用户名: 密码: 验证码:
基于三维几何模型的计算机辅助工艺规划技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维CAD系统在国内企业迅速普及,如何有效利用三维几何模型进行工艺规划是亟待解决的问题。本文研究基于三维几何模型的计算机辅助工艺规划技术,旨在充分发挥三维模型定量分析上的优势,增强CAPP的自动化程度,从而满足快速工艺规划的现实需要。
     论文围绕着三个主题展开研究:一是面向变形产品的参变式工艺规划;二是基于轻量化的可视化装配工艺;三是可定制的柔性工艺统计报表。作为这三个主题的基础,本文提出中性工艺信息模型,将工艺信息分为工艺管理信息和工艺规程信息,其中工艺规程信息用工艺操作集及其偏序关系表达,该模型为本文后续研究提供数据组织和算法支持。
     面向变形产品的参变式工艺规划包含三个部分:加工特征识别,耦合约束建模与求解和参变式工艺规程生成。对于加工特征识别,本文提出集成自动识别和交互特征定义的混合式特征识别方法,以提高特征识别方法的健壮性和实用性。对于耦合约束建模与求解,首先将数值型约束与符号知识型约束进行融合,建立统一的表示模型;然后提出耦合约束求解算法,采用有向图表达出约束之间的依赖关系,通过逐级子图分解、“孪生变量法”一阶解耦、求解、再验算等步骤实现耦合约束求解。在此基础上,提出参变工艺规程模型,该模型由相对固定的项目( Fi )和变化的项目( Vi )组成,后者用一系列的参变量表示,并对这些参变量采用耦合约束建模理论进行建模,然后通过耦合约束求解实现参变式工艺规划。
     为适应大规模装配和快速显示的需要,研究三维模型的轻量化技术。在此基础上,研究基于三为轻量化模型的可视化装配工艺:以直观的方式展现零部件的装配拓扑关系和位置关系;用动画的方式模拟装配过程与装配顺序;进行装配过程中的冲突和干涉检查。
     为实现可定制的柔性工艺统计报表,提出以零部件作为数据重构核心,用“行匹配列合并运算”将企业零散的数据有序地组织起来,形成立体数据的重构模型。在数据重构模型支持下,将统计报表过程划分为:数据收集、数据处理和格式化输出三个步骤,并提炼出“共性”和“特性”规则,从而通过配置实现可定制的复杂工艺报表。最后,简要阐述了系统架构和实现方式,结合应用实例验证本文提出的基于三维几何模型的计算机辅助工艺规划的相关理论和方法是可行和有效的。
As three-dimensional CAD systems are more and more popular in enterprises, it becomes a key problem to effectively use three-dimensional geometric models in process planning, which needs to be solved immediately. Therefore, several techniques for CAPP based on three-dimensional (3D) CAD models are discussed here. Advantages of 3D digital models are fully exploited to enhance automation degree of CAPP; as a result, requirements of rapid response of process planning are met.
     Generally, this dissertation focuses on three subjects as following: parametric process planning for variant parts, visualization of assembly process based on 3D lightweight models and custom-built flexible process reporting. As the foundation of the subjects, a neutral process model, which is composed of management information and process plans expressed as operations with its precedence relationships, is proposed. The model supports for data managing and algorithms discussed below.
     Parametric process planning for variant parts includes recognizing machining features, modeling and solving numerical and symbolic coupling constraints, and generating parametric process plans. To recognize machining features, a hybrid approach integrating automatic recognition and interactive definition is presented here, which greatly enhances practicability and robustness. Numerical and symbolic constraints are incorporated to establish a uniform model. And the dependence of constraints is expressed by a digraph. Then an algorithm for solving coupling constraints is proposed, which contains the following steps: dividing the digraph into sub-graphs gradually at first; breaking the coupling constraints with first order by twin-variables; solving them respectively and checking computations at last. On the basis of the model a parametric process model is proposed, in which processes are expressed as fixed items ( Fi ) and variable items ( Vi ). The latter, denoted by serial variables, is constrained by coupling constraints. And then process plans are generated by solving numerical and symbolic coupling constraints.
     Lightweight technique for 3D models is discussed to improve the speed of displaying large-scale assemblies. And based on it, visualization of assembly process that includes showing topological structure and positions, animating assembly procedure and sequence, and checking conflict and interposition of parts is accomplished.
