用户名: 密码: 验证码:
层状硅酸盐矿物制备多孔材料的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用天然矿物的组成、结构及物理化学特性制备新型功能材料,探索矿物资源制备先进功能材料的新方法,建立天然矿物结构与先进功能材料结构、性能之间的基本联系并开发其应用领域,是材料学科发展的一个重要方向。多孔材料的发展经历了从天然沸石到近十年兴起的介孔与大孔材料,其骨架组成元素多为硅和铝,在传统合成方法中涉及到的硅铝源多为化学试剂,这使得合成成本高,难以实现工业化生产。储量丰富的层状硅酸盐矿物由于其独特的层状结构和丰富的硅铝成分,有望成为天然矿物制备多孔材料新方法中的首选原料。本论文利用层状硅酸盐矿物独特的层状结构制备孔径双峰分布的多孔材料;以其丰富的硅铝成分为原料制备沸石分子筛及有序介孔材料。采用X-射线衍射分析(X-ray diffraction, XRD)、扫描电镜(scanning electron microscope, SEM)、高分辨透射电镜(high-resolution transmission electron microscopy, HRTEM)、热重-差示扫描(thermogravimetric-differential scanning calorimeters, TG-DSC)、核磁共振(nuclear magnetic resonance)、红外光谱(fourier transform infrared spectroscopy, FT-IR)、荧光光谱(Photoluminescence, PL)、粒度分析、以及N2吸附-脱附测试、抗压强度和静态水吸附量测试对所制备样品进行了结构和性能表征。
     以层状硅酸盐矿物为原料,采用机械活化浸出法制备了孔径在微孔区域(0.36nm)和介孔区域(3.80nm)双峰分布、比表面积可达400m2·g-1、孔容为0.80ml·g-1的多孔材料。重点讨论了球磨时间和酸浸时间对所制备多孔材料孔性能的影响。研究结果表明球磨过程促使层状硅酸盐矿物晶体结构趋向无定形化,此举有利于后续酸浸过程的进行。H+离子通过离子交换浸出层状硅酸盐矿物中的八面体层离子,所留空位即为微孔区域;硅氧四面体层通过结构重排、缩聚形成介孔。相比于酸浸时间,球磨时间对多孔材料孔性能的影响更显著。层状硅酸盐矿物本身化学成分及层状类型(1:1型和2:1型)的不同导致其在制备过程中结构及孔性能变化行为有所区别,最终导致所制备多孔材料孔性能上的差异。
     以层状硅酸盐矿物为原料采用水热法成功制备了有序介孔材料MCM-4l,其比表面积可达1100m2·g-1、孔容为1.00ml·g-1、孔径在2.80nm处集中分布。所制备的MCM-41具有良好的热稳定性,承受温度可达940℃。电荷匹配和硅酸盐物种的缩聚程度决定了产物的最终结构,本技术依据电荷匹配原则,以协同作用方式实现了低表面活性剂浓度(2wt%)下有序介孔材料MCM-41的合成。在选定pH值下,H3SiO4-和H4Si04是硅酸物种存在的两种主要形式,它们之间通过缩聚组合使最终产物MCM-41主要含有Q3(Si(SiO)3OH)结构和Q4(Si(SiO)4)结构。以不同层状硅酸盐矿物为原料合成的有序介孔材料孔壁都为无定形的Si02;层状硅酸盐矿物的层状类型对最终合成的有序介孔材料的结构没有直接影响;层状硅酸盐矿物中所含的硅氧四面体是合成有序介孔材料的必备条件。以层状硅酸盐矿物为原料制备有序介孔材料,其结构经历了从层状硅酸盐晶体结构→无序多孔结构→有序介孔结构的转变。
     采用有序介孔材料为主体,把不同功能客体分子组装到主体介孔材料的孔道中,可以制备不同种类的复合功能材料,其性能都将优于单个主体或客体的性能。以SnO2纳米颗粒为代表,以所制备的MCM-41为主体采用水热法成功制备了SnO2/MCM-41复合材料。研究表明除极少部分Sn原子进入到有序介孔材料的孔壁中以外,大部分SnO2纳米颗粒存在于有序介孔材料的孔道中,且纳米颗粒的存在并没有破坏有序介孔材料的孔道结构。以主体介孔材料的孔道为“微反应器”,通过调节Sn/Si摩尔比可实现对Sn02/MCM-41复合材料荧光性能的调控,所制备复合材料的荧光强度比纯SnO2纳米颗粒荧光强度提高了近七倍。
     以层状硅酸盐矿物(高岭土为例)为原料采用低温水热合成法成功制备了4A沸石分子筛,分子筛颗粒呈立方体相,尺寸在4μm左右。所制备的4A分子筛干燥剂的静态水吸附量为21.0wt%,抗压强度为51.ON/颗,达到化学工业部标准HG/T 2524-93(静态水吸附量≥20wt%,抗压强度≥50N/颗)。成功进行扩大试验后,4A分子筛干燥剂各项性能指标都达到干燥剂应用标准。合成采用低温水热合成,操作简单,无需额外添加硅源或铝源。实验过程中通过调节工艺参数实现对4A分子筛粉体纯度及形貌的控制;通过调节样品的结晶度,从而获得性能良好的4A沸石分子筛干燥剂产品。
     本论文基于层状硅酸盐矿物独特的层状结构和化学成分,围绕功能材料的结构-性能关系,通过机械活化浸出及水热等物理化学方法制备了结构独特、性能良好的多孔及复合功能材料,开发了所制备功能材料在干燥剂领域中的潜在应用;探索矿物资源制备先进功能材料的新方法,弄清制备过程中的物理化学变化,初步建立矿物与先进功能材料结构、性能之间的基本联系并开发其应用领域,为资源-材料一体化提供基础理论和技术保障。
It has been an attractive trend for the materials science to pursue new technologies for preparing novel functional materials by means of the chemical compositions, special structures and physical-chemical characteristics of natural minerals.The structure-property relationship between the natural minerals and the as-synthesized advanced functional materials is especially emphasized, and the potential application of the obtained functional materials is a key research focus. The development of porous materials experienced from natural zeolites to mesoporous materials and macroporous materials.For porous materials, Si and Al act as the basic compositions in the framework. With regard to the traditional approaches, Si and Al sources in the preparation of porous materials are mainly chemical reagents, which are of high cost and baffle the industrial production of porous materials.On the basis of their special structures and compositions,layered silicate minerals usually act as a preferred candidate for the preparation of novel porous materials.In this thesis, based on a comprehensive review of the research and current issues of porous materials,we have conducted a detailed study of porous material with bimodal pore size distribution, ordered mesoporous material and zeolite by means of the special layered structure and the rich Si, Al contents of the natural minerals.The structures and properties of the obtained products are characterized by X-ray diffraction(XRD), scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),thermogravimetric-differential scanning calorimeters(TG-DSC), solid-state nuclear magnetic resonance(NMR), fourier transform infrared spectroscopy(FT-IR), Photoluminescence(PL), N2 adsorption-desorption measurement, water adsorption capacity and compression strength techniques.
