用户名: 密码: 验证码:
亚油酸在分化状态不同的两株结肠癌细胞中的生物活性差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高以及生活方式的改变,肿瘤的发病率在全球范围内都呈现出上升的趋势,特别是随着人们膳食结构的改变和工作节奏的加快,消化道肿瘤的发病率不断上升。有研究表明改变膳食中脂肪酸的构成,增加多不饱和脂肪酸,可以起到降低肿瘤发病的几率。多不饱和脂肪酸的摄入在对肿瘤的治疗和预后防复发方面也有积极的作用。本文以亚油酸为研究对象,分析了多不饱和脂肪酸在肿瘤细胞及正常细胞中的代谢方式,试图明确其选择性损伤细胞的机理,并探讨其在不同分化状态的细胞中代谢的差异。
     亚油酸进入细胞后,对细胞生理活性的调节主要存在以下几条途径:1)以膜磷脂的形式贮存于细胞膜中,调节细胞膜的活性;2)作为能量供应物质,经线粒体氧化磷酸化,代谢生成ATP,参与细胞能量代谢;3)可在脂肪酸去饱和酶、延长酶等的作用下代谢生成长链n-6多不饱和脂肪酸,如DGLA,AA等;4)经COX途径或LOX途径相关酶的作用,转化生成不同的信号分子,调节细胞的生存及相关代谢。这几条途径在细胞内共存,并相互影响。本论文以两株不同分化状态的结肠癌细胞及一株正常细胞株为研究对象,重点探讨了不同方式亚油酸处理在不同分化状态细胞株中的毒性及代谢差异,以期为亚油酸在肿瘤防治中的应用提供参考。
     本研究表明,亚油酸处理可以影响细胞脂肪酸组成,增加细胞不饱和脂肪酸的比例,从而增加细胞膜的流动性,并可能会通过影响细胞脂质筏的正常构象而引起细胞膜通透性的增加,可利用亚油酸的这一特性作为肿瘤治疗的辅助性药物。亚油酸处理可以影响细胞中脂肪酸去饱和酶和延长酶的表达/活性,细胞中长链脂肪酸的比例上升,尽管细胞中脂肪酸的氧化与延长并存,某些细胞中单不饱和脂肪酸的比例有所上升,但细胞中n-6不饱和脂肪酸的比例仍显著性上升,n-6/n-3的比值显著上升。正常处理组的各株细胞存活率与Δn-6/n-3之间呈反比关系,但预处理后的LoVo不再受细胞中n-6多不饱和脂肪酸比例上升所引起的细胞毒性的影响。我们推测这可能是由于不同细胞株对亚油酸诱导产生的细胞毒性的适应性之间存在差异,即不同膳食结构可能对肿瘤细胞亚油酸敏感性之间存在差异。
     亚油酸处理会影响细胞的自由基变化,从而引起细胞中过氧化现象的发生以及抗氧化能力的变化,但是不同细胞株间存在显著的差异,这些差异通过不同的通路引起细胞线粒体损伤及线粒体细胞色素C的释放,诱导细胞Caspase通路凋亡的发生。但是脂肪酸的处理方式和肿瘤的分化状态会影响细胞对亚油酸的敏感性,经亚油酸预处理后的LoVo细胞株可通过抑制Caspase-3活性抑制凋亡的发生。
     本研究通过对细胞能荷的分析发现亚油酸处理会影响细胞正常的能量代谢,可通过下调PPARδ的表达而下调脂肪酸的能量代谢。我们同时发现亚油酸会上调细胞中SREBP-2的表达,将细胞氧化的部分能量转化为高能化合物进行贮存。由于SREBP-2可补偿由脂肪酸引起的SREBP-1表达下调,可在一定程度上促进细胞的脂肪酸合成,这也许是细胞中长链脂肪酸比例增加的原因之一。故通过抑制PPARδ以及SREBP-2的表达调节细胞的能量代谢,可能为多不饱和脂肪酸在肿瘤辅助治疗方面的研究提供一定的思路。
     综上所述,亚油酸诱导细胞损伤的过程与细胞的线粒体损伤和细胞膜损伤均有一定的关系,同时也会在一定程度上影响细胞的正常能量代谢。肿瘤细胞的凋亡是一个复杂的网络调控系统,而亚油酸在肿瘤细胞中所表现出来的毒性也是多方面的。
It is reported that the incidence of cancer worldwild is increasing rapidly in recent years with the promotion of living condition and life style. The incidence of gastrointestinal cancer is rising with the change of diet pattern and lack of exercise. Researches had proved that changes in diet fatty acids composition, raising the ratio of polyunsaturated fatty acids would help in reducing the incidence of gastrointestinal tumors, especially the n-3 polyunsaturated fatty acids. Polyunsaturated fatty acids could also help in tumor cure and prevention of tumor recurrence. In the present work, we analyzed the metabolic pathway of linoleic acid in two colorectural tumor cell lines and a normal cell line HUVEC taken as control to illustrate the mechanisms of cell apoptosis induced by polyunsaturated fatty acids, and try to find if there were differences between different cell lines with different cell differentiation status.
