epithelialmesenchymal interactions is impaired in LEF-1-deficient mice.Genes Dev 1994.8:2691-2703.
    [36]Zhou P,Byrne C,Jacobs J,Fuchs E.Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate.Genes Dev 1995.9:700-713.
    [37]Galceran J,Farinas I,Depew MJ,Clevers H,Grosschedl R.Wnt3a-/-like phenotype and limb deficiency in Left(-/-)Tcf1(-/-) mice.Genes Dev 1999.13:709-717.
    [38]Srivastava AK,Durmowicz MC,Hartung AJ,Hudson J,Ouzts LV,et al.Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice.Hum Mol Genet 2001.10:2973-2981.
    [39]McMahon AP,Ingham PW,Tabin CJ.Developmental roles and clinical significance of hedgehog signaling.Curr Top Dev Biol 2003.53:1-114.
    [40]Bitgood MJ,McMahon AP.Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo.Dev Biol 1995.172:126-138.
    [41]Iseki S,Araga A,Ohuchi H,Nohno T,Yoshioka H,et al.Sonic hedgehog is expressed in epithelial cells during development of whisker,hair,and tooth.Biochem Biophys Res Commun 1996.218:688-693.
    [42]Mill P,Mo R,Fu H,Graehtchouk M,Kim FC,et al.Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development.Genes Dev 2003.17:282-294.
    [43]Chiang C,Swan RZ,Grachtchouk M,Bolinger M,Litingtung Y,et al.Essential role for Sonic hedgehog during hair follicle morphogenesis.Dev Biol 1999.205:1-9.
    [44]田婷,范卫新.毛囊相关信号转导研究进展.国际皮肤性病学杂志,2006,32(4):238-240.
    [45]Stewart CEH,Rotwein P.Growth,differentiation,and survival:multiple physiological functions for insulin like growth factors.Physiol Rev,1996,76:1005-1026.
    [46]白波,姚裕家,李炜如.胰岛素样生长因子与胎儿生长发育.国外医学儿科学分册,2000,27(1):4-7.
    [47]Harris PM,McBride BW,GurnseyMP.Direct infusion of a variant of insulin like growth factor Ⅰ into skin of sheep and effects on local blood flow,amino acid utilisation and cell replication.Endocrinology,1993,139:463 472.
    [48]Philpott MP,Sanders D,Kealey T.Effects of Insulin and Insulin-Like Growth Factors on Cultured Human Hair Follicles:IGF-I at Physiologic Concentrations Is an Important Regulator of Hair Follicle Growth In Vitro.J Invest Dermatol,1994,102:857-861.
    [49]Rudman SM,Philpott MP,Thomas GA,et al.The role of IGF I in human skin and its appendages:morphogen as well as mitogen.J Invest Dermatol,1997,109(6):770-777.
    [50]Eming SA,Snow RG,Yarmush ML,et al.Targeted expression of IGF-1 to human keratinocytes:modification of the autocrine control of keratinocyto proliferation.J Invest Dermatol,1996,106:113-120.
    [51]Batch JA,Mercuri FA,Werther GA.Identification and Localization of Insulin-like Growth Factor-Binding Protein(IGFBP) Messenger RNAs in Human Hair Follicle Dermal Papilla.J Invest Dermatol,1996;106:471-475.
    [52]Damak S,Su HY,Jay NP,et al.Improved wool production in transgenic sheep expressing insulin-like growth factor 1.Biotechnology,1996,14:185-188.
    [53]Hung-Yi Su,Jonathan G H Hickford,Pauline H B The,et al.Increased Vibrissa Growth in Transgenic Mice Expressing Insulin-like Growth Factor 1.The Journal of Investigative Dermatology,1999,112(2):245-248.
    [54]Yang L,Mao C,Teng Y,et al.Targeted disruption of Smad 4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors.Cancer Res,2005,65:8671-8678.
    [55]Sporn MB,Roberts AB.The Transforming Growth Factor-bs.Peptide Growth Factors and Their Receptors I,Sporn,MB and AB Roberts eds.,Springer-Verlag,New York 1990:419.
    [56]Paus R,Foitzik K,Welker P,et al.Transforming growth factor-beta receptor type Ⅰ and type Ⅱexpression during murine hair follicle development and cycling.J I nvest Dermatol,1997,109(4):518-526.
    [57]Lyons KM,Pelton RW,Hogan BLM.Organogenesis and pattern formation in the mouse:RNA distribution patterns suggest a role for Bone Morphogenetic Protein-2A(BMP-2A).Development, 1990;109:833-844.
    [58]Ferning DG,Gallagher JT.Fibroblast growth factors and their receptors:an information network controlling tissue growth,morphogenesis and repair.Prog Growth Factor Res,1994,3:353-377.
    [59]Daniel B.Rifkin,David Moscatelli.Recent Developments in the Cell Biology of Basic Fibroblast Growth Factor.The Journal of Cell Biology,1989,109(1):1-6.
    [60]Klagsbrun M.The fibroblast growth factor family:structural and biological properties.Prog Growth Factor Res.1989.1(4):207-235.
    [61]Pittelkow MR,Shipley GD.Serum-free culture of normal human melanocytes:Growth kinetics and growth factor requirements.Journal of Cellular Physiology.140:565-576.
    [62]Suzuki S,Kato T,Takimoto H,et al.Localization of rat FGF-5 protein in skin macrophagelike cells and FGF-5S protein in hair follicle:possible involvement of two Fgf-5 gene products in hair growth cycle regulation.J Invest Dermatol,1998,111(6):963-972
    [63]Suzuki S,Ota Y,Ozawa K,et al.Dual-mode regulation of hair growth cycle by two fgf-5gene products.J Invest Dermatol,2000,114(3):456-463
    [64]Sundberg JP,Rourk MH,Boggess D.Angora Mouse Mutation:Altered Hair Cycle,Follicular Dystrophy,Phenotypic Maintenance of Skin Grafts,and Changes in Keratin Expression.Vet Pathol.1997,34:171-179.
    [65]Rosenquist TA,Martin GR.Fibroblast growth factor signalling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle.Dev Dyn,1996,205(4):379-386
    [66]Hansen L A,Alexander N,Hogan M E.Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development.Am J Pathol,1997,150:1959-1975.
    [67]Hynd PI.Factors influencing cellular events in the wool follicle.The biology of wool and hair 1989:169-184.
    [68]赵宗胜,王根林,李大全.IGF Ⅰ和EGF对绵羊毛囊体外培养的影响.南京农业大学学报.2006,29(2):138-141.
    [69]Bond J J,Wynn PC,Moore GPM.Effects of epidermal growth factor and transforming growth factor alpha on the function of wool follicles in culture.Archives of Dermatological Research 1996; 288: 373-382.
    
