用户名: 密码: 验证码:
贵州山区煤矿废弃地重金属污染评价及优势植物修复效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的发展,环境污染和生态破坏问题日益突出,能源结构调整势在必行。近年来,贵州省加大煤矿关闭整合力度,然而由于对煤矿废弃地缺乏必要的环境修复措施,区域内大量农田受酸性废水和重金属污染而弃耕抛荒,严重影响粮食安全和农业基础的稳定。因此,开展煤矿废弃地重金属污染评价及生态修复措施研究,具有重要的应用价值和实践意义。
     本文以矿区生态环境健康发展为前提,以生态修复理论为指导,结合贵州省煤矿废弃地生态恢复的实际情况,选取贵阳市花溪区枫香树煤矿、金田煤矿、银洞煤矿、贵安煤矿废弃地作为研究对象,探讨了采用蜈蚣草和苎麻两种矿区废弃地优势植物进行重金属污染修复的效果,同时探索了在天然表面活性剂茶皂素的作用下,苎麻在重金属Cd污染土壤中的生长发育、生理特性以及苎麻对重金属Cd的富集效应和转运能力,旨在为煤矿废弃地植物修复提供材料选择和技术参考。主要研究结果如下:
     (1)对贵州省贵阳市花溪区枫香树煤矿、金田煤矿废弃地农田复垦区、矸石山复垦区的土壤化学性质进行了分析测试。结果表明,煤矿排污口排放的酸性废水和矸石中伴生的硫铁矿与空气中的氧气发生氧化反应产生的酸性物质,在雨水冲刷和地表径流的作用下,导致煤矿废弃地土壤pH值普遍较低,甚至有部分区域土壤呈强酸性状态。煤矿废弃地保肥能力差异较大,农田复垦区保肥能力为中等水平,阳离子交换量介于10~20cmol/kg之间;矸石山复垦区土壤保肥能力较弱,除个别区域外,大部分区域阳离子交换量低于10cmol/kg。农田复垦区较矸石山复垦区土壤熟化程度好,土壤有机质含量高于矸石山复垦区。煤矿废弃地土壤N、P、K全量处于中等偏下水平。由于研究区土壤呈酸性,有效态N、P、K含量普遍较低,尤其是有效态P严重匮乏,其形态以难溶性铝磷和铁磷为主。
     (2)对枫香树煤矿废弃地农田复垦区、矸石山复垦区和金田煤矿废弃地占压地、荒地、农田的重金属含量及形态进行了分析。结果表明,研究区土壤中重金属Cu、Zn、Pb、Cd含量均超过贵州省土壤背景值。其中,重金属Cu的含量超过了我国《土壤环境质量标准》(GB15618-1995)中的二级标准(50mg/kg);农田复垦区土壤中的Cd含量达到了《土壤环境质量标准》中的一级标准(0.20mg/kg)的2倍,超过了二级标准(0.30mg/kg);煤矿废弃地重金属Pb的含量虽有一定程度的积累,超过了贵州省土壤背景值,部分区域超过《土壤环境质量标准》中的一级标准(35mg/kg),但远低于二级标准(250mg/kg); Zn和Cr的含量均低于二级标准,处于清洁水平。
     (3)对枫香树煤矿废弃地重金属污染水平进行了评价。结果表明,农田复垦区土壤重金属单因子污染指数(Pi)表现为:Cd>Cu>Pb>Zn>Cr,可见农田复垦区土壤中重金属Cd的积累是最严重的,单因子污染指数最高为3.38;内梅罗综合污染指数(P综)评价结表明,农田复垦区五块样地的综合污染指数为2.11-2.81,污染程度为Ⅳ等级,呈中度污染水平。矸石山复垦区土壤重金属单因子污染指数(Pi)表现为:Cd>Cu>Pb>Zn>Cr;矸石山复垦区土壤中重金属Cd的积累明显,其单因子污染指数最大值为3.75;从内梅罗综合污染指数(P综)评价结果来看,五块样地的综合污染指数为2.41-3.07,整体处于中度污染水平。金田煤矿废弃地占压地、荒地、农田土壤重金属单因子污染指数(Pi)从大到小的排列顺序为:Cd>Pb>Cu>Zn>Cr,均处于中污染和轻污染水平;内梅罗综合污染指数(P综)评价结果显示:占压地>农田>荒地,分别2.13、1.83、1.58,处于中污染和轻污染状态。研究区重金属Cd积累较为明显,单因子污染指数较高,存在潜在生态风险,从环境风险和食品安全方面考虑,应将Cd作为煤矿废弃地重点防治对象。
     (4)研究了蜈蚣草对强酸性土壤的耐性和对重金属污染环境的修复能力。结果表明,煤矿废弃地土壤均为酸性土壤,生物多样性较差,植被单一。其中,优势植物蜈蚣草具有较强的耐酸性,在研究区这种酸性程度较高的土壤中,蜈蚣草仍能正常生长。蜈蚣草的盖度随土壤pH值变化而变化,土壤pH值越小,区域内生物多样性减少,蜈蚣草盖度越低。金田、银洞、贵安煤矿废弃地Cd、Pb、Cr、 Cu、Zn存在不同程度的超标,其中重金属Cd含量比贵州省土壤背景值高出3倍之多。有效去除煤矿废弃地重金属污染是矿区生态修复和复垦工作的先决条件,盲目地在矿区废弃地种植农作物存在较大的食品安全风险。
     蜈蚣草对不同重金属元素的富集能力存在较大的差异。富集系数大小顺序为:Cd>Pb>Cr>Cu>Zn,对Cd、Pb的富集系数均大于1,其中对Cd的富集系数达4.3,因此可以考虑把蜈蚣草作为煤矿废弃地植物修复的首选植物。蜈蚣草对重金属的转移系数大小顺序为:Cu>Zn>Pb>Cd>Cr。三个试验区域除了金田煤矿由于土壤酸化严重,对Cu的转移系数小于1,其余两个区域蜈蚣草对Cu的转移系数均大于1,其中贵安煤矿废弃地达到了3.3。因此,蜈蚣草对重金属Cu污染土壤修复有一定的应用价值。
     (5)通过盆栽试验研究了不同浓度茶皂素溶液对苎麻生长的影响以及苎麻对重金属Cd的富集效应和转运能力。结果表明,在Cd污染土壤中,茶皂素对苎麻株高和茎粗的影响存在剂量效应。0.1mmol/L浓度的茶皂素会加剧重金属Cd对苎麻的毒害作用。0.5-5.0mmol/L浓度的茶皂素能减轻重金属Cd对苎麻的毒害作用。当茶皂素浓度达到2.5mmol/L时,茎粗达到最大值。低茶皂素浓度(0.1mmol/L)和高茶皂素浓度(5.0mmol/L)处理苎麻的叶片、籽粒和原麻干重均显著下降;在0.5~2.5mmol/L茶皂素浓度范围内,随着浓度的增加,苎麻的叶片、籽粒和原麻干重呈上升趋势。在2.5mmol/L浓度时苎麻的叶片、籽粒和原麻干重显著增加,说明该浓度茶皂素能有效淋洗土壤中重金属Cd,对苎麻干物质积累有一定促进作用。在0.5~2.5mmol/L茶皂素浓度范围内,苎麻根、茎、叶中重金属Cd的含量依次呈上升趋势;茶皂素的浓度介于2.5~5.0mmol/L之间时,苎麻根、茎、叶的重金属Cd含量依次呈下降趋势。因此,在实际矿区废弃地Cd污染土壤的治理中,2.5mmol/L的茶皂素溶液是最理想的浓度选择。
     低茶皂素浓度(0.1mmol/L)抑制苎麻的叶绿素a的合成;在0.5~2.5mmol/L茶皂素浓度范围,随着处理浓度的增加,苎麻的叶绿素a和叶绿素b含量增加,并在茶皂素浓度为2.5mmol/L时达到最大值。不同浓度茶皂素处理的叶绿素总量变化趋势与叶绿素a含量的变化趋势基本一致。在重金属Cd污染土壤中加入2.5mmol/L茶皂素溶液,可显著增加苎麻的叶绿素总量,提升苎麻光合性能。
     苎麻根、茎、叶对重金属Cd的富集系数随茶皂素浓度的增加而呈现先升高后降低的趋势。当茶皂素浓度为2.5mmol/L时,根、茎、叶对重金属Cd的富集系数都达到最高,表明在此浓度下,茶皂素能有效提高苎麻对重金属Cd的富集能力。茶皂素浓度在0.1~2.5mmol/L范围内,转移系数呈上升趋势,但上升的幅度未达到显著水平。当茶皂素浓度为2.5mmol/L时,苎麻对重金属Cd的转移系数为0.75,略高于其它浓度茶皂素处理。
With the development of social economy, environmental pollution and ecological damage was becoming increasingly prominent, adjust the energy structure was imperative. In recent:years, coal mine closed consolidation efforts were increased in Guizhou province. However, due to the lack of necessary environmental restoration measures to abandoned coal mine, about the results that lead to a large number of farmland area was contaminated by acid wastewater and heavy metal and then becoming abandoning farmland area.This caused serious impact on food security and agricultural foundation stability. Therefore, carry out evaluation of heavy metal contaminated soil and the measures of ecological remediation in mining wasteland had important application value and practical significance.
