用户名: 密码: 验证码:
PiggyBac转座子介导的转E.coli半胱氨酸合成酶基因绒山羊研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大羊绒生产国,所产山羊绒在国际上享有“软黄金”的盛誉。但是,不断提高绒山羊的产绒量、改善绒山羊的羊绒品质,一直是人们的努力方向。目前,应用转基因技术是提高绒山羊产绒量和羊绒品质的重要手段之一。半胱氨酸是山羊绒的主要成分,通过转基因技术,借助piggyBac转座子向绒山羊体内导入半胱氨酸合成基因有助于提高羊绒产量,改善羊绒品质,从而为培育高产绒绒山羊新品种奠定理论基础。本研究的对象、技术、方法、研究目的及结果如下:
     1.提取大肠杆菌基因组DNA,克隆获得半胱氨酸合成酶基因cysE(serineacetyltransferase,丝氨酸乙酰基转移酶)、cysM(O-acetylserine sulfhydrylase,氧-乙酰丝氨酸巯解酶)完整序列。其中cysE序列全长822bp,对应编码274个氨基酸;cysM序列全长912bp,对应编码304个氨基酸。之后,构建原核表达载体pET-cysE和pET-cysM并在大肠杆菌BL21(DE3)进行了cysE和cysM蛋白表达,建立了cysE和cysM基因原核表达系统。
     2.采用基因克隆等分子生物学技术构建了分别包含cysE和cysM基因的红色、绿色荧光蛋白真核表达载体pIRES2-Red2-cysE和pIRES2-EGFP-cysM。利用脂质体LipofectamineTM2000共转染绒山羊胎儿成纤维细胞,经G418筛选获得共表达外源基因cysE和cysM的转基因细胞,随后,通过核移植注射获得了同时携带cysE和cysM基因的绒山羊重构胚。
     3.为了研究piggyBac转座子在绒山羊基因组中的整合位点,构建了pB-CMV-EGFP-NEO转座载体和pcDNA-Trans辅助载体,利用lipofectamine2000介导共转染绒山羊胎儿成纤维细胞,经G418筛选获得稳定转染的转基因细胞系。同时,提取转基因细胞基因组DNA,利用反向PCR检测了piggyBac转座子的整合位点。结果显示在绒山羊基因组中有21个piggyBac转座子整合位点;整合位点TTAA毗邻一侧正向的5个碱基组成中,piggyBac转座子3′端倾向于插入到富含AT(58.35%)碱基区域,piggyBac转座子5′端倾向于插入到富含GC(57.8%)碱基区域。本研究获得的整合位点信息可为进一步利用piggyBac转座子开展转基因绒山羊研究提供理论参考。
     4.参照绵羊瘤胃特异表达基因小脯氨酸丰富蛋白II(PRD-SPRRII)序列,设计特异引物,克隆获得了绒山羊PRD-SPRRII启动子区序列3400bp。通过密码子优化,合成了更适合在绒山羊体内表达的cysE和cysM基因新序列。之后,成功构建了包含密码子优化后的cysE和cysM基因的绒山羊瘤胃特异表达piggyBac转座子主载体,即pB-EGFP-NEO-CMV-PRD-cysE-cysM。
     5.用piggyBac转座子主载体pB-EGFP-NEO-CMV-PRD-cysE-cysM单独转染和与辅助载体pcDNA-Trans共转染绒山羊胎儿成纤维细胞,经G418筛选获得了不同转染方式下的转基因细胞。经实时荧光定量PCR检测发现,piggyBac介导的外源基因EGFP和cysM表达水平分别比对照组提高了7.78倍和6.23倍,表明piggyBac转座子在绒山羊基因组中具有高效转座活性。利用Splinkerette PCR在绒山羊基因组中获得了29个整合位点。分析整合位点TTAA毗邻一侧的5个碱基组成发现,piggyBac转座子倾向于插入到绒山羊基因组富含AT(67.95%)碱基区域。
     6.利用piggyBac转座子介导成功获得一只体内携带E.coli半胱氨酸合成酶基因cysE和cysM的转基因陕北白绒山羊个体。Splinkerette PCR检测获得了23个piggyBac转座子在转基因绒山羊基因组中的整合位点,发现piggyBac转座子倾向于整合到转基因绒山羊基因组富含AT(62.70%)碱基区域。
     以上结果表明,piggyBac转座子可实现胎儿成纤维细胞高效转座和外源基因高效表达,从而为生产piggyBac转座子介导转E.coli半胱氨酸合成酶基因的高产绒绒山羊新品种奠定了前期研究基础。
China is the world’s largest producer of cashmere. Chinese cashmere enjoys a “softgold” reputation in the international community, but its output is low. Thus, it is of greatinterest to maximize the quantity of the cashmere fiber without affecting the fiber quality.Manipulation of the cashmere goat genome provides opportunities to improve cashmere woolproducts. Cysteine is one of the main ingredients of cashmere. Based on transgenictechnology, this study import cysteine synthesis genes to goats via piggyBac transposon, inorder to provide a more efficient pathway to cysteine synthesis in the cashmere goat andprovide the groundwork for cultivating cashmere goats with high cashmere production. Theresearch object, technology, methods, research purpose and results of this study were asfollows:
     1. The cysE (serine acetyltransferase)and cysM(O-acetylserine sulfhydrylase) genesare amplified by PCR from Escherichia coli genomic DNA. The cysE gene is822bp, whichencoding274amino acids, and cysM gene is912bp, which encoding304amino acids.Prokaryotic expression vectors pET-cysE and pET-cysM are successfully constructed andefficiently express in BL21(DE3) after induced.