    [70] Kashiwagi M, Kuroki T, Huh N. Specific Inhibition of Hair Follicle Formation by Epidermal Growth Factor in an Organ Culture of Developing Mouse Skin. Developmental Biology 1997; 189: 22-32.
    
    [71] Nixon AJ, Broad L, Saywell DP, Pearson AJ. Transforming growth factor-alpha immunoreactivity during induced hair follicle growth cycles in sheep and ferrets. J Histochem Cytochem 1996; 44: 377-387.
    
    [72] Danilenko DM, Ring BD, Yanagihara D, et al. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol 1995; 147: 145-154.
    
    [73] Rubin JS, Bottaro DP, Chedid M, et al. Keratinocyte growth factor. Cell Biol Int, 1995,19(4): 399-411.
    
    [74] Seiberg M, Marthinuss J, Stenn KS. Changes in Expression of Apoptosis-Associated Genes in Skin Mark Early Catagen. Journal of Investigative Dermatology 1995; 104: 78-82.
    
    [75] Kozlowska U, Blume-Peytavi U, Kodelja V, et al. Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 1998; 290: 661-668.
    
    [76] Matsumoto K, Nakamura T. Hepatocyte growth factor: Molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncog,1992,3(1-2):27-54.
    
    [77] Jindo T, Tsuboi R, Imai R, et al. Hepatocyte growth factor/scatter factor stimulates hair growth of mouse vibrissae in organ culture. J Invest Dermatol 1994; 103: 306-309.
    
    [78] Shimaoka S, Tsuboi R, Jindo T, Imai R, Takamori K, Rubin JS, Ogawa H. Hepatocyte growth factor/scatter factor expressed in follicular papilla cells stimulates human hair growth in vitro. Journal of Cellular Physiology 1995; 165: 333-338.
    
    [79] Hibberts NA, Messenger AG, Randall VA. Dermal Papilla Cells Derived from Beard Hair Follicles Secrete More Stem Cell Factor (SCF) in Culture Than Scalp Cells or Dermal Fibroblasts. Biochemical and Biophysical Research Communications 1996; 222: 401-405.
    