     In this paper, with the healthy development of the mining area ecological environment as the premise, with the ecological restoration theory as the guide, combined with the actual situation of ecological restoration of coal mine in Guizhou province, Feng xiang shu, Jin tian, Yin dong, Gui'an coal mine wastelands in Huaxi district of Guiyang, Guizhou were selected as objects of the research. in search of suitable materials for soil remediation in coal mine wastelands, the study of the affection of Pteris vittata on soil remediation by heavy mental pollution, the physiological property of Boehmeria nivea treated by different concentration of Tea saponin and enrichment effect on heavy mental Cd contaminated soil were conducted based on outdoor survey, lab analysis and pot experiment methods. The approaches of ecological remediation were studied to provide basic data and technical references. The main research findings were as follows:
     (1) The soil essential physiochemical properties in coal reclamation area, coal gangue hill reclamation area of Feng xiang shu and Jin tian coal mine wastelands were measured. The results showed that the value of pH in coal mine wastelands was generally low, and even it was extreme acidic in some areas. It was because the acidic substances produced by the acidic waste water form mine outfall and the pyrite associated coal gangue with the oxygen in the air occurring oxidation reactions. The soil pH value was generally low in mining wasteland in function of rainfall and surface runoff, even some regional soil was strongly acidic condition. The capacity of maintenance fertilizer showed larger differences in different coal mine wastelands. It was in middle level in the reclamation area of farmland which cation exchange was10~20cmol/kg. However, it was weak in coal gangue hill reclamation area with cation exchange was below10cmol/kg in the most areas. Soil organic content in the reclamation area of farmland was higher than in coal gangue hill reclamation area. It was indicated that the utilization status and degree of maturation in the former was better than that in the latter. The total amount of N, P, K in coal mine wastelands soils was in lower-middle level. The effective amount of them was generally low due to the acidic soil, especially the effective amount of P which was mainly insoluble aluminum P and iron P-based.
     (2) The analysis of heavy metal content and morphology was conducted under Feng xiang shu coal mine wastelands, the reclamation area of farmland, coal gangue hill reclamation area, Jin tian coal mine wastelands, wastelands and farmland. It was shown that the heavy metal content Cu, Zn, Pb and Cd was exceeded soil background values in Gui zhou province. Among them, the Cu content of heavy metal was in excess of the 《National soil environmental quality standards》(GB15618-1995) secondary standard, that was50mg/kg. In the reclamation area of farmland, the Cd content was twice much than the primary standard that was0.20mg/kg, even more than in the secondary standard prescribed0.30mg/kg. In the coal mine wastelands, the accumulation of Pb was exceeded the background values of Guizhou provice. The Pb content in some areas was more than the primary standard prescribed35mg/kg, but far below the secondary standard prescribed250mg/kg. Meanwhile, the Zn and Cr content was in a clean level which was lower than the secondary standard.