     Linoleic acid could regulate cell physiological activity after taken in cell by the following four pathways:i) linoleic acid could be stored in cell membrane as phospholipid to modulate cell membrane activity; ii) linoleic acid could be oxidated in mitochondrial and providing ATP for cell energy metabolism; iii) linoleic acid could be transformed into DGLA or AA with the expression of fatty acids desaturases and enlongases; iv) linoleic acid could be transformed into signal molecules to regulate cell viability by COX pathway or LOX pathway. The four functions of linoleic acid existed in cell at the same time and interacted with each other. In the present research, we discussed the cell sensitivity of linoleic acid with different linoleic acid treatments and different cell differentiation status among two colorectual cancer cell lines, LoVo (undifferentiated) and Rko (semi-differentiatied), and one normal cell line HUVEC (human umbilical vein endothelial cell).
     Our research proved that linoleic acid could affect the cell fatty acids composition by raising the ratio of polyunsaturated fatty acids, especially the n-6 polyunsaturated fatty acids, which could induce the rise of cell membrane fluidity and finally increase the cell membrane permeability by possibly affecting the normal function of cell lipid rafts. Treatment with linoleic acid could affect the expression/activity of fatty acids desaturases and enlongases, so the ratio of long chain fatty acids to cell total fatty acids raised significantly, likewise the ratios of n-6 polyunsaturated fatty acids and n-6/n-3 in cell, while the oxidation of fatty acids was also progressed and the ratio of monounsaturated fatty acids raised in some treatments. Cell viability had inverse relation toΔn-6/n-3 in normal treated cells with all three cell lines, while LoVo could resist to linoleic acid toxin after pre-treatments. So the bioactivity differences of linoleic acid between cells may related to the differences of cell metabolism pathway, and different diet comsumption may lead to different sensitivity of cells to linoleic acid.
     Additional linoleic acid may affect the cell by initiating free radicals, as different cells have different ways to reduce the cell concentration of free radicals, both LoVo and Rko could accumulate MDA at a relative high level, Rko could also have a significant change in SOD activity, while HUVEC could tolerate a high concentration of linoleic acid. But high concentration could induce mitochondrial damage to all the three cell lines with cytochrome C release and activity of caspase pathway, while LoVo treated with pre-treatment and then high concentration of linoleic acid could survive by inhibiting the activity of caspase-3. So we concluded that the regulation of caspase signal way could affect the cell apoptosis induced by linoleic acid.
     By analysis of cell energy charge, we found that linoleic acid could affect the normal cell energy metabolism, and this might be caused by the down-regulation of PPARδwith reducing the metabolic of free fatty acid. Linoleic acid could up-regulate the expression of SREBP-2 as it could storage energy by producing high-energy compounds. The up-regulation of SREBP-2, which could compensate for the SREBP-1 down-regulation, could also help in fatty acids synthesis, which may cause the ratio rise of long chain fatty acids in cell. To block the activity of PPARδand SREBP-2 when the tumor cells exposed to PUFAs may reduce the cell viability by regulating the cell energy charge, this would be another way for exploring polyunsaturated fatty acids'function in inducing tumor cell apoptosis.
     In summary, linoleic acid could induce tumor cell mitochondrial impairment, cell membrane damage, and to some extent have influence to cell energy change. As the apoptosis of tumor cell is a complicated network, the activity of linoleic acid could also modulate the apoptosis in many ways.
引文
Abel S, De Kock M, Smuts CM, de Villiers C, Swanevelder S, Gelderblom WC. Dietary modulation of fatty acid profiles and oxidative status of rat hepatocyte nodules:effect of different n-6/n-3 fatty acid ratios. Lipids.2004:39 (10): 963-976.
    Aronson WJ, Glaspy JA, Reddy ST, et al. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology. 2001:58 (2):283-288.
    Badawi AF, El-Sohemy A, Stephen LL, Ghoshal AK, Archer MC. The effect of dietary n-3 and n-6 polyunsaturated fatty acids on the expression of cyclooxygenase 1 and 2 and levels of p21 ras in rat mammary glands. Carcinogenesis 1998:19 (5):905-910.
    Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care.2010:13 (5):569-573.
    Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med.2002:53: 409-435.