     To achieve custom-built flexible process reporting, a cube data reconstruction model based on part information is presented to put the heterogeneous data from different sources in order through row-matching and column-merging. Based on the reconstruction model, reporting procedure is regarded as three steps: collecting data, handling data and outputting data as format. And common rules and special ones for each step are abstracted. Then, custom-built complex process reports are realized through interactive definition and configuration with the rules.
     Structure and implementation of the system are discussed at last. At the same time, some examples in real industrial enterprises are given to show that the theories and methods for CAPP based on 3D models presented above are valid and practicable.
引文
[1] 严新民主编.计算机集成制造系统. 西安:西北工业大学出版社,1999
    [2] 田韶鹏. 基于特征信息传统的零件结构设计及工艺几何分析方法研究:[博士学位论文].华中科技大学,2005
    [3] Fuh J.Y.H., Ji P., Zhang Y.F.. Future development trends in CAM/CAPP-NC systems. International Journal of Computer Applications in Technology, 1995,8,3-4: 203~210
    [4] http://www.visiprise.com/solutions-caprocess-planning.htm
    [5] http://www.cimx.com/CIMx%20Solutions.htm
    [6] http://www.cimplex.com/MetCAPP.htm
    [7] http://www.geometricsoftware.com/news/199804apr/19980417_spatial.htm
    [8] http://www.tecnomatix.com/assembly_planning/em_planner.shtml
    [9] http://www.enggeo.com/Products/default.htm
    [10] http://www.teksoft.com/camworks/camworks.htm
    [11] Jean-Pierre Krut, Jan Detand, Geert Van Zeir et al. Methods to improve the response time of a CAPP system that generates non-linear process plans. Advances in Engineering Software, 1996, 25:9~17
    [12] 张振明, 桓永兴, 孔宪光等. CAPPFramework 设计与实现. 机械科学与技术, 200, 19(5):837~842
    [13] 黄正东. 车加工特征的自动识别与选择方法. 中国机械工程, 2004,15(4):329~333
    [14] Somashekar Subrahmanyam, Michael Wozny. An overview of automatic feature recognition techniques for computer-aided process planning. Computers in Industry 1995,26:1-21
    [15] Tseng Y.J., Joshi S.B. Recognition of interacting rotational and prismatic matching features from 3-D mill-turn part. International Journal of Production Research, 1998,36(11):3147~3165
    [16] 王波,宋长新,程敬之. 自动特征识别的新方法. 西安交通大学学报, 2002,36(8): 806~809
    [17] 祝国旺. CAD/CAM 中的特征技术综述.计算机应用,1994(4):8~12
    [18] 高曙明. 自动特征识别技术综述.计算机学报,1998,21(3):281~288
    [19] Chuang S.H. and Henderson M.R. Three-dimensional shape pattern recognition using vertex classification and the vertex-edge graph. Computer Aided-Design, 1990, 22(6): 377-387
    [20] Gayankar P. and Henderson M.R. Graph-based extraction of protrusions and depressions from boundary representations. Computer Aided-Design, 1990, 22(7): 442~450
    [21] Martino S. and Kim Y. Cylindrical features in form feature recognition using convex decomposition. IFIP Conf. on Feature Modeling and Recognition in Advanced CAD/CAM Systems, 1994
    [22] Wang E. and Kim Y. 1997 status of the form feature recognition method using convex decomposition. ASME Computers in Engineering Conf., 1997
    [23] Dong J. and Vijayan S. Manufacturing feature determination and extraction-Part I: optimal volume segment. Computer Aided-Design, 1997, 29(6): 427~440
    [24] Dong,J. and Vijayan, S. Manufacturing feature determination and extraction-Part II: aheuristic approach. Computer Aided-Design, 1997, 29(7): 475~484
    [25] Sakurai H. and Chin C. Definition and recognition of volume features for process planning. Advances in Feature Based Manufacturing. Elsevier: Amsterdam, 1994: 65~80
    [26] Shah J.J., Shen Y., and Shirur A. Determination of machining volumes from extensible sets of design features. in Advances in Feature Based Manufacturing, Amsterdam, The Netherlands: Elsevier Science B. V., 1994:129~157
    [27] Coles J., Crawford R. and Wood K. Form feature recognition using base volume decomposition. ASME Design Automation Conf., 1994:281~297
    [28] Tsheng Y.J. and Joshi S.B. Recognizing multiple interpretations of interacting machining features. Computer Aided-Design, 1994, 26(9): 667~688
    [29] Sakurai H. and Dave P. Volume decomposition and feature recognition, Part II: Curved objects. Computer Aided-Design, 1996, 28(6-7): 519~537
    [30] Kim Y.S. Recognition of form feature using convex decomposition. Computer Aided-Design, 1992, 24(9): 461~476
    [31] Woo T.C. Feature extraction by volume decomposition. Proceedings of the Conference on CAD/CAM Technology in Mechanical Engineering, 1982:76~94
    [32] Gupta S.K. Automated manufacturability analysis of machines parts. Ph.D. thesis, University of Maryland, 1994
    [33] Han J. 3D geometric reasoning algorithms for feature recognition. Ph.D. thesis, University of Southern California, 1996.