     Porous materials with bimodal pore size distribution of micropores (0.36nm) and mesopores(3.8nm),specific surface area of 400m2·g-1 and pore volume of 0.80ml·g-1 are synthesized through mechanochemically activating and acid-leaching of layered silicate minerals.The effect of grinding time and leaching time on porous properties of the synthesized materials are mainly investigated. The results show that the grinding process induces the crystal structure of layered silicates becoming amorphous, which is beneficial to the following leaching process.The octahedral metal ions are leached out by H+ions through ion exchange. Consequently, the residual voids after leaching form micropores and the SiO4 tetrahedrons layers form mesopores through structure rearrange and condensation. Compared with the leaching time, the grinding time shows more significant effect on the porous properties of the resulting porous materials.The difference of layered silicate minerals in chemical compositions and layer types (type 1:1 and type 2:1)result in the various change behaviors of structure and porous properties of the layered silicates, and finally result in discrepancy of porous properties for the resulting porous materials.
     Ordered mosoporous material MCM-41,with huge specific surface area of 1100m2·g-1, pore volume of 1.00ml·g-1 and pore size of 2.80nm, is successfully synthesized via hydrothermally heating acid-leached layered silicates.The obtained MCM-41 has fine thermal stability and the endurable temperature is up to 940℃.Charge density matching and polymerization of silicate species determine the final structure of the resulting product.This technique realizes the synthesis of ordered mesoporous material MCM-41 in low surfactant concentration through cooperative formation mechanism according to the charge density matching rule. H3SiO4- and H4SiO4 are main species existed in the alkaline solution. The polymerization and assembly of these species result in the formation of the final product MCM-41 which mainly contains Q3(Si(SiO)3OH) and Q4(Si(SiO)4) structures.The component of pore wall of MCM-41 synthesized from different layered silicates is amorphous SiO2.The layer type of silicates shows little influence on the final structure of ordered mosoporous materials.It should be emphaseized that the SiO4 tetrahedrons contained in layered silicates are regarded as the essential ingredient for the preparation of ordered mesoporous materials. The structural evolution from layered silicates to ordered mesoporous materials involves the transformation from layered crystal structure to disordered porous structure, and finally to ordered mesoporous structure.
     Taking ordered mesoporous materials as host matrix, various kinds of functional composites have been succussfully synthesized by incorporating various guest molecules into the channels of the host matrix. The properties of the obtained composites were superior to that of the host matrix or the guest molecules.SnO2/MCM-41 composite is synthesized by hydrothermal method taking SnO2 nanoparticles as guest and as-prepared MCM-41 as host matrix. The result shows that most SnO2 nanoparticles exist in the channels of the host matrix without damaging the mesoporous structure of the host matrix, except that little amount of Sn atoms is incorporated into the framework of the host matrix. Taking the channels of the host matrix as "micro-reactor",the PL property of SnO2/MCM-41 composite could be modulated by varying the Sn/Si molar ratios.The PL intensity of SnO2/MCM-41 composite is nearly 8 times as that of the pure SnO2 nanoparticles.
     Zeolite 4A molecular sieve powder is synthesized using layered silicates (taking kaolin as an example) as raw material via hydrothermal method. The obtained 4A molecular sieve particles show cubic morphology with the particle size of about 4μm. The water adsorption capacity and compression strength of the final desiccant are 21.0wt% and 51.0N/particle, respectively, which meet the standard of HG/T 2524-93 (water adsorption capacity≥20 wt% and compression strength≥50N/particle).4A molecular sieve powder and desiccant also can be successfully prepared in the pilot test, and the properties of the desiccant meet the application standard. The preparation is processed in low hydrothermal condition without any additional silica and alumina sources. The purity and morphology of the 4A molecular sieve powder could be modulated by adjusting the involved parameters, and the excellent properties of the desiccant product could be obtained through optimizing the crystalline degree of the 4A molecular sieves.
     Based on the special layered structure and chemical compositions of layered silicates, the aim of this thesis is to synthesize porous materials and functional composites with unique structures and excellent properties through mechanochemical activation and leaching method as well as hydrothermal treatment.Moreover, the potential application of the prepared products in desiccant field is exploited. The standpoint of this thesis is to develop a new method for the preparation of functional materials from natural minerals, investigate the physical and chemical behaviors during the preparation process, establish a structure-property relationship between the natural minerals and the obtained functional materials, and finally expand the unprecedented applications of the functional materials.All of these will provide basic fundamental and technical support for the integration of resources and materials.
引文
[1]Everett D H.Manual of symbols and terminology for physicochemical quantities and units, Appendix II:Definitions, terminology and symbols in colloid and surface chemistry[J].Pure and Applied Chemistry,1972,31(4):577-638.
    [2]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [3]Davis M E, Lobo R F. Zeolite and molecular sieve synthesis[J].Chemistry of Materials,1992,4(4):756-768.
    [4]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [5]Barrer R M. Syntheses and reaction of mordenite[J].Journal of the Chemical Society,1948,1(10):2158-2163.
    [6]Kiyozumi Y, Shin S, Shul Y G, Ihm S K, Koo K K. Crystal growth of high silica ZSM-5 at low temperature synthesis conditions[J].Korean Journal of Chemical Engineering,1996,13(2):144-149.
    [7]Gier T E, Stucky G D. Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves[J]. Nature,1991,349(6309): 508-510.
    [8]Huo Q S, Xu R R. A new route of the synthesis of molecular sieves: Crystallization of APO-5 at high temperature[J].Journal of the Chemical Society, Chemical Communications,1992,1(2):168-169.
    [9]Argauer R J, Landolt G R. Crystalline zeolite ZSM-5 and method of preparing the same[P].U.S.Patent 3702889,1972-11-14.
    [10]Crea F, Aiello R, Nastro A, Nagy J B.Synthesis of ZSM-5 zeolite from very dense systems:Formation of pelleted ZSM-5 zeolite from(Na, Li, TPA, Si, Al) hydrogels.[J].Zeolites,1991,11(5):521-527.
    [11]Bibby D M, Dale M P. Synthesis of silica-sodalite from non-aqueous systems[J]. Nature,1985,317(12):157-158.
    [12]Huo Q S, Feng S H, Xu R R. First syntheses of pentasil-type silica zeolites from non-aqueous systems[J].Journal of the Chemical Society, Chemical Communications, 1988,1(22):1486-1487.
    [13]Li J Q, Dong J X, Liu G H, Gong S Q, Wu F. Zeolite ZSM-35 synthesized by the kneading method in a nonaqueous system[J].Journal of the Chemical Society, Chemical Communications,1993,1(7):659-660.