     2. Two integrative fluorescent protein plasmids pIRES2-Red2-cysE andpIRES2-EGFP-cysM which containing cysteine biosynthesis enzymes gene cysE and cysMrespectively was constructed and co-transfected into cashmere goat fetal fibroblasts byLipofectamineTM2000. Cell clones stably co-expressed of cysE and cysM genes wereobtained after screening by G418. Subsequently, co-expression of the cysE and cysM genes incashmere goats embryos were gained by nuclear transfer oocytes.
     3. The objective of the experiment was to study the integration site of piggyBactransposon in Cashmere goat genome and piggyBac donor plasmid of pB-CMV-EGFP-NEOand helper-dependent plasmid of pcDNA-Trans were constructed and transferred intoCashmere goat fetal fibroblasts by lipofectamine2000. Cell clones stably transfected wereobtained after screening by G418. Transgenic cell genome was obtained and the integration sites of piggyBac transposons were detected by r-PCR. There were21integration sites ofpiggyBac transposon in Cashmere goat genome after r-PCR detection; Analysis of a flankingregion of TTAA flanking sequences from position+5showed that piggyBac3′tended toinsert into region rich in AT (58.35%) and the piggyBac5′tended to insert into region rich inGC (57.8%). The integration site information which is acquired from this research willprovide theoretical references for Cashmere goats study by piggyBac transposons.
     4. The3400bp of promoter sequences of small proline-rich protein II (PRD-SPRRII) wereobtained according to specifically expressed genes in rumen of sheeps. The trend is thatheterologous expression of some proteins in goat can be improved by altering codonpreference. New sequences of cysE and cysM which were more appropriate to express incashmere goats were synthetized by codons bias in goat. Then, the donor plasmidpB-EGFP-NEO-CMV-PRD-cysE-cysM was constructed with two genes driven by arumen-specific promoter from the goat small proline-rich protein gene (PRD-SPRRII).
     5. A piggyBac transposon system including donor vector ofpB-EGFP-NEO-CMV-PRD-cysE-cysM and helper vector of pcDNA-Trans were developed,and transgenosis cells differently transfected were obtained by G418. The expression levels ofpiggyBac-mediated EGFP and cysM increased7.78-fold and6.63-fold respectively comparedto control group, confirming that the transposition of foreign piggyBac transposons incashmere goats was highly efficient.29integration sites were obtained in the goat genome bysplinkerette PCR. Analysis of a flanking region of TTAA flanking sequences from position+5also revealed that piggyBac tended to insert into the region rich in AT (67.95%).
     6.A transgenic Shanbei white cashmere goat with E.coli cysteine synthesis gene cysEand cysM in its body was got through piggybac transposon.23integration sites were obtainedin the goat genome by splinkerette PCR and it was found that piggybac transposon tended toinsert into the region rich in AT (62.70%) of transgenic cashmere goat gene.
     In summary, this study confirms the function of piggyBac transposon on highly effectivetransposition of GFFs and on highly effective expression of foreign gene, which provides thegroundwork for cultivating cashmere goats with high cashmere production throughpiggyBac-mediated cysteine biosynthesis gene expression.