     (3) The results of the heavy metal pollution index of Feng xiang shu coal mine wastelands showed that, in farmland reclamation area, the single factor pollution index (Pi) was arranged as:Cd>Cu>Pb>Zn>Cr. It suggested that Cd accumulation was the most serious in farmland reclamation area that the Pi was3.38. The evaluation of N·L·Nemerow pollution index showed that, integrated pollution index was2.15-2.81in five plots of farmland reclamation area. The pollution degree was IV grade that was at moderate level. In coal gangue hill reclamation area, Pi was ranked as:Cd>Cu>Pb> Zn>Cr. It suggested that Cd accumulation was the most serious in coal gangue hill reclamation area that the Pi was3.75. Integrated pollution index was2.41-3.07in five plots. It was shown that overall was in moderate pollution level. In Jin tian coal mine wastelands, wastelands and farmland, the Pi was ranked as Cd>Pb>Cu>Zn>Cr, that was at the moderate and light levels of pollution. The results of evaluation of nemerow pollution showed that:tying area> farmland> wasteland. That was2.13,1.83and1.58, respectively. Cd accumulation of heavy metals in the study area was more obvious. The single factor pollution index was higher. It was proved that there was a potential ecological risk. As a result, Cd should be as a control object in cola mine wastelands in the view of environmental risk and food safety.
     (4) The patience to extreme acidic soil and the ability of repair soil heavy metal pollution of pteris vittata was studied. The results showed that the soils in these wastelands were acidic, biodiversity was poor, and vegetation was single. Pteris vittata as dominant plant had s strong acid resistance at higher levels of the study area such acidic soils. It still was growing normally. The coverage of pteris vittata was changed along with the value of pH. The smaller the soil pH, the biodiversity in the region was reducing, and the coverage of pteris vittata was smaller. In Jin tian, Yin dong, Gui'an coal mine wastelands, Cd、Pb、Cr、Cu、Zn was varying degrees of overweight. Compared with the soil background value of Gui zhou province, Cd was the most serious excessive heavy metals, up to three times. Effective removal of heavy metal pollution in coal mine was prerequisite in ecological restoration and rehabilitation work. There was a big risk to food safety when planted crops blindly in wastelands.
     There was a big difference in the capacities of enrichment different heavy metals about pteris vittata. Enrichment factor was Cd>Pb>Cr>Cu>Zn. It was greater than one for Cd and Pb, in which the highest coefficient of Cd concentration reached4.3. So pteris vittata could be considered as a preferred species in restoration and rehabilitation work. The trend of heavy metal transfer coefficient about pteris vittata was roughly Cu>Zn>Pb>Cd>Cr. Heavy metal transfer coefficient of Cu was less than one in Jin tian coal mine because of its extreme Ph. The other two areas was greater than one, which was3.3in Gui'an coal mine wastelands. It was instructive in soil remediation.
     (5) The effect of ramie growth in different tea saponin solution and the capacity of enrichment and transport of Cd on ramie was measured by pot experimental studies. There was dose effect in the impact of tea saponin of ramie paint height and stem diameter. When the concentration of tea saponin was in0.1and0.5mmol/L, it would exacerbate the toxic effects of heavy metals on ramie. When the concentration was in 1.0~5.0mmol/L, the heavy metal Cd toxic effect on ramie was reduced. The stem diameter reached its maximum if the concentration was2.5mmol/L. Above this threshold, higher concentration did not further reduce the toxic effects of Cd on plant. The dry weight of ramie leaves, seeds and raw jute was significantly decreased when the concentration of tea saponin was in low level (0.1mmol/L) and high level (5.0mmol/L). The dry weight of ramie leaves, seeds and raw jute was upward trend with the increase of the concentration when it was in0.5~2.5mmol/L. The dry weight was significantly increased at2.5mmol/L, indicating that this concentration had effective in leaching Cd heavy metals in soil. The soil toxicity of Cd was exacerbated, ramie root growth was inhibited when the concentration was0.1mmol/L. In some extent, it undermined the ability of upward transport of heavy metals into ramie plant body, causing the Cd content was low in stems and leaves. The Cd content was gradually increased in ramie roots, stems and leaves when then concentration was0.5-2.5mmol/L. However, it was opposite when then concentration was2.5-5.0mmol/L. So, the best choice of tea saponin concentration was2.5mmol/L in the actual mining wasteland Cd contamination governance.
     The synthesis of chlorophyll a was inhibited when the concentration was in low level(0.1mmol/L). The content of chlorophyll a and chlorophyll b was rise with the increase of the concentration when it was in0.5~2.5mmol/L, reached their maximum at2.5mmol/L. As a result, adding an appropriate amount of concentration of tea saponin in Cd contaminated soil, the content of chlorophyll in ramie was significantly increased.
     The enrichment factor of Cd in ramie roots, stems and leaves was first increased and then decreased with then concentration of tea saponin. It reached the highest when then concentration was2.5mmlo/L. It was indicated that tea saponin could effectively improve the ability of the enrichment of Cd at the2.5mmol/L.The transfer coefficient was generally upward trend but the increase rate was not obvious when the concentration in0.1~2.5mmol/L. It was0.75that was slightly higher than the other concentration tea saponin treatments when then concentration was in2.5mmol/L. The result showed that there was little impact to Cd transfer coefficient on ramie through different concentrations of tea saponin in Cd contaminated soil.