    [14]Kanno N, Miyake M, Sato.M.Synthesis of ferrierite, ZSM-48, and ZSM-5 in glycerol solvent[J].Zeolites,1994,14(8):625-528.
    [15]Xu W Y, Dong J X, Li J P, Li J Q, Wu F. A novel method for the preparation of zeolite ZSM-5[J].Journal of the Chemical Society, Chemical Communications,1990, 1(10):755-756.
    [16]Xu W Y,Li J Q,Li W Y,Zhang H M,Liang B C.Nonaqueous synthesis of ZSM-35 and ZSM-5[J].Zeolites,1989,9(6):468-473.
    [17]Dou T, Feng F X, Xiao Y Z, Cao J H, Zhong B.Synthesis of sodalite by dry powder method[J].Journal of Natural Gas Chemistry,1998,7(3):266-272.
    [18]窦涛,冯芳霞,萧墉壮,曹景慧,钟炳.杂原子B-ZSM-35沸石的干法合成、表征及CO+H2反应性能的研究[J].燃料化学学报,1997,25(1):16-20.
    [19]窦涛,冯芳霞,萧墉壮.ZSM-5沸石的合成及表征[J].石油学报:石油加工,1997,13(1):100-103.
    [20]Nuchter M, Ondruschka B,Bonrath W,Gum A. Microwave assisted synthesis-a critical technology overview[J].Green Chemistry,2004,6(3):128-141.
    [21]Li Y S,Yang W S.Microwave synthesis of zeolite membranes:A review[J]. Journal of Membrane Science,2008,316(1-2):3-17.
    [22]黄双艳,李永红.微波技术在分子筛领域的应用进展[J].天津化工,2003,17(1):13-16.
    [23]Girnus I, Pohl M M, Richtermendau J, Schneider M, Noack M, Venzke D,Caro J. Synthesis of AlPO4-5 aluminumphosphate molecular sieve crystals for membrane applications by microwave-heating[J].Advanced Materials,1995,7(8):711-714.
    [24]Tang Z,Kim S J,Gu X H,Dong J H.Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents[J].Microporous and Mesoporous Materials,2009,118(1-3):224-231.
    [25]Chandrasekhar S,Pramada P N.Investigation on the synthesis of zeolite NaX from Kerala kaolin[J].Journal of Porous Materials,1999,6(4):283-297.
    [26]Wang P, Shen B, Shen D, Peng T, Gao J.Synthesis of ZSM-5 zeolite from expanded perlite/kaolin and its catalytic performance for FCC naphtha aromatization[J].Catalysis Communications,2007,8(10):1452-1456.
    [27]Saada M A, Soulard M, Patarin J, Regis R C. Sythesis of zeolite materials from asbestos wastes:An economical approach[J].Microporous and Mesoporous Materials, 2009,122(1-3):275-282.
    [28]Wu D, Lu Y, Kong H, Ye C, Jin X. Synthesis of zeolite from thermally treated sediment[J].Industrial and Engineering Chemistry Research,2008,47(2):295-302.
    [29]Kordatos K, Gavela S, Ntziouni A, Pistiolas K N, Kyritsi A, Rigopoulou V K. Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash[J]. Microporous and Mesoporous Materials,2008,115(1-2):189-196.
    [30]Tanaka H, Fujii A, Fujimoto S,Tanaka Y. Microwave-assisted two-step process for the synthesis of a single-phase Na-A zeolite from coal fly ash[J].Advanced Powder Technology,2008,19(1):83-94.
    [31]Fan Y, Zhang F S,Zhu J X,Liu Z G. Effective utilization of waste ash from MSW and coal co-combustion power plant-Zeolite synthesis[J].Journal of Hazardous materials,2008,153(1-2):382-388.
    [32]Anuwattana R, Khummongkol P. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge[J].Journal of Hazardous Materials B, 2009,166(1):227-232.
    [33]Wajima T, Ikegami Y. Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion[J].Ceramics International,2009,35(7):2983-2986.
    [34]Lin D C, Xu X W, Zuo F,Long Y C. Crystallization of JBW,CAN, SOD, and ABW type zeolite from transformation of meta-kaolin[J].Microporous and Mesoporous Materials,2004,70(1-3):63-70.
    [35]Rios C A, Williams C D, Fullen M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods[J].Applied Clay Science, 2009,42(3-4):446-454.
    [36]Park J, Kim B C, Park S S,Park H C. Conventional versus ultrasonic synthesis of zeolite 4A from kaolin[J].Journal of Materials Science Letters,2001,20(6):531-533.
    [37]Breck D W, Flanigen E M, Synthesis and properties of union carbide zeolites L, X and Y. In Molecular Sieves, Society of Chemical Industry:London,1968.47-61.
    [38]Kerr G T. Chemistry of crystalline aluminosilicates.Ⅰ. Factors affecting the formation of zeolite A.[J].The Journal of Physical Chemistry,1966,70(1): 1047-1050.
    [39]Ciric J.Kinetics of zeolite A crystallization[J].Journal of Colloid and Interface Science,1968,28(2):315-324.
    [40]Zhdanov S P, Some problems of zeolite crystallization. In Molecular Sieve Zeolites. Ⅰ. Advances in Chemistry Series, American Chemical Society:Washington, DC,1971,101:20-43.
    [41]Gabelica Z, Cavez-Bierman M,Bodart P, Gourgue A,Nagy J B.Zeolites: synthesis, structure, technology and application[J].Studies in Surface Science and Catalysis,1985,24(1):199-206.
    [42]Yang J, Zhuang T T, Wei F, Zhou Y, Cao Y, Wu Z Y, Zhu J H,Liu C.Adsroption of nitrogen oxides by the moisture-saturated zeolites[J].Journal of Hazardous materials,2009,162(2-3):866-873.
    [43]Kazemimoghadam M, Mohammadi T. Preparation of NaA zeolite membranes for separation of water/UDMH mixtures[J].Separation and Purification Technology, 2006,47(3):173-178.
    [44]Shimada H, Sato K, Honna K, Enomoto T, Ohshio N. Design and development of Ti-modified zeolite-based catalyst for hydrocracking heavy petrolem[J].Catalysis Today,2009,141(1-2):43-51.
    [45]Labhsetwar N, Dhakad M, Biniwale R, Mitsuhashi T, Haneda H, Reddy P S S, Bakardjieva S,Subrt J, Kumar S,Kumar V, Saiprasad P,Rayalu S.Metal exchanged zeolites for catalytic decomposition of N2O[J].Catalysis Today,2009,141(1-2): 205-210.
    [46]Yan.T Y. Zeolite-based catalysts for hydrocracking[J].Industrial & Engineering Chemistry Process Design and Development,1983,22(1):154-160.