引文
鲍文蕾,李彬,侯鑫等.2011.内蒙古白绒山羊VEGF164基因毛囊特异性表达载体的构建及胎儿成纤维细胞的稳定转染.中国农业科学,44(22):4756-4762
    成勇,王玉阁,罗金平等.2002.由成年转基因山羊体细胞而来的克隆山羊.生物工程学报,18(1):79-83
    丁昇.2007. piggyBac转座系统-哺乳动物遗传分析的新工具.[博士学位论文].上海:复旦大学.
    冯亚杰.2007.山羊BLG调控序列及CMV增强子指导人胰岛素原基因在细胞和小鼠中表达..[硕士学位论文].扬州:扬州大学.
    郭丽,周红莉,屈建国等.2006.人诺如病毒衣壳蛋白的密码子优化及在昆虫细胞中的表达.中国病毒学,21(2):121-125
    郭旭东,奥旭东,宝明涛.2009.IGF1毛囊细胞特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究.畜牧兽医学报,40(10):1460-1467
    郭旭东,尹俊,杨东山等.2009.IGF-1毛囊特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究.畜牧兽医学报,40(10):1460-1467
    李彬,鲍文蕾,张涛.2011.构建LEF1基因毛囊特异表达载体并稳定转染胎儿成纤维细胞.生物技术通报,3:141-145
    李春峰,黄科,甘进锋等.2009.转植酸酶基因家蚕的制作及表达检测.52(7):713-720
    刘春,徐汉福,陈玉琳等.2007.家蚕转基因研究及肌动蛋白A3启动子的表达分析.蚕学通讯,27(3):1-6
    刘忠华,宋军,王振坤等.2008.体细胞核移植生产绿色荧光蛋白转基因猪.科学通报,53(5):556-560
    罗一博,张力,武美玲等.2010.piggyBac转座子介导EGFP在猪体细胞和克隆胚胎中表的中国畜牧兽医学会动物繁殖学分会第十五届学术研讨会论文集(上册)
    史莹飞,敬科举,凌雪萍等.2012.人胰岛素原密码子的优化及其在毕赤酵母中的表达.厦门大学学报,51(1):101-106
    王代平,叶华虎,曾林等.2011.猴B病毒囊膜蛋白gC基因密码子优化及其在大肠埃希菌中的表达.动物医学进展,32(5):1-4
    王彦凤,梁燕,金永等.2010.克隆内蒙古白绒山羊胸腺素β4基因并稳定转染胎儿成纤维细胞.中国农业科学,43(21):4497-4504
    韦学玉,阎宏,魏智清.2006.新型饲料添加剂——半胱胺的研究进展.畜牧与饲料科学,(5):69-71
    徐汉福,幸俊逸,王职峰等.2010.外源piggyBac转座元件在转基因家蚕中的整合位点分析.蚕学通讯,30(1):1-7
    周红梅,王颖,张立凡等.2011.fat-1基因密码子优化及在家兔胎儿成纤维细胞中的初步表达.江苏农业学报,27(2):329-336
    邹贤刚,袁三平,鲜建等.2008.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白(rhATⅢ).生物工程学报,24(1):117-123
    鲍文蕾,李彬,侯鑫等.2011.内蒙古白绒山羊VEGF164基因毛囊特异性表达载体的构建及胎儿成纤维细胞的稳定转染.中国农业科学,44(22):4756-4762
    成勇,王玉阁,罗金平等.2002.由成年转基因山羊体细胞而来的克隆山羊.生物工程学报,18(1):79-83
    丁昇.2007. piggyBac转座系统-哺乳动物遗传分析的新工具.[博士学位论文].上海:复旦大学.
    冯亚杰.2007.山羊BLG调控序列及CMV增强子指导人胰岛素原基因在细胞和小鼠中表达..[硕士学位论文].扬州:扬州大学.