引文
[1]Jackson S T, Hobbs R J. Ecological restoration in the light of ecological history. Science, 2009,325:567-568
    [2]Giles A W.The geology and coal resoureces of the coal-bearing portion of Lee County, Virginia.Veginia Geological Survey Bulletin,1925,26:1-20
    [3]Cherry D S,Currie R J,Soucek D J,et al.An integrative assessment of a watershed impacted by abandoned mined land discharges Environmental Pollution,2001,3:377-388.
    [4]Hu Z Q, Zhao Y L, Bi Y L. Restoration of Coal Mine in the United States[J]. China Land, 2001:(6):43-44.
    [5]Yi D T,Nan Z R,Jin C Z.Current Status of Study of Ecology in Mining Areas and Its Perspectives[J].Scientia Geographica Sinica,2004,24(2):238-244.
    [6]张成梁,B.Larry L美国煤矿废弃地的生态修复[J],生态学报,2011,31(1):0276-0285
    [7]张甜甜.晋中市煤矿区生态恢复中的植物景观研究[D].西北农林科技大学,2012.
    [8]胡振琪,杨秀红等.论矿区生态环境修复[J].科技导报,2005.1:38-41
    [9]王煜琴.城郊山区型煤矿废弃地生态修复模式与技术[D].中国矿业大学(北京),2009.
    [10]钟爽.矿山废弃地生态恢复理论体系及其评价方法研究[D].辽宁工程技术大学,2005.
    [11]李树志.矿区生态破坏防治技术[M].北京:煤炭工业出版社.1998
    [12]刘国华.南京幕府山构树种群生态学及矿区废弃地植被恢复技术研究[D].南京林业大学,2004.
    [13]Liu R.Review of reclamation of wasteland in China.In:Proceedings of Reclamation and Greening of Mined Wasteland,1995.1-6
    [14]Yang C F.Land degradation and its control strategies in China.n:Wong M H, Wang J C,Baker A J M eds.Remediation and Management of Degraded Lands.Baca Raton, FL:CRC Press, 1999,175
    [15]王洁,周跃.矿区废弃地的恢复生态学研究[J].安全与环境工程.2005(1):5-8..
    [16]黄铭洪,骆永明,矿区土地修复与生态恢复[J].土壤学报,2003(2):161-169
    [17]郝玉芬.山区型采煤废弃地生态修复及其生态服务研究[D].中国矿业大学(北京),2011.
    [18]R.L.Langford,W.R.Ormsby,H.M.Howard.Managing abandoned mine sites in western Australia creating the inventory[A].Proeeeding of workshop on management and Relmediation of abandoned mines[C].2003:59-65
    [19]陈雅琳,高吉喜等.矿区土地利用及生态服务价值动态评估-以山西省朔州市为例[J].干旱区资源与环境.2011(01).
    [20]D.Rotherham,F.Spode,D.Fraser.Post coal-mining landscape:an under appreciated resource for wildlife, people and heritage[A].In heather M.Moore,Howard R.Fox & Scott Elliott, Land Reclamation[C].Extending the Boundaries,2003:93-99.
    [21]Hessel berth,D.Hobson.Land reclamation in the north east:the last 30 years [A].In Heather M.Moore,Howard R.Fox & Scott Elliott,Land Reclamation[C].Extending the Boundaries,2003:81-89
    [22]李虹,王永生,黄洁.美国矿山环境治理管理制度的启示[J].国土资源导刊(湖南).2008,5(1):76-78.
    [23]张伟.河北省矿山废弃地治理模式与适宜性评价研究[D].中国矿业大学(北京),2011.
    [24]冯少茹.基于循环经济理论的淮北市采煤塌陷地生态修复模式研究[D].合肥工业学,2005.
    [25]白中科,赵景逵,朱荫湄.试论矿区生态重建[J].自然资源学报.1999(1):36-42.
    [26]王国强,赵华宏等.两淮矿区煤矸石的卫生填埋与生态恢复[J].煤炭学报.2001(4):428-431.
    [27]范英宏,陆兆华等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报.2003(10):2144-2152.
    [28]田胜尼,刘登义等.5种豆科植物对铜尾矿的适应性研究[J].环境科学.2004(3):138-143.
    [29]Marrs R H,Bradshaw A D.Nitrogen accumulation cycling and the reclamation of china clay wastes[J].Journal of Environmental Management,1982,15:139-157.
    [30]Tordoff G M,BakerA J M,WillsAJ.Current approachesto revegetation and reclamation of metalliferous mine wastes[J].Chemosephere,2000,41:219-228.
    [31]Ye Z H,Shu W S,ZhangZQ, etal. Evaluation of major constraints to revegetation of lead/zinc mine tallings using biomassay techniques[J]. Chemosephere,2002,47:1103-1111
    [32]滕冲,程峰,王杰光,等.植物修复在治理矿区重金属污染土壤中的应用[J].矿产与地质.2008(2):179-182.
    [33]梁家妮,马友华等.土壤重金属污染现状与修复技术研究[J].农业环境与发展.2009(4):45-49.
    [34]宋雪英,杨继松等.重金属镉在土壤中迁移模拟研究[J].安徽农业科学.2011(1):173-175.
    [35]敬久旺,赵玉红等.藏中矿区表层土壤重金属污染评价[J].贵州农业科学.2011(7):126-128.
    [36]杨玲,熊智,吴洪娇,等.5种豆科植物对铅、锌及其复合作用的耐性研究[J].中国农学通报.2011(30):104-110.
    [37]贾建丽,张岳等.门头沟煤矿区土壤有机污染特征与微生物特性[J].环境科学.2011(3):875-879.
    [38]项萌,张国平等.广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J].环境科学.2012(1):266-272.
    [39]董辰寅,张卫国等.上海宝山区城市土壤铅污染来源的同位素判别[J].环境科学.2012(3):754-759.
    [40]叶婉星.浅析矿区废弃地的景观更新与改造[J].铜业工程.2011(3):45-47.