    [47]Costa E, Lucas A D, Uguina M A, Ruiz J C. Synthesis of 4A zeolite from calcined kaolins for use in detergens[J].Industrial and Engineering Chemistry Research,1988,27(7):1291-1296.
    [48]Hui K S,Chao C Y H.Pure, single phase, high crystalline, chamfered-edge zeolite 4 A synthesized from coal fly ash for use as a builder in detergents[J].Journal of Hazardous materials,2006,137(1):401-409.
    [49]Zorpas A A, Inglezakis V J, Loizidou M. Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite[J].Waste Management,2008,28(11):2054-2060.
    [50]Li Z, Beachner R, McManama Z, Hanlie H. Sorption of arsenic by surfactant-modified zeolite and kaolinite[J].Microporous and Mesoporous Materials, 2007,105(3):291-297.
    [51]Saitoh A, Tanaka K. Optical properties of chalcogen-loaded zeolite (ZSM-5)[J]. Solid State Communications,2009,149(19-20):750-753.
    [52]Wang F, Song H, Pan G, Fan L, Dai Q, Dong B, Liu H, Yu J, Wang X,Li L. Photoluminescence characteristics of ZnO clusters confined in the micropores of zeolite L[J].Materials Research Bulletin,2009,44(3):600-605.
    [53]Yu V M, Roessner F, Novikov G F. Synthesis and optical properties of zeolite-semiconductor composites-New photocatalysts[J].Journal of Photochemistry and Photobiology A:Chemistry,2008,196(2-3):154-158.
    [54]Wang Y, Li H, Gu L, Gan Q, LI Y, Galzaferri G. Thermally stable luminescent lanthanide complexes in zeolite L[J].Microporous and Mesoporous Materials,2009, 121(1-3):1-6.
    [55]Dubey N, Rayalu S S, Labhsetwar N K, Devotta S.Visible light active zeolite-based photocatalysts for hydrogen evolution from water[J].International Journal of Hydrogen Energy,2008,33(21):5958-5966.
    [56]Dong J, Wang X, Xu H, Zhao Q, Li J. Hydrogen storage in several microporous zeolites[J].International Journal of Hydrogen Energy,2007,32(18):4998-5004.
    [57]Brhwiler D, Seifert R, Calzaferri G. Quantum-sized silver sulfide clusters in zeolite A[J].Journal of Physical Chemistry B,1999,103(31):6397-6399.
    [58]Rolison D R. Zeolite-modified electrodes and electrode-modified zeolites[J]. Chemical Reviews,1990,90(5):867-878.
    [59]Direnzo F, Cambon H, Dutartre R. A 28-year0old synthesis of micelle-templated mesoporous silica[J].Microporous Materials,1997,10(4-6):283-286.
    [60]Yanagisawa T, Shimizu T, Kuroda K, Kato C.The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials[J].Bulletin of the Chemical Society of Japan,1990,63(4):988-992.
    [61]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C,Beck J S.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(22):710-712.
    [62]Beck J S,Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T-W, Oison D H, Sheppard E W, McCullen S B, Higgins J B,Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [63]宋春敏.新型微孔-介孔复合结构硅酸铝分子筛的合成、表征及应用研究:[博士学位论文].北京:中国石油大学,2006.
    [64]Edler K J, White J W. Room-temperature formation of molecular-sieve MCM-41[J].Journal of the Chemical Society, Chemical Communications,1995,1(2): 155-156.
    [65]Wu C G,Bein T. Microwave synthesis of molecular sieve MCM-41[J].Chemical Communications,1996,1(8):925-926.
    [66]Lin W Y, Chen J S, Sun Y, Pang W Q. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate[J].Journal of the Chemical Society, Chemical Communications,1995,1(23):2367-2368.
    [67]Fyfe C A, Fu G Y. Structure organization of silicate polyanions with surfactants-a new approach to the syntheses, structure transformations, and formation mechanisms of mesostructural materials[J].Journal of the American Chemical Society,1995, 117(3838):9709-9714.
    [68]Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature,1998,396(6707):152-155.
    [69]Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R S,Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostrucures[J]. Science,1993,261(5126):1299-1303.
    [70]Huo Q, Margolese D I, Ciesla U, Feng P, Sieger P, R L, Petroff P, Schuth F, Stucky G D.Generalized synthesis of periodic surfactant/inorganic composite materials[J].Nature,1994,368(6469):317-321.
    [71]Huo Q, Margolese D, Ciesla U, Demuth D, Feng P, Gier T, Sieger P, Firouzi A, Chmelka B,Schuth F, Stucky G D.Organization of Organic-molecules with inorganic molecular-species into nanocomposite biphase arrays[J].Chemistry of Materials, 1994,6(8):1176-1191.
    [72]Inagaki S,Fukushima Y, Kuroda K. Sythesis of highly oredered mesoporous materials from a layered polysilicate[J].Journal of the Chemical Society, Chemical Communications,1993,1(3):680-682.
    [73]Goltner C G, Antonietti M.Meoporous materials by templating of lliquid crystalline phases[J].Advanced Materials,1997,9(5):431-436.
    [74]Goltner C G, Henke S,Weissenberger M C,Anronietti M. Mesoporous silica from lyotropic liquid crystal polymer templates[J].Angewandte Chemie International Edition,1998,37(5):613-616.
    [75]Vartuli J C, Schmitt K D, Kresge C T. Development of a formation mechanism for M41S materials:Zeolites and related microporous materials[J]. Studies in Surface Science and Catalysis,1994,84(1):53-60.
    [76]Vartuli J C, Kresge C T, Leonowicz M E. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates[J].Chemistry of Materials,1994,6(11):2070-2077.
    [77]Chen C, Li H X, Davis M E. Studies on mesoporous materials. Ⅰ. Synthesis and characterization of MCM-41[J].Microporous Materials,1993,2(1):17-26.
    [78]Chen C Y, Burkette S L, Li H X,Davis M E. Studies on mesoporous materials. Ⅱ. Synthesis mechanism of MCM-41[J].Microporous Materials,1993,2(1):27-34.
    [79]Stucky G D, Huo Q S,Firouzi A, Chmelka B F, Schacht S,Voigt-Martin I G, Schuth F, Directed synthesis of organic/inorganic composite structures[J].Studies in Surface Science and Catalysis,1997,105(1):3-28.
    [80]Wu C, Bein T. Conducting polyaniline filaments in a mesoporous channel host[J]. Science,1994,264(5166):1757-1759.
    [81]李晓芬,何静,马润宇,段雪,朱月香.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究[J].化学学报,2000,58(2):167-171.
    [82]高波,朱广山,傅学奇,辛明红,裘式纶.介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究[J].高等学校化学学报,2003,24(6):1100-1102.
    [83]戴志晖,鞠馄先.介孔分子筛上的蛋白质直接电化学[J].物理化学学报,2004,20(10):262-266.