    [80] Xiong Y,Harmon CS. Interleukin-1beta is differentially expressed by human dermal papilla cells in response to PKC activation and is a potent inhibitor of human hair follicle growth in organ culture.J Interferon Cytokine Res,1997,17:151-157
    [81]Hoffmann R,Eicheler W,Wenzel E,et al.Interleukin-1beta-induced inhibition of hair growth in vitro is mediated by cyclic AMP.Invest Dermatol 1997:108:40-42.
    [82]田小利,陈兰英,扈荣良.转基因动物原理、技术与应用[M].吉林科学技术出版社,长春.1995.
    [83]Wall RJ.Transgenic livestock:Progress and prospects for the future.Theriogenology 1996;45:57-68.
    [84]Wilmut I,Schnieke AE,McWhir WA,et al.Viable offspring derived from fetal and adult mammalian cells.Nature.1997,385:810-813
    [85]Van Cott KE,Velander WH.Transgenic animals as drug factories:a new source of recombinant protein therapeutics.Expert Opin Investig Drugs 1998;7:1683-1690.
    [86]Wright G,Carver A,Cottom D,Reeves D,Scott A,Simons P,Wilmut I,Gamer I,Colman A.High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep.Biotechnology(N Y) 1991;9:830-834.
    [87]Ebert KM,Selgrath JP,DiTullio P,Denman J,Smith TE,Memon MA,Schindler JE,Monastersky GM,Vitale JA,Gordon K.Transgenic production of a variant of human tissue-type plasminogen activator in goat milk:generation of transgenic goats and analysis of expression.Biotechnology(N Y) 1991;9:835-838.
    [88]Karatzas CN,Turner JD,Lazaris-Karatzas A.Production of biofilaments in transgenic animals.In:Google Patents;2007.
    [89]Biotherapeutics GTC.Recombinant human antithrombin Ⅲ:rhATⅢ.Drugs RD 2004;5:110-112.
    [90]Nezer C,Moreau L,Brouwers B,et al.An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGFI locus in pigs.Nature Genetics,1999,21:155-156.
    [91]Damak S,Su HY,Jay NP,et al.Improved wool production in transgenic sheep expressing insulin-like growth factor 1.Biotechnology,1996,14:185-188.
    [92]Bawden C.S.,Powell B.C.,Walker S.K.,et al.Expression of a wool intermediate filament keratin transgenic in sheep fibre alters structure.Transgenic Research,1998,7:273-287.
    [93]Hammer R.E.,Pursel VG,Rexroad C.E.Genetic engineering of mammalian embryos.J Anim Sci.1986,63(1):269-278.
    [94] Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J. Production of cattle lacking prion protein. Nature Biotechnology 2006; 25: 132-138.
    
    [95] Golding MC, Long CR, Carmell MA. Suppression of prion protein in livestock by RNA interference. PNAS. 2006, 103(14): 5285 - 5290
    
    [96] Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America 1980; 77: 7380.
    
    [97] Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci US A1981; 78: 6376-6380.
    
    [98] Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982; 300: 611-615.
    
    [99] Gordon K, Lee E, Vitale JA, Smith AE, Westphal H, Hennighausen L. Production of Human Tissue Plasminogen Activator in Transgenic Mouse Milk. Bio/Technology 1987; 5: 1183-1187.
    
    [100] Meade H, Gates L, Lacy E, Lonberg N. Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Biotechnology (N Y) 1990; 8: 443-446.
    
    [101] Denman J, Hayes M, O'Day C, Edmunds T, Bartlett C, Hirani S, Ebert KM, Gordon K, McPherson JM. Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (NY) 1991; 9: 839-843.
    
    [102] Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K. Transgenic Production of a Variant of Human Tissue-Type Plasminogen Activator in Goat Milk: Generation of Transgenic Goats and Analysis of Expression. Bio/Technology 1991; 9: 835-838.
    
    [103] Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J, Roberts B. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Biotechnology (N Y) 1994; 12: 699-702.
    