    郭丽,周红莉,屈建国等.2006.人诺如病毒衣壳蛋白的密码子优化及在昆虫细胞中的表达.中国病毒学,21(2):121-125
    郭旭东,尹俊,杨东山等.2009.IGF-1毛囊特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究.畜牧兽医学报,40(10):1460-1467
    郭旭东,奥旭东,宝明涛.2009.IGF1毛囊细胞特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究.畜牧兽医学报,40(10):1460-1467
    李彬,鲍文蕾,张涛.2011.构建LEF1基因毛囊特异表达载体并稳定转染胎儿成纤维细胞.生物技术通报,3:141-145
    李春峰,黄科,甘进锋等.2009.转植酸酶基因家蚕的制作及表达检测.52(7):713-720
    刘春,徐汉福,陈玉琳等.2007.家蚕转基因研究及肌动蛋白A3启动子的表达分析.蚕学通讯,27(3):1-6
    刘忠华,宋军,王振坤等.2008.体细胞核移植生产绿色荧光蛋白转基因猪.科学通报,53(5):556-560
    史莹飞,敬科举,凌雪萍等.2012.人胰岛素原密码子的优化及其在毕赤酵母中的表达.厦门大学学报,51(1):101-106
    王代平,叶华虎,曾林等.2011.猴B病毒囊膜蛋白gC基因密码子优化及其在大肠埃希菌中的表达.动物医学进展,32(5):1-4
    王彦凤,梁燕,金永等.2010.克隆内蒙古白绒山羊胸腺素β4基因并稳定转染胎儿成纤维细胞.中国农业科学,43(21):4497-4504
    韦学玉,阎宏,魏智清.2006.新型饲料添加剂——半胱胺的研究进展.畜牧与饲料科学,(5):69-71
    徐汉福,幸俊逸,王职峰等.2010.外源piggyBac转座元件在转基因家蚕中的整合位点分析.蚕学通讯,30(1):1-7
    周红梅,王颖,张立凡等.2011.fat-1基因密码子优化及在家兔胎儿成纤维细胞中的初步表达.江苏农业学报,27(2):329-336
    邹贤刚,袁三平,鲜建等.2008.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白(rhATⅢ).生物工程学报,24(1):117-123
    Archer GC, Dindot S, Friend TH,Walker S, Zaunbrecher G, Lawborn B, Piedrahita JA.2003.Hierarchical phenotype and epigenetic vari-ation in cloned swine. Biol. Reprod,69,430-436
    Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P,Paques F.2007. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can inducehighly efficient gene correction in mammalian cells. J Mol Biol,371,49–65
    Baguisi A, Behboodi E, Melican D, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD,Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, GodkeRA, Gavin WG, Overstr m EW, Echelard Y.1999. Production of goats by somatic cell nuclear transfer. NatBiotechnol,17,456–461.
    Balu B, Chauhan C, Maher SP, Shoue DA, Kissinger JC, Fraser MJ Jr, Adams JH.2009. piggyBac isan effective tool for functional analysis of the plasmodium falciparum genome. BMC Microbiology,9:83.doi:10.1186/1471-2180-9-83
    Bawden CS, Sivaprasad AV, Verma PJ, Walker SK, Rogers GE.1995. Expression of bacterialcysteine biosynthesis genes in transgenic mice and sheep: toward a new in vivo amino acid biosynthesispathway and improved wool growth. Transgenic Res,4(2):87-104
    Becker MA, Kredich NM, Tomkins GM.1969. The purification and characterization of O-acetylserinesulfhydrylase-A from Salmonella typhimurium. J Biol Chem,244,2418–2427
    Bosselman RA, Hsu RY, Bogg T, Hu S, Bruszewski J, Ou S, Kozar L, Martin, F, Green C, Jacobsen F,Nicolson M, Schultz JA, Semon KM, Rishell W, Stewart RG.1989. Germline transmission of exoge nousgenes in the chicken. Science,243,533–535.
    B sze Zs, Houdebine LM.2006. Application of rabbits in biomedical research: a review.World RabbitSci,14,1–14.
    Brophy B, Smolenski G, Wheeler T, Wells D, Huillier P, Laible G.2003. Cloned transgenic cattleproduce milk with higher levels of b-casein and k-casein. Nat. Biotechnol,21,157–162.
    Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A.2008. Captureof authen-tic embryonic stem cells from rat blastocysts. Cell,135,1287–1298.
    Cadinanos J, Bradley A.2007.Generation of an inducible and optimized piggyBac transposon system.Nucleic Acids Res,35(12): e87
    Carter BD, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Besch-Williford C,Prather,R.2002. Phenotyping of transgenic cloned pigs. Cloning Stem Cells,4:131–214.
    Cary LC, Goebel M, Corsaro BG.1989. Transposon mutagenesis of baculoviruses: analysis ofTrichoplusia ni transposon IFP2insertions within the FP-locus of nuclear polyhedrosis viruses. Virology,172:156-69.
    Cathomen T, Joung JK.2008. Zinc-finger nucleases: the next generation emerges. Mol Ther,16:1200–1207.
    Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD.1998. Transgenic cattle produced byreverse-transcribed gene transfer in oocytes. Proc. Natl Acad Sci U.S.A,95:14028–14033.
    Chang K, Qian J, Jiang M, Liu YH, Wu MC, Chen CD, Lai CK, Lo HL, Hsiao CT, Brown L, Bolen Jr,Huang HI, Ho PY, Shih PY, Yao CW, Lin WJ, Chen CH, Wu FY, Lin YJ, Xu J, Wang K.2002. Effectivegeneration of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol,2:5.
    Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK,Ramabhadran R, Mauch TJ, Schoenwolf GC.2005. Ubiquitous GFP expression in transgenic chickensusing a lentiviral vector. Development,132(5):935–940.
    Chavatte-Palmer P, Heyman Y, Richard C, Monget P, LeBourhis D, Kann G, Chilliard Y, Vignon X,Renard JP.2002. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nucleifrom somatic cells. Biol Reprod,66(6):1596-1603.
    Chew SK, Rad R, Futreal PA, Bradley A, Liu PT.2011.Genetic screens using the piggyBac transposon.METHODS,53(4):366-371.
    Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP.2002. The health profile of cloned animals.Nat Biotechnol,20(1),13-14.
    Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM.1998.Clonged transgenic calves produced from nonquiescent fetal fibrobalsts.Science,280(5367):1256-1258.
    Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM.1998.Transgenic bovine chimeric offspring produced from somatic cell-derived stem like cells. Nat. Biotechnol.16(7):642–646.
    Clark KJ, Carlson DF, Fahrenkrug SC.2007. Pigs taking wings with transposons and recombinases.Genome Biol, Suppl1:S13.
    Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC.BMC Biotechnol,7,42(2007).
    Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC.2007. Enzymatic engineeringof the porcine genome with transposons and recombinases. BMC Biotechnol,7:42.
    Clark, J, Whitelaw, B.,2003. A future for transgenic livestock. Nat Rev Genet,4(10):825–833.
    Clements JE, Wall RJ, Narayan O, Hauer D, Schoborg R, Sheffer D, Powell A, Carruth LM, Zink MC,Rexroad CE.1994. Development of transgenic sheep that express the Visna virus envelope gene. Virology,200(2):370-380.
    Ding S, Wu XH, Li G, Han M, Zhuang Y, Xu T.2005. Efficient transposition of the piggyback (PB)transposon in mammalian cells and mice. Cell,122:473-483.
    Elick TA, Lobo N, Fraser MJ.1997. Analysis of cis-acting DNA elements required for piggyBactransposable element excision. Mol Gen Genet,255(6):605-610.
    Fraser MJ, Cary L, Boonvisudhi K, et al.1995. Assay for movement of Lepidopteran transposon IFP2in insect cells using a baculovirus genome as a target DNA. J Virol,211(2):397-407
    Fuhrmann M, Hausherr A, Ferbitz L, Sch dl T, Heitzer M, Hegemann P.2004. Monitoring dynamicexpression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene.Plant Mol Biol,55(6):869-881.
    Galvan D L, Nakazawa Y, Kaja A, Kettlun C, Cooper L J N, Rooney C M, Wilson M H.2009.Genome-wide mapping of piggyBac transposon integrations in primary human T cells. Journal ofImmunotherapy,32(8):837-844.Gang Wu, Yuanpu Zheng, Imran Qureshi, Htar Thant Zin, Tyler Beck, Blazej Bulka, Stephen J.Freeland.2007.SGDB: a database of synthetic genes re-designed f or optimizing protein over expression.Nucleic Acids Res,35(Database issue): D76–D79.
    Giles NM, Giles GI, Jacob C.2003. Multiple roles of cysteine in biocatalysis. Biochem Biophys ResCommun.300(1):1-4.
    Gillespie JM.1991.The structural proteins of hair:Isolation,characterization and regulation ofbiosynthesis[M].In:Goldsmith L A ed.Physiology,Biochemistry and Molecular Biology of Skin.NewYork:Oxford University Press:625-659.
    Gust afsson C, Govin darajan S, Minshull J.2004.Codon bias an dhet erologous protein expression.TRENDS in Biotechnology,22(7):346-353.
    Handler A M, McCombs S D, Fraser M J, Saul S H.1998.The lepidopteran transposon vector,piggyBac, mediates germ-line transformation in the mediterranean fruit fly. Proceedings of the NationalAcademy of Sciences of the United States of America,95(13):7520-7525.