    [84]周春芳,朱建华.介孔材料在基因工程中的应用[J].江苏化工,2004,32(4):9-12.
    [85]Vallet-Regi M, Ramila A, Real R P, Perez-Pariente J.A new property of MCM-41: Drug delivery system[J].Chemistry of Materials,2001,13(2):308-311.
    [86]Ramil A, Munoz B,Pariente J P, Regi M V. Mesoporous MCM-41 as drug host system[J].Journal of sol-gel science and technologe,2003,26(1-3):1199-1202.
    [87]Xu W, Liao Y, Alkins D L. Formation of CdS nanoparticles within modified MCM-41 and SBA-15[J].Journal of Physical Chemistry B,2002,106(43): 11127-11131.
    [88]Petkov N, Platschek B, Morris M A, Holmes J D,Bein T. Oriented growth of metal and semiconductor nanostructures within aligned mesoporous channels[J]. Chemistry of Materials,2007,19(6):1376-1381.
    [89]Winkler H, Birkner A, Hagen V, Wolf I, Schmechel R, Seggern H, Fischer R A. Quantum-confined gallium nitride in MCM-41 [J].Advanced Materials,1999,11(17): 1444-1448.
    [90]刘洪杰,李春桃,邹榕,梁玉祥.层状硅酸盐深度加工技术综述[J].广州化工,2008,36(6):3-6.
    [91]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,1996.
    [92]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005.
    [93]孙来鸿.新型滑石粉的开发-用作无光泽涂布胶版印刷纸的涂布颜料[J].国际造纸,2001,20(3):48-53.
    [94]彭小平.滑石之分析与应用[J].陶瓷研究,1995,10(2):89-94.
    [95]小营,古林.漫谈滑石及其深加工[J].广东建材,1994,1(1):49-52.
    [96]Chmielarz L, Gil B,Kustrowshi P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization[J].Journal of Solid State Chemistry, 2009,182(5):1094-1104.
    [97]刘优,陆琦,雷新荣.柱撑粘土矿物的研究新进展[J].矿物岩石,1999,19(1):101-104.
    [98]Mitchell I V. Pillared Layered Structure[M].London:Elserier Applied Science, 1990.
    [99]Centi G, Perathoner S.Catalysis by layered materials:A review[J].Microporous and Mesoporous Materials,2008,107(1-2):3-15.
    [100]Campos A, Gagea B,Moreno S,Jacobs P, Molina R. Decane hydroconversion with Al-Zr, Al-Hf, Al-Ce-pillared vermiculites [J].Applied Catalysis A:General,2008, 345(1):112-118.
    [101]Moronta A, Oberto T, Carruyo G, Solano R, Sanchez J, Gonzalez E, Huerta L. Isomerization of 1-butene catalyzed by ion-exchanged, pillared and ion-exchanged/pillared clays[J].Applied Catalysis A:General,2008,334(1-2): 173-178.
    [102]Mojovic Z, Bankovic P, Milutinovic-Nikolic A, Dostanic J, Jovic-Jovicic N, Jovanovic D.Al, Cu-pillared clays as catalysts in enviromental protection[J]. Chemical Engineer Journal,2009, doi:10.1016/j.cej.2009.05.004
    [103]Bineesh K V, Kim S Y, Jermy B R, Park D W. Catalytic performance of vanadia-doped titania-pillared clay for the selective catalytic oxidation of H2S[J]. Journal of Industrial and Engineering Chemistry,2009,15(2):207-211.
    [104]Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu J, Chen T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(Ⅵ)] from aqueous solutions[J].Journal of Hazardous materials,2009, 166(2-3):821-829.
    [105]Wang M C.Catalysis of nontronite in phenols and glycine transformations[J]. Clays and Clay Minerals,1991,39(2):202-210.
    [106]Binitha N N, Sugunan S.Shape selective toluene methylation over chromia pillared montmorillonites [J].Catalysis Communications,2008,9(14):2376-2380.
    [107]戈明亮.插层法制备聚合物/粘土纳米复合材料的原理[J].塑料科技,2003,1(3):45-50.
    [108]Okada A, M K, Kurauchi T, Kamigaito O. Synthesis and characterization of a nylon 6-clay hybrid[J].Polymer Preprints,1987,28(2):447-448.
    [109]Medellin-Rodriguez F J, Burger C, Hsiao B S,Chu B, Vaia R, Phillips S. Time-resolved shear behavior of end-tethered Nylon 6-clay nanocomosites followed by non-isothermal crystallization[J].Polymer,2001,42(21):9015-9023.
    [110]Yang Y, Zhu Z K, Yin J, Wang X Y, Qi Z E. Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modifications methods[J].Polymer,1999,40(15):4407-4414.
    [111]Wang Z, Pinnavaia T J.Hybrid organic-inorganic nanocomposites:Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer[J].Chemistry of Materials, 1998,10(7):1820-1826.
    [112]Kojima Y, Fukumori K, Usuki A, Okada A, Kurauchi T. Gas-permeabilities in rubber-clay hybrid[J].Journal of Materials Science Letters,1993,12(12):889-890.
    [113]Messersmith P B,Giannelis E P. synthesis and barrier properties of poly (s-caprolactone)-layered silicate nanocomposites[J].Journal of Polymer Science. Part A. Polymer Chemistry,1995,33(7):1047-1057.
    [114]Beake B D, Chen S,Hull J B,Gao F. Nanoindentation behavior of clay/poly (ethylene oxide) nanocomposites[J].Journal of Nanoscience and nanotechnology, 2002,2(1):73-79.
    [115]Yeh J M, Liou S J, Lin C Y, Cheng C Y, Chang Y W. Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphos-phonium salt as an intercalating agent[J].Chemistry of Materials,2002,14(1):154-161.
    [116]佘希林,宋国君,王俊霞,王立,江峰.插层法制备聚合物/粘土纳米复合材料及其应用进展[J].高分子材料科学与工程,2003,19(1):32-36.
    [117]赵竹第,李强,欧玉春,漆宗能,王佛松.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究[J].高分子学报,1997,1(5):519-523.
    [118]李同年,周持兴.聚合物-层状硅酸盐纳米复合材料[J].中国塑料,1999,13(7):25-31.
    [119]Kurokawa Y, Yasuda H, Oya A. Preparation of a nanocomposite of polypropylene and smectite[J].Journal of Materials Science Letters,1996,15(17): 1481-1483.
    [120]Kurokawa Y, Yasuda H, Kashiwagi M, Oyo A. Structure and properties of a montmorillonite/polypropylene nanocomposite[J].Journal of Materials Science Letters,1997,16(20):1670-1672.
    [121]Vaia R A, Sauer B B, Tse O K, Giannelis E P. Relaxations of confined chains in polymer nanocomposites:Glass transiction properties of poly intercalated in montmorillonite[J].Journal of Polymer Science Part B:Polymer Physics,1997,35(1): 59-62.