    [41]王存存,陈东田,王永佼.矿区废弃地生态恢复和可持续发展研究[J].中国农学通报.2007,23(7):502-505.
    [42]师雄,许永丽,李富平.矿区废弃地对环境的破坏及其生态恢复[J].矿业快报.2007,23(6):35-37.
    [43]崔斌,王凌,张国印,等.土壤重金属污染现状与危害及修复技术研究进展[J].安徽农业科学.2012(1):373-375.
    [44]何士龙,钱奎梅,王丽萍,等.污泥在矿区废弃地复垦中的应用实验[J].环境科技.2009(04).
    [45]崔斌,王凌,张国印,等.土壤重金属污染现状与危害及修复技术研究进展[J].安徽农业科学.2012(1):373-375.
    [46]申万暾,吴永贵,黄波平等.贵州兴仁废弃煤矿区表层土壤重金属污染及其土壤酶活性[J].贵州农业科学,2011,39(3):111-114.
    [47]多布罗沃利基斯B B.微量元素地理学[M].北京:中国环境科学出版社,1992:58-105.
    [48]崔龙鹏,白建峰,史永红等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-903.
    [49]马从安等.大型露大煤矿重金属污染评价[J].矿业安全与环保,2007,34(2):36-40.
    [50]刘德良,杨期和.明山煤矿区废弃地重金属污染土壤环境质量评价[J].湖北农业科学,2013,52(18):4351-4367.
    [51]高陈玺等.湖南锰矿废弃地重金属污染土壤的研究及评价[J].重庆工商大学学报,2013,30(8):78-83.
    [52]刘文勇,满秀玲.鸡西矿区废弃地重金属含量极其污染评价[J].水土保持学报,2007,21(6):70-74.
    [53]周楠楠EDTA强化茶皂素对土壤中Cu、Zn、Cd淋洗修复的影响研究[D].山东农业大学,2011.
    [54]沈洽金,刘德良,郭宁翔,等.煤矿废弃地重金属含量及3种土著先锋植物吸收特征[J].广东农业科学.2011,38(20):134-138.
    [55]邢前国.重金属污染土壤的植物修复技术[J].生态科学,2003,22(2):275-279.
    [56]McIntyre T. Phytoremediation of heavy metals from soils [J].Advances in Biochemical Engineering/Biotechnology,2003,78:98-123.
    [57]Turgut C, Pepe M K. The effect of EDTA andcitric acid on phytoremediation of Cd, Cr and Ni from soilusing Helianthus annuus [J].Environmental pollution,2004,131:147-154.
    [58]王忠全,温琰茂,黄兆霆,等.几种植物处理含重金属废水的适应性研究[J].生态环境,2005,14(4):540-544.
    [59]罗强.南京栖霞铅锌矿货场土壤与植物重金属含量与对照区含量分析[J].西昌学院学报(自然科学版),2005,3:63-66
    [60]李庚飞.某矿区附近不同作物对3种重金属富集能力的研究[J].中国农学通报.2012,28(26):257-261.
    [61]李庚飞,卢爱刚.不同蒿类植物对重金属锌的积累特性[J].贵州农业科学.2012,40(7):242-244.
    [62]王厚杰,彭培好,贝荣塔,等.三岔河沿岸植物铅、镉富集特性的研究[J].环境科学导刊.2012,31(2):11-15.
    [63]Channy R L,Malik M,Li Y M,et al.Phytoremediation of soil metals[J].Current Opinons in Biotechnology,1997,8:279-284
    [64]邢宁,吴平霄,李嫒媛,等.大宝山尾矿重金属形态及其潜在迁移能力分析[J].环境工程学报.2011(6):1370-1374.
    [65]武强,孙录科.矿区土壤重金属污染的植物修复研究进展[J].有色金属.2008(1):125-129.
    [66]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报.2004(3):366-370.
    [67]王鸣刚,任小换,刘晓风.植物修复重金属污染土壤的机理及其应用前景[J].甘肃农业大学学报.2007,42(5):108-113.
    [68]Lasat M M, Baker A J, Kochian L V. Plant Physiol[J].1996, (112):1715-1722.
    [69]陈同斌,张斌才,黄泽春等.超富集植物蜈蚣草在中国的地理分布及其生境特征[J].地理研究,2005,24(6):831.
    [70]王海娟,宁平,唐兴进等.含砷金矿蜈蚣草除砷应用前景探讨[J].矿业研究与开发,2010,30(2):94-98.
    [71]朱启红,夏红霞.蜈蚣草对Pb、Zn符合污染的响应[J].环境科学,2012,31(7):1029-1035.
    [72]安志装,陈同斌,雷梅等.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,23(12):2594-2598.
    [73]廖晓勇,陈同斌,阎秀兰等.不同磷肥对砷超富集植物蜈蚣草修复砷污染土壤的影响[J].环境科学,2008,29(10):2906-2911.
    [74]韦朝阳,郑欢,孙歆,等.不同来源蜈蚣草吸收富集砷的特征及植物修复效率的探讨[J].土壤,2008,40(3):474-478.
    [75]何志坚,薛鸿.蜈蚣草野外复合污染条件下镉等重金属富集量的测定[J].绵阳师范学院学报, 2011,30(11):130-134.
    [76]陈同斌,黄泽春,黄宇营,等.蜈蚣草羽叶中砷及植物必须营养元素的分布特点[J].中国科学,2004,34(4):304-309.
    [77]陈同斌,黄泽春,黄宇营,等.砷超富集植物中元素的微区分布及其与砷富集的关系[J].科学通报,2003,48(11):1163-1168.
    [78]佘玮,揭雨成,邢虎成等.湖南冷水江锑矿区苎麻对重金属的吸收和富集特性[J].农业环境科学学报,2010,29(1):91-96.