    Handler AM, Harrell RA.1999.Germline transformation of Drosophilia melanogaster with thepiggyBac transposon vector. Insect Mol Biol,8(4):449-457.
    Handler AM, Harrellll RA.2001. Transformation of the Caribbean fruit fly, Anastrepha suspensa, witha piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol,31(2):199-205.
    Handler AM, Maccombs SD, Fraser MJ, Saul SH.1998.The lepidopteran transposon vector, piggyBac,mediates germline transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA,1998,95:7520-7525
    Huang X, Guo H F, Tammana S, Jung YC, Mellgren E, Bassi P, Cao Q, Tu Z J, Kim Y C, Ekker S C,Wu X L, Wang S M, Zhou X Z.2010. Gene transfer efficiency and genome-wide integration profiling ofsleeping beauty, Tol2, and piggyBac transposons in human primary T cells. Molecular Therapy,18(10):1803-1813.
    Huang Yue-jin, Huang Yue, Baldassarre H, et al.2007. Recombinant human butyrylcholinesterasefrom milk of transgenic animals to protect against organophosp-hate poisning.Proc Natl Acad Sci USA,104(34):13603-13608.
    Hynd PI.1989. Effects of nutrition on wool follicle cell kinetics in sheep differing in efficiency ofwool production. Australian Journal of Agricultural Research,40(2):409-417.
    Ivics Z, Hackett PB, Plasterk RH, et al.1997. Molecular reconstruction of Sleeping Beauty, a Tc1-liketransposon from fish, and its transposition in human cells. Cell,91:501-510.
    Kahlig KM, Saridey SK, Kaja A, et al.2010.Multiplexed transposon-mediated stable gene transfer inhuman cells. Proc Natl Acad Sci USA,107(4):1343-1348.
    Kan Y, Zhang XY, Jian W, et al.2009.The piggyBac transposon is an integrating non-viral genetransfer vector that enhances the efficiency of GDEPT. Cell Biol Int,33(4):509-515.
    Kang Y, Zhang X, Jiang W, et al.2009.Tumor-directed gene therapy in mice using a compositenonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine.BMC Cancer,27(9):126
    Kawakami K, Shima A, Kawakami N.2000.Identification of a functional transposase of the Tol2element, an Aclike element from the Japanese medaka fish, and its transposition in the zebrafish germlineage. Proc Natl Acad Sci USA,97(21):11403-11408.
    Keith JH, Schaeper CA, Fraser TS, et al.2008.Mutational analysis of highly conserved aspartateresidues essential to the catalytic core of the piggyBac transposase. BMC Mol Bio,9:73.
    Kettlun C, Galvan DL, George AL Jr, Kaja A, and Wilson MH, Mol.Ther.,19,1636-1644(2011).
    Kettlun C, Galvan DL, George AL Jr, Kaja A, Wilson MH.2011. Manipulating piggyBac TransposonChromosomal Integration Site Selection in Human Cells. MolTher,19(9):1636-1644.
    Kim SJ, Saadeldin IM, Choi WJ, et al.2011.Production of Transgenic Bovine Cloned Embryos UsingPiggybac Transposition.JOURNAL OF VETERINARY MEDICAL SCIENCE,73(11)1453-1457
    Kredich NM,Tomkins GM.1966.The enzymic synthesis of L-cysteine in Escherichia coli andSalmonella typhimurium. J Biol Chem,241:4955–4965
    Kredich NM.1992. The molecular basis for positive regulation of cys promoters in Salmonellatyphimurium and Escherichia coli. Mol Microbiol,6:2747–2753.
    Lai L, Kolber-Simonds D, Park K W, et al.2002.Production of alpha-1,3-galactosytransferaseknockout pigs by nuclear transfer cloning. Science,295:1089-1092.
    Lan G C, Chang Z L, Luo M I, et al.2006. Production of cloned goats by nuclear of cumulus cells andlong-term cultured fetal fibroblast cells into abattoir-derived oocytes.Mol Reprod Dev,73(7):834-840.
    Lee GS, Kim HS, Hyun SH, et al.2005. Production of transgenic cloned piglets from geneticallytransformed fetal fibroblasts selected by green fluorescent protein.Theriogenology,63:973-991.
    Leish Z, Byrne CR, Hunt CL, Ward KA.1993. Introduction and expression of the bacterial genes cysEand cysK in eukaryotic cells[J]. Appl Environ Microbiol,59(3):892-898.