    [122]邱冠周,袁明亮,杨华明,宋晓岚,王海东.矿物材料加工学[M].长沙:中南大学出版社,2006.
    [123]杨华明,邱冠周.搅拌磨机械化学法制备复合粉体的研究[J].中南工业大学学报,1997,28(6):536-537.
    [124]黄云峰,王文潜,钱鑫.机械化学及其在矿物加工中的应用[J].金属矿山,1999,1(5):17-20.
    [125]MacKenzie K J D, Okada K, Temuujin J.Nanoporous inorganic materials from mineral templates[J].Current Applied Physics,2004,4(2-4):167-170.
    [126]Temuujin J, Okada K, MacKenzie K J D.Preparation of porous silica from vermiculite by selective leaching[J].Applied Clay Science,2003,22(4):187-195.
    [127]Temuujin J, Okada K, MacKenzie K J D,Jadambaa T S.Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching[J].Powder Technology,2001,121(2-3):259-262.
    [128]Temuujin J, Okada A, Jadambaa T S,MacKenzie K J D, Amarsanaa J.Effect of grinding on the leaching behaviour of pyrophyllite[J].Journal of the European Ceramic Society,2003,23(8):1277-1282.
    [129]Xu J, Luan Z, He H, Zhou W, Kevan L. A reliable synthesis of cubic mesoporous MCM-48 molecular sieve[J].Chemistry of Materials,1998,10(11): 3690-3698.
    [130]Pauly T R, Petkov V, Liu Y, Billinge S J L, Pinnavaia T. Role of framework sodium versus local framework structure in determining the hydrothermal stability of MCM-41 mesostructures[J].Journal of American Chemical Society,2002,124(1): 97-103.
    [131]Linssen T, Cool P, Baroudi M, Cassiers K, Vansant E F, Lebedev O, Landuyt J V. Leached Natural Saponite as the silicate source in the synthesis of aluminosilicate hexagonl mesoporous materials[J].Journal of Physical Chemistry B,2002,106(17): 4470-4476.
    [132]Miao S,Liu Z, Ma H, Han B, Du J, Sun Z, Miao Z. Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar[J]. Microporous and Mesoporous Materials,2005,83(1-3):277-282.
    [133]Madhusoodana C D, Kameshima Y, Nakajima A, Okada K, Kogure T, MacKenzie K J D.Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors[J].Journal of Colloid and Interface Science,2006,297(2):724-731.
    [134]Horvath G, Kawazoe K. Method for calculation of effective pore size distribution in molecular sieve carbon[J].Journal of Chemical Engineering of Japan, 1983,16(8):470-475.
    [135]中华人民共和国化学工业部.HG/T 2783-199.分子筛抗压碎力试验方法.北京:中国标准出版社,1996-01-23.
    [136]中华人民共和国国家标准局.GB6287-86.分子筛静态水吸附测定方法.北京:中国标准出版社,1986-04-18.
    [137]Temuujin J, Burmaa G, Amgalan J. Preparation of porous silica from mechanically activated kaolinite[J].Journal of Porous Materials,2001,8(3):233-238.
    [138]Maqueda C, Romero A S,Morillo E, Perez-Rodriguez J L. Effect of grinding on the preparation of porous materials by acid-leached vermiculite[J].Journal of Physics and Chemistry of Solids,2007,68(5-6):1220-1224.
    [139]Temuujin J,Okada A, Jadambaa T S,MacKenzie K J D, Amarsanaa J. Effect of grinding on the preparation of porous material from talc by selective leaching[J]. Journal of Materials Science Letters,2002,21(20):1607-1609.
    [140]Kaviratna H, Pinnavaia T J.Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates:An assessment of edge attack and gallery access mechanisms[J]. Clays and Clay Minerials,1994,42(6):717-723.
    [141]杨武国.层状硅酸盐机械活化浸出制备多孔材料的研究:[硕士学位论文].长沙:中南大学,2005.
    [142]Sing K S W, Everett D H, Haul R A W,Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special references to the determination of surface area and porosity[J].International Union of Pure and Applied Chemisty,1985,57(4):603-619.
    [143]Kosuge K, Shimada K, Tsunashima A. Micropore formation by acid treatment of antigorite[J].Chemistry of Materials,1995,7(12):2241-2246.
    [144]Okada K, Arimitsu N, Kameshima Y, Nakajima A, MacKenzie K J D. Preparation of porous silica from chlorite by selective acid leaching[J].Applied Clay Science,2005,30(2):116-124.
    [145]Okada K, Shimai A, Takei T, Hayashi S,Yasumori A, MacKenzie K J D. Preparation of microporous silica from metakaolinite by selective leaching method[J]. Microporous and Mesoporous Materials,1998,21(4-6):289-296.
    [146]Okada K, Nakazawa N, Kameshima Y, Yasumori A, Temuujin J, MacKenzie K J D, Smith M E. Preparation and porous properties of materials prepared by selective leaching of phlogopite[J].Clays and Clay Minerals,2002,50(5):624-632.
    [147]Olanipekun E O. Kinetics of leaching laterite[J].International Journal of Mineral Processing,2000,60(1):9-14.
    [148]Abdel-Aal E. A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore[J].Hydrometallurgy,2000,55(3):247-254.[149]杨保俊,于少明,单承湘.蛇纹石硫酸浸出过程动力学研究[J].硅酸盐学报,1999,27(1):65-70.
    [150]唐凤翔,张济宇.两种高岭土的酸浸反应宏观动力学的比较[J].煤炭转化,2002,25(2):91-95.
    [151]陆九芳,李总成,包铁柱.分离过程化学[M].北京:清华大学出版社,1993.
    [152]陈世琯.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [153]Sakamoto Y, Inagaki S,Ohsuna T, Ohnishi N, Fukushima Y, Nozue Y, Terasaki O. Structure analysis of mesoporous material'FSM-16'Studies by electron microscopy and X-ray diffraction[J].Microporous and Mesoporous Materials,1998, 21(4-6):589-596.
    [154]Linssen T, Cassiers K, Cool P, Lebedev O, Whittaker A, Vansant E F. Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation.[J]. Chemistry of Materials,2003,15(25):4863-4873.
    [155]Okada K,Yoshizaki H, Kameshima Y, Nakajima A, Madhusoodana C D. Synthesis and characterization of mesoporous silica from selectively acid-treated saponite as the precursors[J].Journal of Colloid and Interface Science,2007,314(1): 176-183.
    [156]许韵华,杨玉国,王永生,尹承龙.酸性介质对硅酸聚合凝胶的影响[J].武汉大学学报(理学版),2005,51(2):177-180.
    [157]王连洲,禹剑,施剑林,严东生.合成条件对介孔氧化硅材料孔径尺寸的影响[J].硅酸盐学报,1999,27(1):22-27.