    [79]严理,彭德源,杨喜爱等.苎麻对镉污染土壤功能修复的初步研究[J].湖南农业科学,2007,(6):125-127,130.
    [80]王冶,张兴,揭雨成等.苎麻对矿区土壤中重金属的原位去除效应[J].安徽农业科学,2012,40(3):1645-1678.
    [81]佘玮,揭雨成,邢成虎等.湖南石门、冷水江、浏阳3个矿区的苎麻重金属含量及积累特征[J].生态学报,2011,31(3):0874-0881.
    [82]刘书慧,揭雨成,邢成虎等.锑矿区野生苎麻富集重金属及转化燃料乙醇的研究[J].农业现代化研究,2011,32:218-222.
    [83]宋勇生.不同施肥方式对铜尾矿上苎麻生长的影响[J].井冈山大学学报,2010,31(6)132-136.
    [84]林匡飞,张大明,李秋洪,等.苎麻吸镉特性及镉土的改良试验[J].农业环境保护,1996,15(1):1-4.
    [85]代剑平,揭雨成,冷娟等.镉污染环境中镉在苎麻植株各部分分布规律的研究[J].中国麻业,2003,25(6)279-282.
    [86]鲁雁伟,揭雨成,佘玮等.苎麻种植密度对重金属Pb、As富集能力影响研究[J].中国农学通报,2010,26(17):337-341.
    [87]许英,揭雨成,孙志民,等.苎麻品种对镉污染土壤适应性的研究[J].中国麻业,2005,27(5):249-252.
    [88]龙育堂,刘世凡,熊建平,等.苎麻对稻田土壤汞净化效果研究[J].农业环境保护,1994,13(1):30-33.
    [89]朱光旭,黄道友,朱奇宏,等.苎麻镉耐受性及其修复镉污染土壤潜力研究[J].农业现代化研究,2009,30(6):752-755.
    [90]Lombi E, Zhao FJ, Dunham, SJ, McGrath SP. Phytoremediation of heavy metal contaminated soils:Natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual, 2001.30:1919-1926.
    [91]Prasad MNV. Phytoremediation of metal-polluted ecosystems:hype for commercialization. Russ J Plant Physiol,2003,50:686-700.
    [92]Luo C L, Shen Z G, Lou LQ, et,al. EDDS and EDTA-enhanced phytoextraction of metals from arti fi cially contaminated soil and residual effects of chelant compounds. Environ Poll,2006, 144 (3):862-871.
    [93]Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by biosurfactants. J Hazardous Mat,2001,85:111-125.
    [94]王世华,高双成,常会庆.重金属污染土壤的治理途径[J].河北农业科学,2008,12(11):80-82.
    [95]Hong Kyungjin,Tokunaga S,IshigamiY,et al.Extracetion of heavy metals from MSW incinerator fly ash using saponins[J].Chemosphere,2000,41:345-352.
    [96]赵世明.茶皂素的化学结构及药理活性研究[J].国外医药:植物药分册,1998,13(1):3-6
    [97]Yuan X Z,Meng Y T,Zeng G M,et al.Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation [J].Colloids and Surfaces A:Physicochem Eng Aspects,2008,317:256-261.
    [98]张中文,李光德,周楠楠,等.茶皂素对污染土壤中重金属的修复作用[J].水土保持学报,2008,22(6):67-70
    [99]Yoshikawa M, Morikawa T, Yamamoto K, et al.Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis) [J]. J Nat Prod,2005,68(9):1360-1365.
    [100]Yoshikawa M, Morikawa T, Ning LI, et al. Bioactive saponins and glycosides XX III triterpene saponins with gastroprotective effect from the seeds of Camellia sinensis-theasaponins E3, E4,E5, E6 and E7[J]. Chem Pharm Bull,2005,53(12):1559-1564.
    [101]Morikawa T, Ning Li, Nagatomo A, et al. Triterpene saponins with gastroprotective effects from tea seed (the seeds of Camelliasinensis)[J]. J Nat Prod,2006,69:185-190.
    [102]Kobayashi K, Teruya T, Suenaga K, et al. Isotheasaponins B1-B3 from Camellia sinensis var. sinensis tea leaves[J].Phytochemistry,2006,67:1385-1389.
    [103]Yoshikawa M, Morikawa T, Nakamura S, et al. Bioactive saponins and glycosides XXV acylated oleanane-type triterpene saponins from the seeds of tea plant (Camellia sinensis)[J]. Chem Pharm Bull,2007,55(1):57-63.
    [104]Yoshikawa M, Nakamura S, Kato Y, et al. Medicinal flowers. XIV. New acylated oleanane-type triterpene oligoglycosides with antiallergic activity from flower buds of chinese tea plant (Camellia sinensis) [J]. Chem Pharm Bull,2007,55(4):598-605.
    [105]Morikawa T, Nakamura S, KatoY, et al. Bioactive saponins and glycosides XXVIII new triterpene saponins, foliatheasaponins Ⅰ,Ⅱ,Ⅲ, IV, and V, from Tencha(the leaves of Camellia sinensis)[J].Chem Pharm Bull,2007,55(2):293-298.
    [106]杨磊,傅丽君,沈金瑞.新型TSADA的合成及其土壤重金属污染修复行为[J].中国水土保持科学.2012(2):73-77.
    [107]A sha A.Juw arkar Kirti V.Anupa Nair,San jeev Kum ar Singh.Biorem ediation of multi-metal contam inated soil using biosurface tantanovel approach.Indian J.Microbio[J],2008,48:142-146.
    [108]Sui Ling WANG,Cather Ine N.Mulligan.Rhamnol ipid foam enhanced remediation of cadmium and nickel contaminated soil[J].Water,air,and Siol Pollution,2004,157:315-330.
    [109]张中文.茶皂素对土壤重金属污染淋洗修复的影响研究[D].山东农业大学,2009.
    [110]李光德,张中文,敬佩,等.茶皂素对潮土重金属污染的淋洗修复作用[J].农业工程学报.2009(10):231-235.
