用户名: 密码: 验证码:
几种酚类化合物在黄河水体沉积物上的吸附行为的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物是水体中污染物的源和汇,只有比较深入地了解化学污染物在沉积物-水界面间的吸附等各种传质作用,才能准确地把握其在环境中的迁移、转化和归宿,有效地控制其对环境的污染。本文根据包头市过境黄河水污染严重的现实,选取对硝基苯酚等五种环境中常见的酚类化合物,对它们在黄河水体沉积物上的吸附行为进行了实验研究,初步探讨了酚类化合物在黄河沉积物-水体系中的迁移规律,以期为水体中有机化合物污染的防治提供合理的理论依据,同时为有机污染物在水-沉积物间的迁移规律研究积累基础资料。本研究获得如下的初步成果:
     1.给出五种酚类化合物在黄河水体沉积物中的吸附速率曲线和吸附等温式。实验表明,五种酚类化合物的吸附都包括一个快速阶段和一个慢速阶段;Freundlish,Langmuir,BET等温式均能拟合邻硝基苯酚等五种酚类化合物的吸附行为。
     2.五种酚类化合物在黄河水体沉积物上的吸附受体系pH值和离子强度影响较大,吸附量随pH值的减小而增大,对硝基苯酚和邻硝基苯酚在沉积物上的吸附量随着体系离子强度的增加而增加,体系pH值较高时,离子强度对2,4-二氯苯酚的吸附影响比较明显。
     3.沉积物的有机质含量是影响酚类化合物吸附量大小的一个重要因素,即溶解分配过程在黄河水体沉积物吸附酚类化合物中起重要作用。
     4.水环境中共存的表面活性剂SDBS对邻硝基苯酚等酚类化合物在沉积物上的吸附有比较明显的影响。SDBS在所测浓度条件下(小于CMC),促进了酚类化合物在沉积物上的吸附。
     5.水-沉积物体系中,当两种以上的酚类化合物同时存在时,可以产生竞争吸附,竞争吸附能力由该种化合物的吸附能力和吸附速率大小决定,吸附能力和吸附速率大的酚类化合物在水体沉积物中具有较大的竞争吸附能力。
Sediment is the source and sink of pollutants in water. It is important to understand deeply different mass transfer process of chemical pollutants between sediment and water to precisely grasp their transport, transformation, and fate in the environment and control their pollution to the environment effectively. This paper was established in the fact that Baotou section of Yellow River is polluted seriously. The adsorption of five kinds of phenolic compounds on sediment of Yellow River was examined in this study. The transportation rules of phenolic compounds in sediment-water system of Yellow River were researched. As a result, some of the transportation rules were put forword, which may be given some reasonable evidence for forecast, prevention and control of organic compounds pollution in Baotou section of Yellow River, and the datum will be accumulated for the study of organic pollutants transportion in sediment-water system. The primary fruits that were found through the experimental datum are:
    1. The adsorption rate curves and istherms of five kinds of phenolic compounds were given in this paper. The adsorption of these phenolic compounds includes the speediness phase and the slow phase. Freundlish isotherm,Langmuir isotherm and BET isotherm were suggested as the appropriate types for five kinds of phenolic compounds.
    2. The influence of some factors such as pH value and ionic strength on the adsorption of these phenolic compounds is notable. Lower value of pH and higher ionic strength would increase the sorption of phenolic compounds.
    3. The content of organic matter of sediment is a important factor influencing the sorption of phenolic compounds. The partition plays a important role in the process of sorption of phenolic compounds into sediment of Yellow River.
    4. The effect of surfactant SDBS on sorption of phenolic compounds(o-nitrophenol, 2,4-dinitrophenol ,2,4-dichlorophenol and pentachlorophenol) in sediment of Yellow River is notable.The sediment-water partition coefficients K of phenolic compounds increased when the initial concentrations below the surfactant CMCs for SDBS.
    5. When there are more than two kinds of phenolic compounds in water-sediment system, competition adsorption would occur between them. The capacity of competition adsorption is determined by the sorption capacity and rate.