    [34] Regli W.C. Geometric algorithms for recognition of features from solid models, Ph.D. thesis, University of Maryland, 1995.
    [35] Vanderbrande J.H. and Requicha A.A.G. Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Transactions Pattern Analysis & Machine Intelligence, 1993, 15(12): 1269~1285
    [36] Stefano P.D. Automatic extraction of form features for casting. Computer-Aided Design, 1997,29(11):761~770
    [37] Jian D, Vijayan S. Manufacturing feature determination and extraction, part A: heuristic approach. Computer-Aided Design,1997,29(7):475~484
    [38] Hant J.H., Requicha A.A.G. Modeler independent feature recognition in a distributed environment. Computer-Aided Design, 1997,30(6):453~463
    [39] Hant J.H., Requicha A.A.G. Feature recognition from CAD models. IEEE Computer Graphics and Applications,1998,18(2):80~94
    [40] Lee J.Y., Kim K. A feature-based approach to extracting machining feature. Computer-Aided Design,1998,30(13):1019~1035
    [41] 文福安. 最新计算机辅助设计-参数化设计和基于特征的实体造型. 北京: 北京邮电大学出版社, 2000
    [42] Sutherland I E. Sketchpad, a man-machine graphical communication system. Proceedings of the Spring Joint Computer Conference, Detroit, 1963, 329~345
    [43] 韩海冰. 参数化技术的研究及其应用:[硕士学位论文].南京工业大学,2002
    [44] 王波兴. 几何约束系统若干关键技术的研究与实践:[博士学位论文].华中科技大学, 2001
    [45] Gao Xiao Shan ,Hoffmann Christoph M.,Yang Wei Qiang. Solving spatial basic geometric constraint configurations with locus intersection. Computer-Aided Design,2004,36:111~122
    [46] Lee J.Y., K. Kim. Geometric reasoning for knowledge-based design using graph representation. Computer-Aided Design,1998,28(10):831~841
    [47] Sunde G. Specification of shape by dimensions and other constraints in geometric modeling for CAD applications. Wozny M.J.(ed.), North-Holland, 1998:199~213
    [48] Owen J C. Algebraic solution for geometry from dimensional constraints. Proceedings of ACM symposium, Found of Solid Modeling, ACM Press, New York,1991:397~407
    [49] Hoffmann C., Lomonosov A., Sitharam M. Decomposition plans for geometric constraint systems, part I: performance measures for CAD. J. Symbolic Computation, 2001, 31: 367~408
    [50] Hoffmann C., Lomonosov A., Sitharam M. Decomposition plans for geometric constraint systems, part II: new algorithms. J. Symbolic Computation, 2001, 31: 409~427
    [51] Hoffmanna Christoph M., Sitharamb Meera,Yuan Bo. Making constraint solvers more usable: overconstraint problem. Computer-Aided Design, 2004, 36:377~399
    [52] Kramer G. Solving geometric constraint systems. Proceedings AAAI-90, Boston MA, 1990: 1038~1044
    [53] Chen Liping, Peng Xiaobo, Wang Boxing, ZhouFanli. An approach to 2D/3D geometric constraint solver. Proceedings of DETC’00 ASME 2000 Design Engineering Technical Conferences and Computers and information in Engineering Conference, Baltimore, 2000
    [54] 陈立平, 王波兴, 彭小波等. 一种面向欠约束几何系统求解的二部图匹配优化处理方法.计算机学报,2000, 23(5):523~530
    [55] Kondo K. Algebraic method for manipulation of dimensional relationships in geometric models. Computer-Aided Design,1992, 24(3): 141~147
    [56] Gao X.S., Chou S.C. Solving geometric constraint systems II: a symbolic approach and decision of re-constructibility. Computer-Aided Design, 1998, 30(2): 115~122