    [158]高雄厚,毛学文,唐荣荣,刘从华.提高MCM-41分子筛稳定性的研究[J].石油学报(石油加工),1997,13(3):15-20.
    [159]Auvray X, Petipas C, Anthore R, Rico I, Lattes A. X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol[J].Journal of Physical Chemistry,1989,93(21):7458-7464.
    [160]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J, Margolese D, Stucky G D, Chmelka B F. Cooperative organization of inorganic-surfactant and biomimetic assemblies[J]. Science,1995,267(5201):1138-1143.
    [161]Bisio C, Gatti G, Boccaleri E, Marchese L, Bertinetti L, Coluccia S.On the acidity of saponite materials:a combined HRTEM, FTIR, and Solid-State NMR Study[J].Langmuir,2008,24(6):2808-2819.
    [162]肖飞.海泡石制备介孔分子筛MCM-41:[硕士学位论文].长沙:中南大学,2007.
    [163]Trebosc J, Wiench J W, Huh S, Lin V S-Y, Pruski M J,127,.Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles[J].Journal of American Chemical Society,2005,127(9):3057-3068.
    [164]Azais T, Tourne-Peteilh C, Aussenac F, Baccile N,Coelho C,Devoisselle J-M, Babonneau F. Solid-state NMR study of ibuprofen confined in MCM-41 material[J]. Chemistry of Materials,2006,18(26):6382-6390.
    [165]Baccile N, Laurent G, Bonhomme C, Innocenzi P, Babonneau F. Solid-state NMR characterization of the surfactant-silica interface in templated silicas:acidic versus basic conditions[J].Chemistry of Materials,2007,19(6):1343-1354.
    [166]Cai Y, Kumar R, Huang W, Trewyn B G,Wiench J, Pruski M, Lin V S-Y. Mesoporous aluminum silicate catalyst with single-type active sites:characterization by solid-state NMR and studies of reactivity for claisen rearrangement reactions[J]. Journal of Physical Chemistry C,2007,111(3):1480-1486.
    [167]Shenderovich I G, Mauder D, Akcakayiran D, Buntkowsky G, Limbach H-H, Findenegg G H.NMR provides checklist of generic properties for atomic-scale models of periodic mesoporous silicas[J].Journal of Physical Chemistry B,2007, 111(42):12088-12096.
    [168]Kinsey R A, Kirkpatrick R J, Hower J, Smith K A, Oldfield E. High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals[J].American Mineralogist,1985,70(5-6):537-548.
    [169]Sanchez-Soto P J, Wiewiora A, Aviles M A, Justo A, Perez-Maqueda L A, Perez-Rodriguez J L, Bylina P. Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape[J].Applied Clay Science,1997,12(4):297-312.
    [170]Jin S, Qiu G,Xiao F, Chang Y, Wan C.Investigation of the structural characterization of msoporous molecular sieves MCM-41 from sepiolite[J].Journal of American Ceramic Society,2007,90(3):957-961.
    [171]Suquet H. Effects of dry grinding and leaching on the crystal structure of chrysotile[J].Clays and Clay Minerals,1989,37(5):439-445.
    [172]Vicente M A, Suarez M, Lopez-Gonzalez J d D, Banares-Munoz M A. Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite[J].Langmuir,1996,12(2):566-572.
    [173]Farmer V C. The infrared spectra of minerals[M].London:Mineralogical Society,1974.
    [174]Lubguban J, Kurate Y, Inokuma T, Hasegawa S.Thermal stability and breakdown strength of carbon-doped SiO2:F films prepared by plasma-enhanced chemical vapor deposition method[J].Journal of Applied Physics,2000,87(8): 3715-3722.
    [175]Li Z, Gao L, Zheng S.SEM, XPS,and FTIR studies of MoO3 dispersion on mesoporous silicate MCM-41 by calcination[J].Materials Letters,2003,57(29): 4605-4610.
    [176]Chen C-Y, Xiao S-Q, Davis M E. Studies on ordered mesoporous materials III. Comparision of MCM-41 to mesoporous materials derived from kanemite[J]. Microporous Materials,1995,4(1):1-20.
    [177]Temuujin J, Jadambaa T S,Burmaa G,Erdenechimeg S, Amarsanaa J, MacKenzie K J D.Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia)[J].Ceramics International,2004,30(2):251-255.
    [178]Kim J M, Ryoo R. Disintegration of mesoporous structures of MCM-41 and MCM-48 in water[J].Bulletin of the Korean Chemical Society,1996,17(1):66-68.
    [179]Shen S C, S K. Understanding of the effect of Al substitution on the hydrothermal stability of MCM-41 [J].Journal of Physical Chemistry B,1999, 103(42):8870-8876.
    [180]王万军,吴志强,郭方方,赵彦巧.江西萍乡煤系高岭土/乙酸钾插层复合物制备与表征[J].矿业快报,2008,24(8):94-97.
    [181]Luan Z, Cheng C-F, Zhou W,Klinowski J. Mesoporous molecular sieve MCM-41 containing framework aluminum [J].Journal of Physical Chemistry B,1995, 99(3):1018-1024.
    [182]On D T, Zaidi M J, Kaliaguine S.Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions[J].Microporous and Mesoporous Materials,1998,22(1-3):211-224.
    [183]Sanchez R M T, Basaldella E I, Marco J F. The effect of thermal and mechanical treatment on kaolinite:characteriazation by XPS and IEP measurements[J].Journal of Colloid and Interface Science,1999,215(2):339-344.
    [184]Madani A, Aznar A, Sanz J, Serratosa J M.29Si and 27 Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal preactivation[J].The Journal of Physical Chemistry,1990,94(2):760-765.
    [185]Chandrasekhar S.Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin[J].Clay Minerals,1996,31(2):253-261.
    [186]Miyazaki M, Kamitani M, Nagai T, Kano J, Saito F. Amorphization of kaolinite and media motion in grinding by a double rotating cylinders mill-a comparison with a tumbling ball mill[J].Advanced Powder Technology,2000,11(2):235-244.
    [187]Sanchez P J, Sobrados J L P-R, Sanz J. Influence of grinding in pyrophyllite-mullite thermal transformation assessed by 29Si and Al MAS NMR spectroscopies[J].Chemistry of Materials,1997,9(3):677-684.
    [188]Lippmaa E, Samoson A, Magi M. High-resolution 27Al NMR of aluminosilicate[J].Journal of the American Ceramic Society,1986,108(8): 1730-1735.
    [189]Bagshaw S A, Pinnavaia T J.Mesoporous alumina molecular sieves[J]. Angewandte Chemie International Edition English,1996,35(10):1102-1105.
    [190]Vaudry F, Khodabandeh S,Davis M E. Synthesis of pure alumina mesoporous materials[J].Chemistry of Materials,1996,8(7):1451-1464.