    Li X, Harrell R A, Handler A M, Beam T, Hennessy K, Fraser M J Jr.2005.piggyBac internalsequences are necessary for efficient transformation of target genomes. Insect Molecular Biology,14(1):17-30.
    Liang Q, Kong J, Stalker J, Bradley A.2009.Chromosomal mobilization and reintegration of sleepingbeauty and piggyBac transposons. Genesis,47(6):404-408.
    Livak KJ, Schmittgen TD.2001.Analysis of relative gene expression data using real-time quantitativePCR and the2(-Delta Delta C(T)) Method. Methods,25(4):402-408.
    Lu YY, Lin CY, Wang XZ.2009.piggyBac transgenic strategies in the developing chicken spinal cord.Nucleic Acids Research,37(21): e141doi:10.1093/nar/gkp686.
    Manuri PV, Wilson MH, Maiti SN, et al.2010. piggyBac transposon/transposase system to generateCD19specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther,21(4):427-437.
    Maragathavally KJ, Kaminski JM, Coates CJ.2006. Chimeric Mos1and piggyBac transposases resultin site-directed integration. FASEB J,20(11):1880-1882.
    McCreath KJ, Howcroft J, Campbell KHS, et al.2000. Production of gene-targeted sheep by nucleartransfer cultured somatic cells.Nature,405:1066-1069.
    Medhora M, Maruyama K, Hartl DL. Molecular and functional analysis of the mariner mutatorelement Mos1in Drosophila. Genetics,1991,128(2):311-8
    Mitra R, Fain J, Craig NL.2008.piggyBac can bypass DNA synthesis during cut and pastetransposition. EMBO J,27(7):1097-1099.
    Morales M E, Mann V H, Kines K J, Gobert G N, Fraser M J Jr, Kalinna B H, Correnti J M, Pearce EJ, Brindley P J.2007. piggyBac transposon mediated transgenesis of the human blood fluke, schistosomamansoni. The FASEB Journal,21(13):3479-3489.
    Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C,Michael IP, Smith LC, Nagy A.2011.Induced pluripotent stem cell lines derived from equine fibroblasts.Stem Cell Rev,7(3):693-702.
    Nakanishi H, Higuchi Y, Kawakami S, Yamashita F, Hashida M.2010. piggyBac transposon-mediatedlong-term gene expression in mice. Molecular Therapy,18(4):707-714.
    Nakazawa Y, Huye LE, Dotti G, Foster AE, Vera JF, Manuri PR, June CH, Rooney CM, Wilson MH.2009. Optimization of the piggyBac transposon system for the sustained genetic modification of human Tlymphocytes. J Immunother,32(8):826-836.
    Pagan HJ, Smith JD, Hubley RM, et al.2010. PiggyBac-ing on a primate genome: novel elements,recent activity and horizontal transfer. Genome Biol Evol,12(2):293-303.
    Powell BC, Rogers GE.1990. Hard keratin IF and associated proteins In: Goldman R.D. andSteinert P.M.(eds), Cellular and Molecular Biology of Intermediate Filaments pp.267-300.New York: Plenum Press.
    Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos L S, Yusa K, Banerjee R, Li M A,de La Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang F T, Liu P T, Bradley A.2010. PiggyBac transposonmutagenesis: a tool for cancer gene discovery in mice. Science,330(6007):1104-1107.
    Reis PJ, Schinckel PG.1963.Some effects of sulphur-containing amino acids on the growth andcomposition of wool. J Biol Sci,16:218-230.
    Reis PJ, Tunks DA. Munro SG.1990. Effects of infusion of amino acids into the abomasum of sheep,with emphasis on the relative value of methionine, cysteine and homocysteine for wool growth. Journal ofAgricultural Science, Cambridge,114,59-68.
    Sahlu T, Fernandez JM.1992. Effect of intraperitoneal administration of lysine and methionine onmohair yield and quality in angora goats. J Anita Sci,70:3188-3193.
    Saridey SK, Liu L, Doherty JE.2009. piggyBac transposonbased inducible gene expression in vivoafter somatic cell gene transfer. Mol Ther,17(12):2115-2120.
    Sarkar A, Sim C, Hong YS.2004. Molecular evolutionary analysis of the widespread piggyBactransposon family and related “domesticated” sequences. Mol Genet Genomics,270(2):173-180.