    [57] Robert Light and David Gossard. Modification of geometric models through variational geometry. Computer-Aided Design, 1982, 14(4):209~214
    [58] 袁波, 李彦涛等. 一种几何约束系统分解算法. 清华大学学报(自然科学版), 2000,40(1):65~67
    [59] 孙家广,陈玉健,黄汉文. 计算机辅助设计技术基础. 北京:清华大学出版社,1990
    [60] 陆汝铃. 世纪之交的知识工程与知识科学. 北京:清华大学出版社, 2001
    [61] 周济, 查建中, 肖人彬. 智能设计. 北京:高等教育出版社, 1998
    [62] Steven Walczak. Knowledge acquisition and knowledge representation with class: the object-oriented paradigm. Expert Systems with Applications, 1998,15: 235-244
    [63] John K., Kinston C. Designing knowledge based systems: the Common KADS design model. Knowledge-based Systems, 1998,11:311~319
    [64] 陆汝钤主编. 知识科学与计算科学. 北京: 清华大学出版社, 2003
    [65] Guus Schreiber 等著. 史忠植, 梁永全, 吴斌等译. 知识工程和知识管理. 北京:机械工业出版社,2003
    [66] Clancey W J. Heuristic classification. Artificial Intelligence, 1985, 27(3): 289~350
    [67] Penoyer J A, Burnett G, Fawcett D J, et al. Knowledge based product life cycle systems: principles of integration of KBE and C3P. Computer-Aided Design, 2000, 32(5~6): 311~320
    [68] George F Luger. Artificial intelligence: structures and strategies for complex problem solving. London: Addison~Wesley, 4th Edition, 2004
    [69] Studer R., Richard V., Benjamins, Dieter Fensel. Knowledge engineering: principles and methods. Data & Knowledge Engineering, 1998,25:161~197
    [70] Cay F. and Chassapis C. An IT view on perspectives of computer aided process planning research. Computers in Industry, 1997,34:307~337
    [71] Jerry Y H Fuh, Chao-Hwa Chang and Michel A Melkanoff. The development of an integrated and intelligent CAD/CAPP/CAFP environment using logic-based reasoning. Computer-Aided Design, 1996,28(3):217~232
    [72] C.F. Yuen a, S.Y. Wong, Patri K. and Venuvinod. Development of a generic computer-aided process planning support system. Journal of Materials Processing Technology, 2003,139:394~401
    [73] 杨光育. 电子产品参数化工艺设计. 电子工艺技术, 2004,25(4):159~161
    [74] A. V. S. R. K. Prasad, P. N. Rao and U. R. K. Rao. Optimal selection of process parameters for turning operations in a CAPP system. INT. J. PROD. RES., 1997,35(6):1495~1522
    [75] H. Rozenfeld, H. T. Kerry Jr. Automated process planning for parametric parts, International Journal of Production Research, 1999, 37 (17): 3981~3993
    [76] M.R. Alam, K.S. Lee, M. Rahman, Y.F. Zhang. Automated process planning for the manufacture of sliders, Computers in Industry, 2000, 43: 249~262
    [77] 蔡铭,林兰芬,董金祥等. CAPP 系统中零件信息模型自动获取技术研究. 计算机辅助设计与图形学学报, 2002,14(5):433~436
    [78] 孟明承,李志超,李兵等. 基于 STEP 机械零件的 CAD/CAPP/CAM 集成工具.清华大学学报(自然科学版), 1997, 37(11): 39~41
    [79] 刘乃若,李善平,董金祥. 基于 STEP 的 CAD/CAPP 集成工具的研究. 计算机辅助设计与图形学学报, 2000,12(4): 286~290
    [80] 黄强,林兰芬,董金样. 面向对象的工艺信息集成系统GS-CAPP. 计算机辅助设计与图形学学报, 2001, 13(7): 642~646
    [81] 朱海平,邵新宇,蔡力钢等. 面向 BOM 的 CAPP 系统研究与实践. 华中科技大学学报, 2001, 29(4): 57~59
    [82] 黄学文,范玉顺. BOM 多视图和视图之间映射模型的研究. 机械工程学报, 2005,41(4):97~102 [83] S M Gao, J J Shah. Automatic recognition of interacting machining features based on minimal condition subgraph. Computer-Aided Design,1998, 30(9): 727~739
    [84] Laakko T, Mantyla M. Feature modeling by incremental feature recognition. Computer-Aided Design,1993,25(8):479~492