引文
1.阎海,叶常明,雷志芳.酚类化合物抑制斜生藻生长的毒性效应.环境化学,1998,(2):127~130.
    2.金相灿.有机污染化学.清华大学出版社,北京,1990:250~262.
    3.汤鸿霄.环境科学中的化学问题—环境水质学中的几个化学前沿问题,化学进展,2000,12(4):415~422.
    4. Jens M Skei. A review of assessment and remediation strategies for hot spot sediments. Hydrobiologia, 1992,235/236:629~638.
    5. Bengt Bostrom, Jens M A, Siegfried F et al. Exchange of phosphorus across the sediments-water interface. Hydrobiologia, 1988,170:229~244.
    6. P Bonanni, R Caprioli, E Ghiara et al. Sediment and interstitial water chemistry of Orbetello lagoon (Grosseto,Italy); nutrient diffusion across the water-sediment interface. Hydrobiologia, 1992,235/236:553~568.
    7.陈静生,王飞越.关于水体沉积物质量基准问题.环境化学,1992,11(3):60~70.
    8. J Webster, I Ridgway. The application of the Equilibrium Partitioning Approach for Establishing Sediment Quality Criteria at Two UK Sea Disposal and Outfall Site. Marine Pollution bulletin, 1994,28(11):653~661.
    9. Shellingberg,K Leuenberg. Sorption of Chlorinated Phenols by Natural Sediments and Aquifer Materials. Environ. Sci. Technol., 1984,18:652~657.
    10.叶常明.水环境数学模型研究进展.环境科学进展,1993,1(1):74~81.
    11. Adamson A W. Physical Chemistry of Surfaces. 3 rd Edition. New York: Wiley,1976.698.
    12. Weber W J Jr. Physicochemical Processes for Water Quality Control. New York: Wiley-Inerscience, 1972.640.
    13. Chiou C T, Freed V H. Partion coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol., 1977,(5):475~478.
    14. Bailey G W, White J L. Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Rev., 1970, 32:29~92.
    15. Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollution on nature sediments. Water Res., 1979,13:241~248.
    16. Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds. Science, 1979,206(16):831~832
    17. Means J C, Wood S G, Hassett J J et al. Sorption of polynuclear armatic hydrocarbons by sediments and soil. Environ. Sci. Technol., 1980,14(12): 1524~1528.
    18. Mackey D, Bobra A.Relationships between aqueous solubility and octanol-water coefficients. Chemosphere,1980,9:701~711.
    19. Chiou C T, Schmedding D W, Means M. Partition of organic compounds in octanol-water systems. Environ. Sci. Technol., 1982,16(1):4~10.
    20. Miller M M, Waslk S P. Relationships between octanol-water partition of partition coefficient and aqurous solubility. Environ. Sci. Technol., 1985,19(6):522~529.
    21. Chin Y P, Weber W J Jr. ,Voice T C. Determination of partition coefficient and aqurous solubility by reverse
    
    phase chromatography. Ⅱ Evaluation of partitioning and solubility models. Water Res.,1979,20(11):1443~1450.
    22. Briggs G G. A simple relationship between soil sorption of organic chemicals and their octanol water partition coefficients. Proceeding of the 7 th British Insecticide and Fungicide Conference, 1973,11:475~478.
    23. Schewarzenbach R P, Westall J. Transport of nonpolar organic compounds from surface water to groundwater, laboratory sorption studies. Environ. Sci. Technol., 1981,15:1360~1367.
    24. Fredeen F J H, Amason A P, Berek B. Adsorption of DDT on suspended solids in river water and its role in black-fly control. Nature, 1953,171:700~701.
    25. Leland H V, Bruce W N, Shimp N F. Chlorinated hydrocarbon insecticides in sediments of southern Lake Michigan. Environ. Sci. Technol., 1973,7:833~838.
    26. Choi W W, Chen K Y. Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ. Sci. Technol., 1976,10(8):782~786.
    27. Young J L, Spycher G. Water-dispersible soil organic-mineral particles: Ⅰ. Carbon and nitrogen distribution. Soil .Sci. Soc. Am. Proc., 1979,43:324~328.