    [104] Genetic Engineering Newsletter Special Issue 13 (text).July 2003. Transgenic livestock part.
    [105]Krimpenfort P,Rademakers A,Eyestone W,et al.Generation Of Transgenic Dairy Cattle using 'in vitro' Embryo Production.Nature Biotechnology.1991,9:844-847.
    [106].赵春江,刘兆良,樊宝良等.人乳铁蛋白转基因研究进展[J].农业生物技术学报,200412(4):470-475.
    [107]van Berkel PHC,Welling MM,Geerts M,et al.Large scale production of recombinant human lactoferrin in the milk of transgenic cows.Nature Biotechnology 2002;20:484-487.
    [108]Bernard J,JranLuc V,Isabelle D,et al.Production of low lactose milk by ectopic exprerssion of intestinal lactase in the mouse mammary gland.Nature Biotechnology.1999,17:161-164.
    [109]Brophy B.,Smolenski G.,Wheeler T.,et al.Cloned transgenic cattle produce milk with higher levels of casein and casein[J].Nature Biotechnology.,2003,21:157-162.
    [110]Reh W.A.,.Maga E.A,Collette N.M.B.,et al.Hot Topic:Using a Stearoyl-CoA Desaturase Transgene to Alter Milk Fatty Acid Composition[J].J.Dairy Sci.2004,87:3510-3514.
    [111].Maga E.A.,Shoemaker C.F.,Rowe J.D.,et al.Production and Processing of Milk from Transgenic Goats Expressing Human Lysozyme in the Mammary Gland[J].J.Dairy Sci.2006,89:518-524.
    [112].Wieghart M.,Hoover J.L.,McGrane M.M.,et al.Production of transgenic pigs harbouring a rat phos-phorenolpyruvate carboxykinase-bovine growth hormone fusion gene[J].J Reprod Fertil Suppl.1990,41:89-96.
    [113].Nezer C,MoreaulAn imprinted QTL with major effect on muscle mass and fat deposition maps to the IGFI locus in pigs[J].Nature Genetics,1999,21:155-156.
    [114].Kazuhiro Saeki,Kazuya Matsumoto,Mikio Kinoshita.Functional expression of delta 12fatty acid desaturase gene from spinach in transgenic pigs[J].PNAS.2004,101:6361-6366.
    [115]Kerr DE,Plaut K,Bramley AJ,et al.Lysostaphin expression in mammary glands confers protion against staphylococcal infection in transgenic mice.Nature Biotechnology,2001,19(1):66-70
    [116]Donovan,D.M.,Kerr,DE,Wall,R.J.Engineering disease resistant cattle.Transgenic Research.2005,14(5):563-567.
    [117]Clements JE,Wall RJ,Narayan O,et al.Development of transgenic sheep that express the visna virus envelope gene.Virology,1994,200:370-380
    [118]Maga EA,Culler JS,Smith W,Anderson GB,Murray JD.Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk.Foodborne Pathog Dis 2006;3:384-392.
    [119]Pfeifer A,Ikawa M,Dayn Y,Verma IM.Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos.Proceedings of the National Academy of Sciences 2002;99:2140.
    [120]陈清轩,曹颉,宋德秀.猪生长激素基因表达质粒的构建及其转基因动物研究[J].中国生物化学与分子生物学报.1997,13:540-545
    [121]张靖溥,劳为德,成勇等.牛α-S1-酪蛋白-乙肝病毒表面抗原融合基因在转基因羊中的表达.生物工程学报.1997,13:154-159.
    [122]成勇,王玉阁,罗金平等.由成年转基因山羊体细胞而来的克隆山羊[J].生物工程学报.2002,18:79-83.
    [123]黄淑帧,张克忠,黄英等.乳汁中分泌有活性的人凝血因子Ⅸ的转基因羊的研制.科学通报.1 998,43:783-784
    [124]连正兴,张磊,刘兆良.整合人mAAT基因转基因山羊的获得.遗传学报.2001,28(8):716-721.
    [125]Xu HT,Zhao YF,Lian ZX,et al.Effects of fucosylated milk of goat and mouse on Helicobacter pylori binding to Lewis b antigen,世界胃肠病学杂志:英文版 2004,10:2063-2066.
    [126]张然,徐慰倬,孔平等.转基因动物应用的研究现状与发展前景[J].中国生物工程杂志.2005,25:16-24.
    [128]Zou XG,Wang YG,Cheng Y.Generation of cloned goats(Capra hircus) from transfected foetal fibroblast cells,the effect of donor cell cycle.Molecular Reproduction and Development.2002,61(2):164-172.
    [129]Wang YG,Zhou XG,Liu J,et al.Cloned goats(Capra hircus) from foetal fibroblast cell lines.Chinese Science Bulletin 2000;45:34-38.
    [130]沈伟,杨正田,,邓继先等.ht-PAm基因在山羊β-酪蛋白基因座定位整合的研究.生物工程学报.2004年03期;51-55.
    [131]沈伟,闵令江,李兰等.利用多重筛选机制提高山羊乳腺上皮细胞基因打靶的效率.遗传学报.2005年04期:37-42.
    [132]郑月茂,刘凤军,何小宁.转人乳铁蛋白基因山羊乳腺上皮细胞的研究.畜牧兽医学报, 2006,37(12),1282-1286.
    [133]赵晓娥,安志兴,马保华等.山羊胎儿成纤维细胞转染人t-PA指形区缺失基因及其核移植研究.西北农林科技大学学报(自然科学版)2007,35(1):1-5
    [134]贺宽军,郭闯,张涌.金黄色葡萄球菌纤连蛋白结合蛋白A基因的克隆及其原核表达.中国兽医科学,2006,36(04):266-269.
    [135]武坚,刘明军,李文蓉等.精子载体介导法生产转基因绵羊的研究[J].草食家畜,2001,(增刊):186-190
    [136]黄俊成,张健,李文蓉等.显微注射生产转人胰岛素原基因奶山羊,中国兽医学报,2001,03:123-129
    [137]Yang DS,Guo XD,Hal T,et al.Human pro-insulin transgenic calf drived form somatic cell nuclear transfer.动物学研究,2007 28(4):409-416.
    [138]孙毅.转基因动物的研究现状及展望.科技情报开发与经济.2006.16(1):143-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700