    [111]Hong K J, Tokunaga S, Kajiuchi T. Evaluation of remediation process with plant-derived Biosurfactant for recovery of heavy metals from contaminated soils[J].Chemosphere,2002,49: 379-387.
    [112]Hong K J, Kajiuchi T,Tokunaga S. Remediation of heavy metal contaminated soils with saponin [A].Proceedings of the 8th APCChE Congress,1999.849-852.
    [113]可欣,李培军,尹炜,等.利用皂素溶液淋洗修复重金属污染土壤[J].辽宁工程技术大学学报,2006,25(5):769-772
    [114]蒋煜峰,展惠英,张德懿,等.皂角苷络合洗脱污灌土壤中重金属的研究[J].环境科学学报,2006.26(8):1315-1319.
    [115]张一修,王济,张浩.贵州喀斯特矿区废弃地土壤环境问题的现状及治理对策[J].中国岩溶.2010(2):128-133.
    [116]陈家彪,沈冰,刘飞燕.西南地区矿山环境地质问题研究[J].矿产综合利用,2007.4:43-46.
    [117]李冰,张朝辉.贵州烂泥沟金矿区苔藓植物及其生态修复潜力分析[J].热带亚热带植物学报.2008,6(16):511-515.
    [118]李文银,王治国等.工矿区水土保持[M].北京:科学出版社,1996.
    [119]赵晓鸥,周不基.贵州省矿山废弃地研究[J].贵州地质.2002,19(2):112-117
    [120]苏光全,何书金等.矿区废弃土地资源适宜性评价[J].地理科学进展.1998(4):41-48.
    [121]郭青霞,吉谦等.安太堡露天煤矿复垦土地适宜性评价研究[J].山西农业大学学报(自然科学版).2002(1):82-86..
    [122]周廷刚,罗红霞等.基于GIS的岩溶煤矿区土地利用适宜性评价研究——以重庆市南桐矿区为例[J].中国岩溶.2007,26(2):149-154.
    [123]赵欣,刘昌华,王世东.贵州山地煤矿区待复垦土地适宜性评价初探[J].河南理工大学学报(自然科学版).2009(3):373-377
    [124]何书金,郭焕成,韦朝阳等.中国煤矿区的土地复垦[J].地理研究.1996.15(3):23-32
    [125]王谦,成水平.大型水生植物修复重金属污染水体研究进展[J].环境科学与技术,2010,33 (5):96-100.
    [126]严群,周娜娜.植物修复重金属污染土壤的修复进展[J].有色金属科学与工程,2012,3(5):60-65.
    [127]潘斌宏.清镇至贵阳公路第四合同段综合设计[D].长安大学,2012.
    [128]王劲松.贵阳市花溪喀斯特地区生态与可持续发展规划研究[D].天津大学,2009.
    [129]贵阳市花溪区人民政府.2010年花溪区政府工作报告[EB/OL](2013-11-20)http://www.docin.com/p-90722769.html.
    [130]国家特邀国土资源监察专员赴贵州调研组.贵州省矿产资源开发与矿山环境保护调研报告[J].中国国土资源经济.2008(1):4-7.
    [131]孙亚莉.贵州省矿产资源总体规划(第二轮)的环境影响评价[J].贵州地质,2008,25(3):212-217.
    [132]龚兴祥,方良伟,贵州省煤炭矿产地的现状、问题及对策[J].中国煤炭2011,37(3):33-38
    [133]贵州省统计局.贵州省2011年统计年鉴[M].中国统计出版社
    [134]刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学,2012(1):260-265.
    [135]钱宝,刘凌,肖潇.土壤有机质测定方法对比分析[J].河海大学学报(自然科学版).2011,39(1):34-38.
    [136]杨剑虹,王成林,代亨林.土壤农化分析与环境监测[M].北京:中国大地出版社,2008.
    [137]褚龙,贺斌.土壤阳离子交换量的测定方法[J].黑龙江环境通报.2009,33(1):81-83.
    [138]李树志.矸石农业复垦的土壤特性及剖面结构分析[J].煤矿环境保护.1996,10(4):25-27.
    [139]卓文珊,唐建锋,管东生.广州市城区土壤重金属空间分布特征及其污染评价[J].中山大学学报(自然科学版)2007,48(4):48-51.
    [140]刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报.2004(2):323-329.
    [141]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报.2002,13(11):1471-1477.
    [142]蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学,1996,16(6):62-66.
    [143]Wong J C,Wong M H. Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation[J]. Environmental Geochemistry and Health,1998,20(8):149-155.
    [144]Zipper C,BalfourW,Roth R. Domestic water supply impacts by underground coal mining in Virginia,USA[J]. Environmental Geology,1997(29):84-93.
    [145]L H. An ecological risk index for aquatic pollution control:a sedimentolog-ical approach[J]. Water Research,1980,14(8).
    [146]范英宏,陆兆华,程建龙等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003(10):2144-2152.
    [147]曹斌,何松洁,夏建新.重金属污染现状分析及其对策研究[J].中央民族大学学报(自然科学版).2009(1):29-33.
    [148]童方平,徐艳平,龙应忠,等.冷水江锑矿区重金属污染林地土壤环境质量评价[J].中国农学通报.2008,24(12):179-183.
    [149]李军,张崇玉,刘文拨,等.贵阳市花溪区废弃煤矿周边土壤中重金属含量分析[J].贵州农业科学.2010,38(4):96-99.
    [150]朱志军,聂逢君,胡青华.江西省德兴矿区土壤重金属污染的综合评价分析[J].东华理工学院学报,2007,30(4):332-336.
    [151]国家安监总局.重金属污染综合防治“十二五”规划[EB/OL](2011-02-22)http://finance.sina.com.cn/roll/20110222/11019413317.shtml.