    [85] Marefat M and Kashyap R L. Geometric reasoning for recognition of three-dimensional object features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 949–965 [86] Ji Q., Marefat M and Lever P J. An evidential reasoning approach for recognizing shape feature. In Proceedings of the 11th IEEE Conference on AI for Applications, 1995
    [87] Trika S N and Kashyap R L. Geometric reasoning for extraction of manufacturing features in isooriented polyhedrons. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 16(11):1087–1100 [88] Joshi S, Chang T C. Graph-based heuristics for recognition of machined features from a 3D solid model. Computer-Aided Design,1988,20(2):58~66
    [89] 刘文剑,顾琳,常伟,杨乐民. 基于属性邻接图的制造特征识别方法.计算机集成制造系统-CIMS,2001,7(2):53~58
    [90] 张凤军,马骥,高曙明. 混合加工特征识别方法.计算机辅助设计与图形学学报,2002,14(3):228~232
    [91] Z Huang, D Yip-Hoi. High-level feature recognition using feature relationship graphs. Computer-Aided Design, 2002,34:561~582
    [92] X.J. Gu, G.N. Qi, Z.X. Yang and G.J. Zheng. Research of the optimization methods for mass customization (MC). Journal of Materials Processing Technology, 2002, 129: 507~512
    [93] http://technews.acm.org/current.cfm
    [94] http://4c.ucc.ie/web/archive/index.jsp
    [95] 陈立平.几何约束系统最大归约理论及应用研究:[博士学位论文]. 华中理工大学, 1995.
    [96] 孟祥旭, 徐延宁. 参数化设计研究. 计算机辅助设计与图形学学报, 2002, 14(11): 1086~1090
    [97] Laurent Sabourin, Francois Villenuve. OMEGA, a expert CAPP system, Advances in Engineering Software,1996,25:51~59
    [98] S.V. Bhaskara Reddy, M.S.Shunmugam, T.T. Narendran. Operation sequencing in CAPP using genetic algorithms. INT. J. PROD. RES., 1999, 37(5): 1063~1074
    [99] H. Lau and B. Jiang. A generic integrated system from CAD to CAPP: a neutral file-cum-GT approach. Computer Integrated Manufacturing Systems, 1998, 11 (1-2): 67~75
    [100]董兴辉,徐晓慧.基于 VRML 三维协同装配可视化的实现.工程图学学报,2002,2: 70~75
    [101]W.D. Li, S.K. Ong, J.Y.H. Fuh, Y.S. Wong. Feature-based design in a distributed and collaborative environment. Computer-Aided Design, 2004, 36: 775~797
    [102]刘新国,鲍虎军,彭群生. 增量几何压缩. 软件学报, 2000, 11(9):1167~1175
    [103]Huffman David. A Method for the Construction of Minimum Redundancy Codes. Proceedings of the IRE, 1952,40(9):1098~1101
    [104]莫蓉,常智勇,张毅澜,张军波.协同设计中三维几何模型渐进式快速显示技术研究. 计算机辅助设计与图形学学报,2004,10:1341~1345
    [105]申利民,何丽.柔性报表系统的设计与实现.微型电脑应用,2002,18(2):51~52
    [106]柳雷涛,黄志球,左银龙,高鹏.数据仓库系统中用户驱动报表工具的设计与实现.小型微型计算机系统,2002,23(2):185~188
    [107]柏洁,薛福珍,罗超.基于组件的报表组态软件的设计与实现.计算机工程,2002, 28(5):103~105
    [108]刘奇燕,杜华荣.分布式多层应用系统报表制作.昆明理工大学学报, 2002, 27(5): 59~61
    [109]谢良,蔡力钢,张国军,邵新宇.CAPP 系统中的报表工具的实现与数据交换技术.机电一体化,2001,7(2):60~62
    [110]韩坚华,李藜,杨安宸.基于面向对象方法的通用报表系统生成工具的开发模式.华南师范大学学报(自然科学版),1998(4):117~122
    [111]Ed O’Donnell, Julie Smith David. How information systems influence user decisions: a research framework and literature review. International Journal of Accounting Information Systems,2000,1(3):178~203
    [112]Jiawei Han, Shojinro Nishio, Hiroyuki Kawano, et al. Generalization-based data mining in object-oriented database using an object cube model. Data & Knowledge Engineering,1998,25(1):55~97
    [113]A.Famili, Wei-Min Shen, Richard Weber, et al. Data preprocessing and intelligent data analysis. Intelligent Data Analysis,1997,1(1):3~23
    [114]萨师煊,王珊.数据库系统概论(第三版). 北京:高等教育出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700