    Blagosklonny MV. Unwinding the loop of Bcl-2 phosphorylation. Leukemia.2001:15 (6):869-874.
    Bomken S, Fiser K, Heidenreich O, Vormoor J. Understanding the cancer stem cell. Br J Cancer.2010:103 (4):439-445.
    Booyens J, Maguire L, Katzeff IE. Dietary fats and cancer. Med Hypotheses.1985:17 (4):351-362.
    Calder PC, Grimble RE-Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr.2002:56 (suppl):S14-S19.
    Calder PC. Polyunsaturated fatty acids and inflammation. Biochem Soc Trans.2005: 33 (2):423-427.
    Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and-2 and HIF-lalpha induction pathway. Carcinogenesis.2004:25 (12):2303-2310.
    Carroll KK, Braden LM. Dietary fat and mammary carcinogenesis. Nutr Cancer.1984: 6 (4):254-259.
    Carroll KK. Dietary fat in relation to mammary carcinogenesis. Princess Takamatsu Symp.1985:16:255-263.
    Chajes V, Bougnoux P. Omega-6/omega-3 polyunsaturated fatty acid ratio and cancer. World Rev Nutr Diet.2003:92:133-151.
    Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, Hainque B, Riou JP, Laville M, Vidal H. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obes Res.2002: 10 (6):518-525.
    Chan PC, Ferguson KA, Dao TL. Effects of different dietary fats on mammary carcinogenesis. Cancer Res.1983:43 (3):1079-1083.
    Chinnaiyan AM, O'Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM.. Signal transduction by DR3, a death domain-containing receptor related to TNFR21 and CD95. Science.1996:274(5289):990-992.
    Cohen LA, Thompson DO, Maeura Y, Choi K, Blank ME, Rose DP. Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis. J Natl Cancer Inst. 1986:77 (1):33-42.
    Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Fatty Acid Analysis of Blood Serum, Seminal Plasma, and Spermatozoa of Normozoospermic vs. Asthenozoospermic Males. Lipids.1999:34 (8):793-799.
    Damelin M, Bestor TH. The decatenation checkpoint. Br J Cancer.2007,96 (2): 201-205.
    Das UN. Physiologic and Clinical Significance of Essential Fatty Acids. Wiley Encyclopedia of Chemical Biology.2007:1-12.
    De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr.2000:71 (1 Suppl):213S-223S.
    Deng YB, Lin YH, Wu XW. TRAIL induced apoptos is requires bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev.2002:16 (1):33-45.
    Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J.1999:18 (19):5242-5251.
    Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1:TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity.2000:12 (4):419-429.
    Dommels YE, Haring MM, Keestra NG. et al. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE (2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis.2003:24 (3):385-392.
    Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, and Muscat GE. The Peroxisome Proliferator-Activated Receptor (3/8 Agonist, GW501516, Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells. Mol. Endocrinol.2003:17 (12):2477-2493.
    Du C,Fang M,Li L,Wang X. Smac a mitochondrial protein that promotes cytochrome c-dependent Caspase activation by eliminating LAP inhibition. Cell:2000:102 (1):332-33.
    Edelman MJ, Watson D, Wang X, Morrison C, Kratzke RA, Jewell S, Hodgson L, Mauer AM, Gajra A, Masters GA, Bedor M, Vokes EE, Green MJ. Eicosanoid modulation in advanced lung cancer:cyclooxygenase-2 expression is a positive predictive factor for celecoxib+chemotherapy-Cancer and Leukemia Group B Trial 30203. J Clin Oncol.2008:26 (6):825-827.
    Enig MG, Munn RJ, Keeney M. Dietary fat and cancer trends-a critique. Fed Proc. 1978:37 (9):2215-2220.
    Escrich E, Moral R, Grau L, Costa I, Solanas M. Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res.2007:51 (10): 1279-1292.
    Fidler IJ. Angiogenesis and cancer metastasis.Cancer J.2000:6 Supp12:S134-141.
    Garattini S. Long-chain n-3 fatty acids in lipid rafts:implications for anti-inflammatory effects. J Cardiovasc Med.2007:Suppl 1:S30-S33.
    Girroir EE, Hollingshead HE, Billin AN, Willson TM, Robertson GP, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology.2008:243 (1-2):236-243.
    Griffin BA. How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study. Curr Opin Lipidol.2008:19(1):57-62.
    Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J.2009:23 (6): 1625-1637.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000:100 (1):57-70.
    Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blarney RW, Nicholson RI, Robertson JF, Sutherland RL. INK4a gene expression and methylation in primary breast cancer:overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin Cancer Res.2000:6 (7):2777-2787.
    Kane DJ, Sarafin TA, Auton S, Hahn H, Gralla FB, Valentine JC, Ord T, Bredesen DE. Bcl-2 inhibition of neural cell death:decreased generation of reactive oxygen species. Science.1993:262:1274-1276.
    Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC, Lorenzi MV. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB.Oncogene.2001:20 (55): 7965-7975.
    Kelavkar UP, Hutzley J, Dhir R, Kim P, Allen KG, McHugh K. Prostate tumor growth and recurrence can be modulated by the omega-6:omega-3 ratio in diet:athymic mouse xenograft model simulating radical prostatectomy. Neoplasia.2006:8 (2): 112-124.
    Khair-El-Din T, Sicher SC, Vazquez MA, Chung GW, Stallworth KA, Kitamura K, Miller RT, Lu CY. Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils. J Exp Med.1996:183 (3):1241-1246.
    Kim K, Takimoto R, Dicker DT, Chen Y, Gazitt Y, El-Deiry WS. Enhanced TRAIL sensitivity by p53 overexpression in human cancer but not normal cell lines. Int J Oncol.2001:18 (2):241-247.
    Kim KB, Choi YH, Kim IK, Chung CW, Kim BJ, Park YM, Jung YK. Potentiation of Fas-and TRAIL-mediated apoptosis by FN-gamma in A549 lung epithelial cells: enhancement of caspase-8 expression through IFN-response element. Cytokine. 2002:20 (6):283-288.
    Kim Y, Seol DW. TRAIL, a mighty apoptosis inducer. Mol Cells.2003:15 (3): 283-293.
    Kontogiannea M, Gupta A, Ntanios F, Graham T, Jones P, Meterissian S. omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. J Surg Res.2000:92 (2):201-205.
    Kuniyasu H. The Roles of Dietary PPARgamma Ligands for Metastasis in Colorectal Cancer. PPAR Res.2008:2008:529720.
    Lachal S, Ford J, Shulkes A, Baldwin GS. PPARalpha agonists stimulate progastrin production in human colorectal carcinoma cells. Regul Pept.2004:120 (1-3): 243-251.
    Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol.2001:2 (3):149-156.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer:a review of potential mechanisms. Am J Clin Nutr.2004:79 (6):935-945.
    Lee S, Jilani SM, Nikolova GV, Carpizo D, and Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol.2005:169 (4):681-691.
    Lee SW, Park Y, Yoo JK, Choi SY, Sung YC. Inhibition of TCR-induced CD8 T cell death by IL-12:regulation of Fas ligand and cellular FLIP expression and caspase activation by IL-12. J Immunol.2003:170 (5):2456-2460.
    Leong KG, Gao WQ. The Notch pathway in prostate development and cancer. Differentiation.2008:76(6):699-716.
    Li HL, Zhu H, Xu CJ, Yuan JY. Cleavage of BID, by caspase 8 mediates the mitochondria damage in the Fas pathway of apopt. Cell.2008:94 (4):491-501.
    MacLean CH, Newberry SJ, Mojica WA, Issa A, Khanna P, Lim YW, Morton SC, Suttorp M, Tu W, Hilton LG,Garland RH, Traina SB, Shekelle PG Effects of Omega-3 Fatty Acids on Cancer. Evidence Report/Technology Assessment No. 113.
    Martinous JC,Desagher S,Antonsson B. Cytochrome c release from mitochondria:all or not hing. Nat Cell Biol.2000:2 (3):412-43.
    Mbazima V, Da Costa Dias B, Omar A, Jovanovic K, Weiss SF. Interactions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin receptor. Front Biosci. 2010:15:1150-1163.
    Meterissian SH, Forse RA, Steele GD, Thomas P. Effect of membrane free fatty acid alterations on the adhesion of human colorectal carcinoma cells to liver macrophages and extracellular matrix proteins. Cancer Lett.1995:89 (2): 145-152.
    Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Griitter MG. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem.2002:277 (47):45162-45171.
    Miller LJ, Marx J. Apoptosis. Science.1998:281 (5381),1301.
    Muhlethaler-Mottet A, Flahaut M, Bourloud KB, Auderset K, Meier R, Joseph JM, Gross N. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro-to anti-apoptotic proteins ratio. BMC Cancer.2006:6:214.
    Mullauer L, Wohlfart S, Scheucher B. Apoptosis:Regulatory Genes and Disease. ENCYCLOPEDIA OF LIFE SCIENCES. Doi: 101.002/9780470015902.a0006044.
    Norberg E,Orrenius S,Zhivotovsky B. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun. 2010:396(1):95-100.
    Ohmori H, Sasahira T, Fujii K, Yi L, Shimomoto T, Kuniyasu H. Linoleic-acid-induced growth suppression induces quiescent cancer cell nests in nude mice. Pathobiology.2008:75 (4):226-232.