    [152]曹心德,魏晓欣,代革联,等.土壤重金属复合污染及其化学钝化修复技术研究进展[J].环境工程学报,2011(7):1441-1453.
    [153]吴志强,顾尚义,李海英.城市污泥用于铅锌矿区重金属污染修复的试验研究[J].安全与环境工程,2012,19(4):49-53.
    [154]邓敬颂,李肖玉,王佛娇,等.测定土壤中金属元素不同消解方法的比较[J].化学分析计量.2009(1):79-80.
    [155]夏家淇,蔡道基,夏增禄,等.GB15618-1995.中华人民共和国土壤环境质量标准.国家环境保护局.1995.7.13:1-3.
    [156]夏增禄.土壤元素背景值及其研究方法[M].北京:气象出版社,1987.
    [157]宁晓波,项文化,方晰,等.贵阳花溪区石灰土林地土壤重金属含量特征及其污染评价[J].生态学报.2009(4):2169-2177.
    [158]王宏信,徐卫红,刘吉振,等,土壤中锌镉复合污染及其植物效应研究进展[J].微量元素与健康研究,2005,22(6).50-53.
    [159]丁琮,陈志良,李核,等.长株潭地区农业土壤重金属全量与有效态含量的相关分析[J].生态环境学报.2012,21(12):2002-2006.
    [160]章杰,文勇立,等.种养结合循环利用模式下土壤重金属全量与有效态含量的相关分析[J].西南民族大学学报(自然科学版).2010,36(6):970-974.
    [161]陈玉娟,温琰茂,柴世伟.珠江三角洲农业土壤重金属含量特征研究[J].环境科学研究.2005,18(3):75-77,87.
    [162]Da luntian, Wen Huaxiang, Wen Deyan, et al. Biological cycles of mineral elements in a young mixed stand in abandoned mining soils[J]. Journal of Integrative Plant Biology,2007, 49(9):1284-1293.
    [163]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报.2002(6):757-762.
    [164]赵英淑.拿什么拯救重金属污染土壤[N].科技日报.2009.12.04.
    [165]任春辉,卢新卫,李晓雪,等.宝鸡长青镇工业园区周围灰尘重金属污染特征及健康风险[J].地球与环境,2012,40(3):367-374.
    [166]褚磊,于小丽,李影,等.矿业废弃地中耐重金属蕨类植物的研究进展[J].安徽师范大学学报(自然科学版),2007,30(5):588-592.
    [167]王洪宁.宁国每年1200万吨粮食遭重金属污染,直接损失超两百亿[EB/OL](2013-01-29)http://business.sohu.com/20130129/n364903146.shtml
    [168]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报.2005(3):596-605.
    [169]陆引罡,黄建国,滕应,等.重金属污染黄壤生态修复中的微生态效应[J].水土保持学报.2004(5):19-22.
    [170]廖晓勇,陈同斌,肖细元,等.污染水稻田中土壤含砷量的空间变异特征.地理研究[J].2003,22(5):635-643.
    [171]丁芃.陕西省凤翔县长青镇“血铅超标”事件调查[EB/OL](2009-08-14)http://business.sohu.com/20090814/n265951776.shtml
    [172]Newman,M.C,Unger,M.A.Fundamentals of Mcotoxicology,Second Edition[M]. America: Lewis Publishers,2003.
    [173]邢丹,刘鸿雁.铅锌矿区重金属耐性植物与超富集植物筛选研究进展[J].安徽农业科学.2009(7):3208-3209.
    [174]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [175]李榜江,王龙昌,龙明忠,等.极端酸性条件下蜈蚣草对重金属污染环境的修复效应[J].水土保持学报,2013,27(5):183-187
    [176]潘志明,邓天龙.砷污染土壤的蜈蚣草修复研究进展[J].土壤.2007,39(3):341-346.
    [177]刘晓双,亦如瀚,吴锦标,等.硫酸厂废水污染区土壤和植物中重金属分布特征的研究——以云浮市某硫酸厂为例[J].安徽农业科学,2009,37(29):14319-14320
    [178]雷梅,岳庆玲,陈同斌,等.湖南柿竹园矿区土壤重金属含量及植物吸收特征[J].生态学报,2005(5):1146-1151.
    [179]Gu J G, Zhou Q X, Wang X. Reused path of heavy metal pollution in soils and its research advance[J]. Basic Sci Eng,2003,11:143-151
    [180]Song Y F, Wilke, BM, et al. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere,2006,65:1859-1868
    [181]Wang Q, Dong Y, Cui Y,et al. Instances of soil and crop heavy metal contamination in China[J]. Soil Sediment Contam,2001.10:497-510.
    [182]黄承建,赵思毅,王龙吕等.干旱胁迫对杂交苎麻脯氨酸积累、膜脂过氧化及抗氧化酶活性的影响[J].中国麻业科学.2013(2):57-62.
    [183]许英,代剑平,揭雨成,等.镉胁迫下苎麻的生理生化变化与耐镉性的关系[J].中国麻业科学.2006,28(6):301-305.
    [184]代剑平,揭雨成,冷鹃,等.镉污染环境中镉在苎麻植株各部分分布规律的研究[J].中国麻业.2003,25(6):279-282.
    [185]张宪政.植物叶绿素含量测定—丙酮乙醇混合法[J].辽宁农业科学,1986,3:26-28.
    [186]黄承建,赵思毅,王龙吕,等.干旱胁迫对苎麻光合特性和产量的影响[J].中国麻业科学.2012,34(6):273-277.
    [187]Baker A J M,Proctor J.The influence of cadmium,copper,lead and zinc on the distribution and evolution of metallophytes in the British Isles[J].Plant System Evolution.1990,173:91-108
    [188]Baker A J M,Brooks R R,Pease A J,et al.Studies on copper and cobalt tolerance in three closey related taxa within the genus Silence L.(Caryophyllaceae) from Zaire[J].Plant and Soil.1983,73:377-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700