    Schnieke AE, Kind AJ, Ritchie WA.1997. Human factor IX transgenic sheep produced by transfer ofnuclei from transfected fetal fibroblasts.Science,278:2130-2133
    Shi X, Harrison RL, Hollister JR.2007. Construction and characterization of new piggyBac vectors forconstitutive or inducible expression of heterologous gene pairs and the identification of a previouslyunrecognized activator sequence in piggyBac. BMC Biotechnol,7:5
    Sun LV, Jin K, Liu Y.2008. PBmice: an integrated database system of piggyBac (PB) insertionalmutations and their characterizations in mice. Nucleic Acids Res,36: D729-734
    Thibault S T, Luu H T, Vann N, Miller T A.1999. Precise excision and transposition of piggyBac inpink bollworm embryos. Insect Molecular Biology,8(1):119-123.
    Toshiki T, Chantal T, Corinne R.2000. Germline transformation of the silkworm Bombyx mori L.using a piggyBac transposon-derived vector. Nat Biotechnol,18:81-84
    Velazquez MA, Herrmann D, Kues WA, Niemann H.2011. Increased apoptosis in bovine blastocystsexposed to high levels of IGF1is not associated with down-regulation of the IGF1receptor. Reproduction,141(1):91-103.
    Wall RJ, Powell AM, Paape MJ.2005. Genetically enhanced cows resist intramammaryStaphylococcus aureus infection.Nat Biotechnol,23:445-451.
    Wang L, Baldwin RL, Jesse BW.1996. Identification of two cDNA clones encoding smallproline-rich proteins expressed in sheep ruminal epithelium,Biochem J,317(Pt1):225-233.
    Wang W, Bradley A, Huang YA.2009. piggyBac transposonbased genome-wide library of insertionallymutated Blm-deficient murine ES cells. Genome Res,19(4):667-673.
    Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P.2008.Chromosomaltransposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA,105(27):9290-9295.
    Wang W, Lin CY, Lu D, Ning ZM, Cox T, Melvin D, Wang XZ, Bradley A, Liu PT.2008.Chromosomal transposition of piggyBac in mouse embryonic stem cells. Proceedings of the NationalAcademy of Sciences of the United States of America,105(27):9290-9295.
    Whitelaw C B,Farini E A,Webster J,1999.The changing role of cell culture in the generationoftransgenic livestock.Cytotechnology,31:3-8.
    Whyte JJ, Zhao, J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS.2011. Genetargeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol ReprodDev,78(1):2. doi:10.1002/mrd.21271.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH.1997. Viable offspring derived from fetaland adult mammalian cells. Nature,385:810–813.
    Wilson MH, Coates CJ, Jr George AL. piggyBac transposon-mediated gene transfer in human cells.Molecular Therapy,2007,15(1):139-145.
    Woltjen K, Michael I P, Mohseni P, Desai R, Mileikovsky M, H m l inen R, Cowling R, Wang W, LiuP T, Gertsenstein M, Kaji K, Sung H K, Nagy A.2009.piggyBac transposition reprograms fibroblasts toinduced pluripotent stem cells. Nature,458:766-770.
    Wu S C Y, Meir Y J J, Coates C J, Handler A M, Pelczar P, Moisyadi S, Kaminski J M.2006.piggyBac is a flexible and highly active transposon ascompared to sleeping beauty, Tol2and Mos1inmammalian cells. Proceedings of the National Academy of Sciences of the United States of America,103(41):15008-15013.
    Yadav PS, Kues WA, Herrmann D, Niemann H.2005. Bovine ICM derived cells express theOct4-ortholog. Mol Reprod Dev,72:182–190.
    Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, O’Malley P, Nobori S, Vagefi PA,Patience C, Fishman J, Cooper DK, Hawley RJ, Greenstein J, Schuurman HJ, Awwad M, Sykes M, SachsDH.2005. Marked prolongation of porcine renal xenograft survival in baboons through the use ofα-1,3-galactosyltransferase gene-knock out donors and the cotransplantation of vascularized thymic tissue.Nat Med,11:32-34.
    Yang W, Jin K, Xie X.2009. Development of a database system for mapping insertional mutationsonto the mouse genome with large-scale experimental data. BMC Genomics,10(Suppl3): S7
    Yin X J, Lee H S, Yu X F.2008. Generation of cloned transgenic cats expressing red fluorescenceprotein. Biol Reprod,78(3):425-431
    Yusa K, Rad R, Takeda J.2009. Generation of transgenefree induced pluripotent mouse stem cells bythe piggyBac transposon. Nat Methods,6(5):363-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700