    O'Keefe SJ. Nutrition and colonic health:the critical role of the microbiota.Curr Opin Gastroenterol.2008:24 (1):51-58.
    Pan D. The hippo signaling pathway in development and cancer. Dev Cell.2010:19 (4):491-505.
    Pathways in cancer.http://www.genome.jp/kegg/kegg2.html
    Pilkington GJ, Parker K, Murray SA. Approaches to mitochondrially mediated cancer therapy. Semin. Cancer Biol.2008:18 (3):226-235.
    Polo MP, de Bravo MG.Effect of geraniol on fatty-acid and mevalonate metabolism in the human hepatoma cell line Hep G2. Biochem Cell Biol.2006:84 (1): 102-111.
    Pratt VC, Watanabe S, Bruera E,et al. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation. Br J Cancer. 2002:87(12):1370-1378.
    Ramesh G, Das UN. Effect of cis-unsaturated fatty acids on Meth-A ascitic tumour cells in vitro and in vivo. Cancer Lett.1998:123 (2):207-214.
    Reed JC. Cytochrome C:can't live with it-can't live without it. Cell.1997:97 (5): 559-562.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001:414 (6859):105-111.
    Robinson LE, Clandinin MT, Field CJ. R3230AC rat mammary tumor and dietary long-chain (n-3) fatty acids change immune cell composition and function during mitogen activation. J Nutr.2001:131 (7):2021-2027.
    Robinson LE, Clandinin MT, Field CJ. R3230AC rat mammary tumor and dietary long-chain (n-3) fatty acids change immune cell composition and function during mitogen activation. J Nutr.2001:131 (7):2021-2027.
    Rockville MD. Agency for Health care Research and Quality. February 2005
    Rogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah SM, Pardini RS. Docosahexaenoic acid alters epidermal growth factor receptor-related signaling by disrupting its lipid raft association. Carcinogenesis.2010:31 (9): 1523-1530.
    Samuelsson B. Arachidonic acid metabolism:role in inflammation. Z Rheumatol. 1991:50 Suppl 1:S3-S6.
    Schwartz SA, Hernandez A, Mark Evers B. The role of NF-kappaB/IkappaB proteins in cancer:implications for novel treatment strategies. Surg Oncol.1999:8 (3): 143-153.
    Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med.2008:233 (6): 674-688.
    Singh J, Hamid R, Reddy BS. Dietary fish oil inhibits the expression of farnesyl protein transferase and colon tumor development in rodents. Carcinogenesis 1998: 19 (6):985-989.
    Spandidos DA. Oncogenes and tumor suppressor genes as paradigms in oncogenesis. J BUON.2007:12 Suppl 1:S9-S12.
    Tabruyn SP, Griffioen AW. Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun.2007:355 (1):1-5.
    Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I. Expression of survivin is associated with malignant potential in epithelial ovarian carcinoma. Int J Mol Med.2002:10 (2):211-216.
    Terry PD, Terry JB, Rohan TE. Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate:recent epidemiological studies, biological mechanisms, and directions for future research. J Nutr.2004:134 (12 Suppl): 3412S-3420S.
    Tomar A, Schlaepfer DD. Focal adhesion kinase:switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol.2009:21 (5):676-683.
    Tsutsui S, Inoue H, Yasuda K, Suzuki K, Higashi H, Era S, Mori M. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology.2005:68 (4-6):398-404.
    VanHouten B,Woshner V,Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stres s. DNA Repair.2006:5 (2):145-152.
    Wachter T, Sprick M, Hausmann D, Kerstan A, McPherson K, Stassi G, Br?cker EB, Walczak H, Leverkus M. cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem.2004:279 (51): 52824-52834.
    Watanabe T,Wu TT,Catalano PJ,Ueki T,Satriano R,Haller DG,Benson AB,Hamilton SR. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med.2001:344 (4):1196-1206.
    WHO. Cancer--Fact sheet No.297. Feb,2009.
    Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene.1999:18 (55):7908-7916.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis.1998:19 (5):711-721.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis.1998:19 (5):711-721.
    Witz IP. Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res.2008:68 (1):9-13.
    Wolff TA, Wilson JE. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility. Am Fam Physician.2006:74 (10):1759-1760.
    Wu M, Ding HF, Fisher DE. Apoptosis:Molecular Mechanisms. ENCYCLOPEDIA OF LIFE SCIENCES.
    Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell.1999:3 (3):397-403.
    Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, Iwase H. Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res.2004:6 (1): 24-30.
    Zand H, Rhimipour A, Bakhshayesh M, Shafiee M, Nour Mohammadi I, Salimi S. Involvement of PPAR-gamma and p53 in DHA-induced apoptosis in Reh cells.1: Mol Cell Biochem.2007:304 (1-2):71-77.