    28. Means J C, Wijayaratne R. Role of natural colloids in the transports of hydrophobic pollutants. Science, 1982,215(19):968~970.
    29. Weber W J Jr., Voice T C. Sorption of hydrophobic compounds by sediments,soil and suspended soils-Ⅱ sorbent evaluation studies. Water Res., 1983,17(10): 1443~1452.
    30. Isaacson P J, Frink C R. Nonreversible sorption of phennolic compounds by sediment factions: the role of sediment organic matter. Environ. Sci. Technol., 1972,6:538-543.Technol., 1976,10(8):782~786.
    31. Lotse E G, Graetz D A. Lindane adsorption by lake sediments. Environ. Sci. Technol.,1968,2:353~357.
    32. Richardson E M, Epstein E. Retention of three insecticides on different size soil particles suspended in water. Soil.Sci. Soc. Am. Proc., 1971,35:884~887.
    33. Boucher F R, Lee G F. Adsorption of lindane and dieldrin pesticides on unconsolidated aquifer sands. Environ. Sci. Technol., 1972,6:538~543.
    34. O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient. Water Res., 1980,14:1517~1532.
    35. Carter C W, Suffer I H. Binding of DDT to dissolved humic materials. Environ. Sci. Technol., 1982,16(11):735~740.
    36. Voice T C, Rice C P, Weber W J Jr. Effect of solid concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ. Sci. Technol., 1983,17:513~518.
    37. Gshwend P M, Wu S C. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ. Sci. Technol., 1985,19(1):90~96.
    38. Lambert S M. Functional relationship between sorption in soil and chemical structure. J. Agric. Food chem.., 1967,15:572~576.
    39. O'Connor G A, Anderson J U. Soil factors affecting the adsorption of 2,4,5-T. Soil Sci. Amer. Proc., 1974,38:433~436.
    40. Mingelgrin U, Gerstl Z. Reevaluation of partition as a mechanism of nonionic chemical adsorption in soils.
    
    J.Environ.Qual.,198312(1):1~11.
    41. Garbarini D R, Lion L W. Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis. Environ. Sci. Technol., 1986,20(12): 1263~1269.
    42. Chiou C T, Malcolm R M. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol., 1986,20(5):502~508.
    43. Gauthier T D, Seitz W R, Grant C L. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol.,1987,21(3):234~252.
    44. Weber W J Jr., Huang W. A distributed reactivity model for sorption by soil and sediments. 4. Intraparticle heterogeneity and phased-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol., 1996,26:1956~1962.
    45. Xing B, Pignatello JJ, Gigiotti B. Competitive sorption between atrazine and other organic compound in soil and model sorbents. Environ. Sci. Technol., 1996,30:2432~2440.
    46. Weber W J Jr., McGinley P M, Katz L E. A distributed reactivity model for sorption by soil and ediments. I.Conceptual basis and equilbrium assessments. Environ. Sci. Technol., 1992,26:1956~1962.
    47. LeBoeuf E J, Weber W J Jr. A distributed reactivity model for sorption by soil and sediment.8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model. Environ. Sci. Technol., 1997,31: 1697~1702
    48. Xing B, Pignatelio JJ. Dual-mode sorption of low polarity compounds in glassy poly (vinyl chloride ) and soil organic matter. Environ. Sci. Technol.,1997,31:792~799.
    49.许士奋,蒋新,冯建舫等.气相色谱法测定长江水体悬浮物和沉积物中有机氯农药的残留量.环境科学学报,2000,20(4):484~498.
    50.蒋新,许士奋,Martens D,王连生.长江南京段水、悬浮物及沉积物中多氯有毒有机污染物.中国环境科学,2000,20(3):193~197.
    51.储少岗,杨春,徐晓白等.典型污染地区底泥和土壤中多氯联苯的情况调查.中国环境科学,1995,15(3):199~203.
    52.李洪,付宇众,周传光等.大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯分布特征.海洋环境科学,1998,17(2):73~76.
    53.刘季昂,王文华,王子健.第二松花江水体沉积物中难降解污染物的种类和含量.中国环境科学,1998,18(6):518~520.
    54.康跃惠,麦碧娴,盛国英等.珠江三角洲河口及邻近海区沉积物中含氯有机污染物的分布特征.中国环境科学,2000,20(3):245~249.
    55.康跃惠,盛国英,傅家谟等.珠江澳门河口沉积物柱状样中有机氯农药的垂直分布特征.环境科学,2001,22(1):81~85.
    56.王树功,谢镜明,吴群河等.小东江底泥中挥发酚的垂直分布研究.环境科学研究,2001,14(5):17~19
    57.马梅,王子健.官厅水库和永定河沉积物中多氯联苯和有机氯农药的污染.环境化学,2001,20(3):238~243.
    58.王子健,王毅,马梅.淮河信阳和淮南段沉积物中PCBs的生态风险评估.中国环境科学,2001,21(3):262~265.
    59.赵元慧,王连生,丁蕴铮等.有机物在沉积物上吸附与解吸动力学常数的计算与测定.环境化学,1993,12(2):155~159.
    60.全燮,薛大明,赵雅芝等.近海沉积物组分对有机物的吸附与吸附机理探讨.中国环境科学,1996,16(2):80~86.
    
    
    61.全燮,薛大明,赵雅芝等.近海沉积物二组分吸附模式与有机物的吸附.中国环境科学,1995,35(5):644~648.
    62.全燮,薛大明,赵雅芝等.沉积物化学浸取与毒性有机物多组分吸附模式.环境科学学报,1996,16(2):155~161.
    63.全燮,薛大明,赵雅芝等.盐度和压力对沉积物逐级分离样品吸附毒性有机物的影响.环境科学,1996,17(1):5~9.
    64.薛大明,全燮,赵雅芝等.沉积物逐级分离与硝基苯的吸附.环境化学,1994,13(2):107~111.
    65.王郁等.黄浦江底泥对多环芳烃吸附机理的研究.环境化学,1997,16(1).
    66.王兆同,王郁,胥峥等.黄浦江底泥对多环芳烃(菲)的吸附过程模拟.华东理工大学学报,1999,25(2):156~159.
    67.李咏梅,王郁,林逢凯等.多环芳烃在水中的自净机理研究—沉积物对多环芳烃的吸附过程模拟.中国环境科学,1997,17(3):205~211.
    68.刘振儒,赵春禄,李桂平等.氯代芳烃在黄河底泥中吸附-絮凝-沉降规律及机理.中国环境科学,1998,18(4):360~363.
    69.陈华林,陈英旭.沉积物对菲和五氯酚的吸附性能.环境化学,2003,22(2):159~165.
    70.李桂芝,刘永明.黄河水体沉积物对敌百虫和甲拌磷的吸附.环境化学,2001,20(3):244~248.
    71.李桂芝,刘永明.久效磷在黄河水体沉积物上的吸附特征及机理.环境科学与技术,2001(2):23~25.
    72.李桂芝,刘永明,屈社香.黄河水体沉积物对水胺硫磷和辛硫磷的吸附.环境科学与技术,2003,26(1):12~13.
    73.赵学坤,杨桂朋,高先池.久效磷在海洋沉积物上的吸附行为.环境化学,2002,21(5):443~447.
    74.刘永明,李桂芝.灭多威在黄河水体沉积物中的吸附特性研究.烟台大学学报(自然科学与工程版),2001,14(1):64~68.
    75.徐建,杨欣,戴树桂等.涕灭威在水体悬浮颗粒物上的吸附行为.环境科学,2003,24(2):87~91.
    76.叶常明,李铁,雷志芳等.离子化有机污染物在沉积物和水相间的平衡分配计算.环境化学,1998,17(3):205~210.
    77.刘兴明,刘瑞霞,汤鸿霄等.阳离子桃红F G在清河底泥上的吸附行为研究.环境科学学报,2001,21(增刊):97~100.
    78.刘兴明,刘瑞霞,汤鸿霄等.不同染料化合物在河流底泥上的吸附规律.环境科学,2002,23(1):45~49.