    柴克霞.纤维黏连蛋白生物学特性与造血调控.军医进修学院学报.2006:27(5):392-393.
    陈浩慧,郑海燕.癌细胞“转染现象”探讨与分子病理学分析.中国医药指南.2009:7(2):1-4.
    从竹.癌症成我公民第一死因,天津肿瘤发病率高于全国.城市快报.201年9月1日.
    胡硕,胡成平.线粒体与细胞凋亡的研究进展.国际呼吸杂志.2006:26(6):363-367.
    黄海华.药学细胞生物学.中国医药科技出版社.2006.北京.426-433.
    雷义,金文达,陈锋.活性氧与线粒体损伤.南华大学学报医学版.2006:34(5):648-649.
    李平,钟雪云.肿瘤干细胞与胶质瘤细胞起源.理生理杂志.2009:25(8):1652-1655.
    刘传道,边立忠,王春花.n-3多不饱和脂肪酸在抗肿瘤方面的研究进展.医学信息.2010:23(9):3276-3278.
    刘友良,唐瞻贵.层黏连蛋白及其受体与头颈部肿瘤浸润转移的关系.现代肿瘤医学.2010:18(1):168-170.
    陆茜,李宁丽.Fas介导细胞凋亡及相关免疫调节作用.细胞生物学杂志.2006:28:543-546.
    骆文静,陈景元,王文亮.维生素D及其类似物抗肿瘤作用机制.国外医学肿瘤学分册.2004:31(6):425-428.
    马健翎.细胞生物学.西北农林科技大学出版社.2006:226-228.
    王学敏,缪明永,焦炳华.线粒体在控制细胞死亡中的作用.生命的化学.2001:21(5):425-426.
    肖敬平.细胞凋亡与癌变的相生相克——肿瘤的发育生物学根源.生命科学研究.2009.13(6):461-476.
    徐建明.结直肠癌的辅助和新辅助治疗.临床肿瘤学杂志.2007:12(8):561-565.
    张涛,张建新.中国癌症死亡人数占全球1/4发病呈年轻化趋势.瞭望.2010年06月21日.
    赵晓芳,孟程程,李招发.层粘连蛋白与疾病相关性的研究进展.生物技术通讯.2010.21(1):116-120.
    郑刚,魏玲,左文述.抑癌基因与乳腺癌的研究进展.中华肿瘤防治杂志.2007:14(17):1350-1354.
    周银燕,郦萍,吴雪昌.TRAIL与肿瘤治疗.科技通报.2009:25(3):288-294.
    朱玉山,陈佺.线粒体与细胞凋亡调控.生命科学.2008:20(4):506-513.
    Albright CD, Klem E, Shah AA, Gallagher P. Breast cancer cell-targeted oxidative stress:enhancement of cancer cell uptake of conjugated linoleic acid, activation of p53, and inhibition of proliferation. Exp Mol Pathol.2005:79 (2):118-125.
    Calder PC. Polyunsaturated fatty acids and inflammation. Biochem Soc Trans.2005: 33 (2):423-427.
    Davidson LA, Nguyen DV, Hokanson RM, Callaway ES, Isett RB, Turner ND, Dougherty ER, Wang N, Lupton JR, Carroll RJ, Chapkin RS. Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Res.2004:64 (18):6797-6804.
    Escrich E, Moral R, Grau L, Costa I, Solanas M. Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res.2007:51 (10): 1279-1292.
    Feldt-Rasmussen U, Rasmussen AK. Autoimmunity in differentiated thyroid cancer: significance and related clinical problems. Hormones (Athens).2010:9 (2): 109-117.
    Hofmanova J, Vaculova A, Kozubik A. Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. Cancer Lett.2005:218(1):33-41.
    Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW. Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax. Cell.2008:135 (6):1074-1084.
    Lu X, Yu H, Ma Q, Shen S, Das UN. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids Health Dis.2010:9:106.
    O'Keefe SJ. Nutrition and colonic health:the critical role of the microbiota.Curr Opin Gastroenterol.2008:24 (1):51-58.
    Robinson LE, Clandinin MT, Field CJ. R3230AC rat mammary tumor and dietary long-chain (n-3) fatty acids change immune cell composition and function during mitogen activation. J Nutr.2001:131 (7):2021-2027.
    Rogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah SM, Pardini RS. Docosahexaenoic acid alters epidermal growth factor receptor-related signaling by disrupting its lipid raft association. Carcinogenesis.2010:31 (9): 1523-1530.
    Seti H, Leikin-Frenkel A, Werner H. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.Arch Physiol Biochem.2009: 115(3):127-136.
    Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res.2008:52 (4):465-471.
    Yang J, Yu H, Sun S, Zhang L, Das UN, Ruan H, He G, Shen S. Mechanism of free Zn(2+) enhancing inhibitory effects of EGCG on the growth of PC-3 cells: interactions with mitochondria. Biol Trace Elem Res.2009:131 (3):298-310.
    程宝鸾.动物细胞培养技术.中山大学出版社.2006:119-120.
    孟文,蔡善荣,郑树,张苏展.基于杭州城市社区自然人群大肠癌筛查实践.《2009年浙江省肿瘤学术年会暨肿瘤诊治新进展学习班论文汇编》.2009年.
    司徒镇强.细胞培养.世界图书出版社.2007.200-201.
    徐建明.结直肠癌的辅助和新辅助治疗.临床肿瘤学杂志.2007:12(8):561-565.
    Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology.2001:58 (2):283-288.
    Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Fatty Acid Analysis of Blood Serum, Seminal Plasma, and Spermatozoa of Normozoospermic vs. Asthenozoospermic Males. Lipids.1999:34 (8):793-799.
    Garattini S. Long-chain n-3 fatty acids in lipid rafts:implications for anti-inflammatory effects. J Cardiovasc Med (Hagerstown).2007:8 (Suppll): S30-33.
    Lagerstedt SA, Hinrichs DR, Batt SM, Magera MJ, Rinaldo P, McConnell JP.2001. Quantitative Determination of Plasma C8-C26 Total Fatty Acids for the Biochemical Diagnosis of Nutritional and Metabolic Disorders. Molecular Genetics and Metabolism.2001:73 (1):38-45.
    Mansilla MC, Banchio CE, de Mendoza D. Signalling pathways controlling fatty acid desaturation. Subcell Biochem.2008:49:71-99.
    Nair SS, Leitch J, Garg ML. N-3 polyunsaturated fatty acid supplementation alters inositol phosphate metabolism and protein kinase C activity in adult porcine cardiac myocytes. J Nutr Biochem.2001:12 (1):7-13.
    Pratt VC, Watanabe S, Bruera E, Mackey J, Clandinin MT, Baracos VE, Field CJ. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation. Br J Cancer.2002:87 (12):1370-1378.
    Sanchez-Martin MJ, Amigo JM, Pujol M, Haro I, Alsina MA, Busquets MA. Fluorescence study of the dynamic interaction between E1(145-162) sequence of hepatitis GB virus C and liposomes. Anal Bioanal Chem.2009:394 (4): 1003-1310.
    Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr.2007:137 (3):548-553.
    Sykora J, Bourova L, Hof M, Svoboda P. The effect of detergents on trimeric G-protein activity in isolated plasma membranes from rat brain cortex:correlation with studies of DPH and Laurdan fluorescence. Biochim Biophys Acta.2009: 178 (2):324-332.
    Szymanski KM, Wheeler DC, Mucci LA. Fish consumption and prostate cancer risk: a review and meta-analysis. Am J Clin Nutr.2010:92 (5):1223-1233.
    李喜艳,王加启,卜登攀,魏宏阳,胡菡,周凌云.多不饱和脂肪酸对细胞膜功能影响的研究进展.生物技术通报.2009(12):22-26.
    曲鑫建,孙世铎,丰美福.三维培养条件下WB-F344细胞膜流动性及粘附分子表达变化.右江民族医学院学报.2009:29(1):4-6.
    韦娜.膳食中不同n-6/n-3多不饱和脂肪酸构成对乳腺癌发生发展的影响及分子机制研究.博士论文.2006.
    左伋.《医学细胞生物学(第四版)》.复旦大学出版社.2008:30-33.
    Deng YB, Lin YH, Wu XW. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev.2002:16:33-45.
    Jose MPO, Pedro T, Cecilia FV, Beatriz D. Glitazones Differentially Regulate Primary Astrocyte and Glioma Cell Survival—involvement of reactive oxygen specis and peroxisome proliferator-activated receptor y. J Biol Chem.2004:279: 8976-8985.
    Liang GY, Pu YP, Yin LH, Liu R. Influence of Different Sizes of Titanium Dioxide Nanoparticles on Hepatic and Renal Functions in Rats with Correlation to Oxidative Stress. J. Toxicol. Environ. Health (A).2009,72,740-745.
    Pilkington GJ, Parker K, Murray SA. Approaches to mitochondrially mediated cancer therapy. Semin. Cancer Biol.2008:18 (3):226-235.
    Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson AB, Hamilton SR. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med.2001:344 (4):1196-1206.
    Yang JG, Yu HN, Sun SL, Zhang LC. Mechanism of free Zn2+ enhancing inhibitory effects of EGCG on the growth of PC-3 cells:interactions with mitochondria. Biol. Trace Elem. Res.2009,131,298-310.
    Yoshikawa T, Kokura S, Tainaka K, Itani K, Oyamada H, Kaneko T, Naito Y, Kondo M. The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia.Cancer Res.1993:53 (10 Suppl):2326-2329.
    胡硕,胡成平.线粒体与细胞凋亡的研究进展.国际呼吸杂志.2006:26(6):363-367.
    雷义,金文达,陈锋.活性氧与线粒体损伤.南华大学学报医学版.2006:34(5):648-649.
    刘戎,宣昭林.活性氧、线粒体与细胞凋亡.中国地方病防治杂志.2005:20(5):582-588.
    刘永彪,刘颖,赵杰,郝兴芝,王绪,姚思德.SOD对肿瘤细胞凋亡影响和抗氧化损伤的研究:Ⅳ.SOD对荷瘤小鼠正常组织氧化损伤的保护效应.辐射研究与辐射 工艺学报.2004:22(5):297-302.
    马翎健.细胞生物学.西北农林科技大学出版社.2006:91-93.
    毛慧洁.花生四烯酸代谢指标在糖尿病患者临床检测中的应用.中华实用医药杂志.2003:3(3).
    孙世利.EGCG与锌、镉离子相互作用及其在前列腺癌细胞PC-3中的生物学行为.博士学位论文.2008.
    吁文贵,徐理纳.乙酰丹酚酸A对血小板花生四烯酸代谢的影响.药学学报.1998:33(1):62-63.
    Brown MS, Goldstein JL. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell.1997:89 (3): 331-340.
    Dimopoulos N, Watson M, Green C, Hundal HS. The PPARδ agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilization or insulin sensitivity in rat L6 skeletal muscle cells. FEBS Lett.2007:581 (24): 4743-4748.
    Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE. The Peroxisome Proliferator-Activated Receptor β/δ Agonist, GW501516, Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells. Mol Endocrinol.2003:17 (12):2477-2493.
    Edwards PA, Tabor D, Kast HR, Venkateswaran A. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta.2000:1529 (1-3):103-113.
    Gustafsson MC, Knight D, Palmer CN. Ligand modulated antagonism of PPARgamma by genomic and non-genomic actions of PPARdelta. PLoS One. 2009:4 (9):e7046.
    Hazard D, Couty M, Guemene D. Characterization of CRF, AVT, and ACTH cDNA and pituitary-adrenal axis function in Japanese quail divergently selected for tonic immobility. Am J Physiol Regul Integr Comp Physiol.2007:293 (3): R1421-1429.
    He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell.1999:99 (3):335-345.
    Horton JD, Goldstein JL, Brown MS. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest.2002:109 (9):1125-1131.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001:25 (4): 402-408.
    Takeuchi Y, Yahagi N, Izumida Y, Nishi M, Kubota M, Teraoka Y, Yamamoto T, Matsuzaka T, Nakagawa Y, Sekiya M, Iizuka Y, Ohashi K, Osuga J, Gotoda T, Ishibashi S, Itaka K, Kataoka K, Nagai R, Yamada N, Kadowaki T, Shimano H. Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit. J Biol Chem.2010:285 (15):11681-11691.
    Wang D, DuBois RN. Inflammatory mediators and nuclear receptor signaling in colorectal cancer. Cell Cycle 2007:6:682-685.
    Wang D, Wang H, Guo Y, Ning W, Katkuri S, Wahli W, Desvergne B, Dey SK, DuBois RN. Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proc Natl Acad Sci U S A.2006:103 (50):19069-19074.
    Zhang LC, Yu HN, Sun SL, Yang JG, He GQ, Ruan H, Shen SR. Investigations of the cytotoxicity of epigallocatechin-3-gallate against PC-3 cells in the presence of Cd2+in vitro. Toxicol In Vitro.2008:22 (4):953-960.
    阿仙姑·哈斯木,李巧稚,拉莱·苏祖克,古丽娜尔·库尔班PPARγ、COX-2在宫颈病变中的表达与HPV16感染的关系.临床与实验病理学杂志.2009:25(1):79-81.
    孙楠,刘金泉,冯凭.固醇调节元件结合蛋白与脂代谢的基因调控.国外医学内分泌学分册.2004:24(5):13S-16S.
    孙世利.EGCG与锌、镉离子相互作用及其在前列腺癌细胞PC-3中的生物学行为.博士学位论文.2008.
    徐洪亮,赵磊,卓德祥,毛泽斌.NF-K B对PPARδ基因的转录调控.中国生物化学与分子生物学报.2008:24(10):931-937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700