    79.朱利中,杨坤.对硝基苯酚在沉积物上的吸附特性.环境化学,2001,20(5):449~453。
    80.朱利中,杨坤,许高金.对硝基苯酚在沉积物上的吸附特征—吸附等温线和吸附热力学.环境科学学报,2001,21(6):674~678.
    81.朱利中,徐霞,胡松等.西湖底泥对水中苯胺、苯酚的吸附性能及机理.环境科学,2000,21(2):28~31.
    82.杨坤,朱利中,许高金等.分配作用对沉积物吸附对硝基苯酚的贡献.中国环境科学,2001,21(4):297~300.
    83.李改枝,刘颖,李景峰等.邻硝基苯酚在黄河沉积物和水相间的平衡分配.宁夏大学学报(自然科学版),2001,22(4):437~439.
    84.李改枝,红霞,刘颖等.邻硝基苯酚在黄河水体的吸附作用研究.首都师范大学学报(自然科学版),2001,22(4):38~40.
    85.朱广伟,陈英旭.沉积物中有机质的环境行为研究进展.湖泊科学,2001,13(3):272~279.
    86. Chiou C T, et al. Partion characteristics of polycyclic aromatic hydrocarbons o soils and sediments. Environ. Sci. Technol., 1998,32:264-269.
    87. Thomas C Voice, et al. Sorption of hydrophobic compounds by sediments, soils and suspended solids-Ⅰ. Water Res, 1983,17(10): 1433-441.
    88.中国土壤学会土壤化学分析专业委员会,土壤常规分析方法.科学出版社,北京,1974.
    89.赵丽杰.高效液相色谱法测定水中微量酚.环境科学与技术,1997,(4):35~38.
    
    
    90.吴宪龙,朱爱丽.高效液相色谱法测定环境水中4,4-二氨基联苯、4-硝基酚和苯酚.色谱,1998,16(6):536~538.
    91.雷志芳,杨克武,莫汉宏等.水体颗粒物以及土壤对有机物吸附常数的测定.环境化学,1994,13(3):225~228.
    92. Von Oepen B, Kordei W, Klein W. Sorption of nonpolor compounds to soil: processes, measurements and experience with the applicability of the modified OECE-Guidline 106. Chemosphere, 1991,22:285~304.
    93.雷志芳,叶常明.苯胺在水体悬浮颗粒物上吸附特征.环境科学,1998,19:70~72
    94.杨燕红,傅家谟,盛国英.水中多氯代芳香化合物(PCAs)在自然沉积物及活性污泥中的吸附特征.中国环境科学,1997,17(3):203~207.
    95.司友斌,周静,王兴祥等.除草剂苄嘧磺隆在土壤中的吸附.环境科学,2003,24(3):122~125.
    96.迟杰,黄国兰,熊振湖.PH对五氯酚在水体悬浮颗粒物上吸附行为的影响.天津城市建设学院学报,2003,9(1):1~4.
    97. Kile Daniel E, et al. Water solubility enhancements of DDT trichlorobenzene by some surfactants below and above the critical micelle concentration[J]. Environ Sci Technol, 1998,23:832-838.
    98.陈宝梁.阳离子表面活性剂增强固定土壤中极性有机污染物.第一届全国环境化学学术研讨会论文集,杭州,2002.
    99.李晖,邹惠仙,许欧泳.土壤和沉积物的有机质组分对水中非离子有机物吸着的影响.环境化学,1995,14(2):124~127.
    100.周碧梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究.环境科学学报,2003,23(2):216~223.
    101.周文军,姜梅,展惠英.对硝基苯胺在表面活性剂改性黄土中的吸附行为.西北师范大学学报(自然科学版),2002,38(2):54~57.
    102.戴树桂,董亮,王臻.表面活性剂在士壤颗粒物上的吸附.中国环境科学,1999,19(5):392~396.
    103. Giles C H, Macewan T H, Nakhwa S N,et al. Studies in adsorption, Part Ⅳ.A system of solution adsorption isotherms and its sue in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc., 1990,3:3973~3993.
    104.杨凤林,武国华,全燮等.大连近海沉积物对γ-666的吸附研究.海洋环境科学,1996,15,(4):23~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700