    [191]Huggins B A, Ellis P D.27Al nuclear magnetic resonance study of aluminas and their surfaces[J].Journal of the American Ceramic Society,1992,69(1):2098-2108.
    [192]Shen S C, Kawi S.MCM-41 with improved hydrothermal stability:Formation and prevention of Al content dependent structural defects[J].Langmuir,2002,18(12): 4720-4728.
    [193]Stein A, Melde B J, Schroden C S.Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age[J].Advanced Materials,2000,12(19): 1403-1419.
    [194]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J].Chemical Reviews,1997,97(6):2373-2419.
    [195]Konovalova T, Gao Y, Schad R, Kispert L D.Photooxidation of carotenoids in mesoporous MCM-41,Ni-MCM-41 and Al-MCM-41 molecular sieves[J].Journal of Physical Chemistry B,2001,105(31):7459-7464.
    [196]Wang H, Lam F L Y, Hu X,Ng K M. Ordered mesoporous carbon as an efficient and reversible adsorbent for the adsorption of fullerenes[J].Langmuir,2006,22(10): 4583-4588.
    [197]Coasne B, Galarneau A, Renzo F D, Pellenq R J M. Gas adsorption in mesoporous micelle-templated silicas:MCM-41,MCM-48,and SBA-15[J].Langmuir, 2006,22(26):11097-11105.
    [198]Chatterjee M, Ikushima Y, Yokoyama T, Suzuki T. Effect of heteroatom substituted mesoporous support on the selective hydrogenation of cinnamaldehyde in supercritical carbon dioxide[J].Microporous and Mesoporous Materials,2009, 117(1-2):201-207.
    [199]Bandyopadhyay M, Birkner A, Van Den Berg M W E, Klementiev K V, Schmidt W, Grunert W, Gies H. Synthesis and characterization of mesoporous MCM-48 containing TiO2 nanoparticles[J].Chemistry of Materials,2005,17(15):3820-3829.
    [200]Froba M, Kohn R, Bouffaud G. Fe2O3 nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization[J].Chemistry of Materials, 1999,11(10):2858-2865.
    [201]Zhang X, Yue Y, Gao Z. Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts[J].Catalysis Letters,2002,83(1-2):19-25.
    [202]Parala H, Winkler H, Kolbe M, wohlfart A, Fischer R A, Schmechel R, Seggern H v. Confinement of CdSe nanoparticles inside MCM-41[J].Advanced Materials, 2000,12(14):1050-1055.
    [203]Zhang Z, Dai S,Fan X, Blom D A, Pennycook S J, Wei Y. Controlled synthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchanged reaction[J].The Journal of Physical Chemistry B,2001,105(29):6755-6758.
    [204]Zhang L X, Shi J L, Yu J, Hua Z L, Zhao X G, Ruan M L. A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15[J].Advanced Materials,2002,14(20):1510-1513.
    [205]Zhu J, Konya Z, Puntes V F, Kiricsi I, Miao C X, Ager J W, Alivisatos A P, Somorjai G A. Encapsulation of metal (Au, Ag, Pt) nanoparticles into the mesoporous SBA-15 structure[J].Langmuir,2003,19(10):4396-4401.
    [206]Bhagwat M, Shah P, Ramaswamy V. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route[J].Materials Letters,2003,57(9-10):1604-1611.
    [207]Li F, Xu J, Yu X, Chen L, Zhu J, Yang Z, Xin X. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles[J].Sensors and Actuators B,2002,81(2-3):165-169.
    [208]Salehi A. Preparation and characterization of proton implanted indium tin oxide selective gas sensors[J].Sensors and Actuators B,2003,94(2):184-188.
    [209]Yuliarto B, Zhou H, Yamada T, Honma I, Katsumura Y, Ichihara M. Effect of tin addition on mesoporous silica thin film and its application for surface photovoltage NO2 gas sensor[J].Analytical Chemistry,2004,76(22):6719-6726.
    [210]Cai D, Su Y, Chen Y, Jiang J, He Z, Chen L. Synthesis and photoluminescence properties of novel SnO2 asterisk-like nanostructures[J].Materials Letters,2005, 59(16):1984-1988.
    [211]Wang Y, Ma J, Ji F, Yu X, Ma H. Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering[J].Jounral of Luminescence, 2005,114(1):71-76.
    [212]Tsay J, Fang T. Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal-decomposition behavior of barium titanium citrate[J]. Journal of American Ceramic Society,1999,82(6):1409-1415.
    [213]Yin H, Wada Y, Kitamura T, Sumida T, Hasegawa Y, Yanagida S.Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions[J].Journal of Materials Chemistry,2002,12(2):378-383.
    [214]Choy J H, Han Y S.Citrate route to the piezoelectric Pb(Zr, Ti)O3 oxide[J]. Journal of Materials Chemistry,1997,7(9):1815-1820.
    [215]Marler B, Oberhagemann U, Vortmann S, Gies H. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J].Microporous Materials,1996, 6(5-6):375-383.
    [216]Hsien Y H, Chang C F, Chen Y H, Cheng S.Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves[J].Applied Catalysis B: Environmental,2001,31(4):241-249.
    [217]Li L, Shi J L, Zhang L X, Xiong L M, Yan J N. A novel and simple in-situ reduction route for the synthesis of an ultra-thin metal nanocoating in the channels of mesoporous silica materials[J].Advanced Materials,2004,16(13):1079-1082.
    [218]Jeong H S, Jeong S Y, Lee J M, Yim D J, Ryu S K. Hydrothermal stability of mesoporous molecular sieve synthesized from fluorosilicon compound[J].Journal of Industrial and Engineering Chemistry,1999,5(4):247-252.
    [219]Gu F, Wang S F, Lu M K, Cheng X F, Liu S W,Zhou G J, Xu D, Yuan D R. Luminescence of SnO2 thin films prepared by spin-coating method[J].Journal of Crystal Growth,2004,262(1-4):182-185.
    [220]Hu J Q,Ma X L, Shang N G, Xie Z Y, Wong N B, Lee C S,Lee S T. Large-scale rapid oxidation synthesis of SnO2 nanoribbons[J].Journal of Physical Chemistry B, 2002,106(15):3823-3826.
    [221]Ribeiro C, Lee E J H, Giraldi T R, Longo E, Varela J A, Leite E R. Study of synthesis variables in the nanocrystal growth behavior of tin oxide processed by controlled hydrolysis[J].Journal of Physical Chemistry B,2004,108(40): 15612-15617.
    [222]Liu Z C, Chen H R, Huang W M, Gu J L, Bu W B, Hua Z L, Shi J L. Synthesis of a new SnO2/mesoporous silica composite with room-temperature photoluminescence[J].Microporous and Mesoporous Materials,2006,89(1-3): 270-275.
    [223]Gu F, Wang S F, Lu M K, Qi Y X, Zhou G J, Xu D, Yuan D R. Luminescent properties of Mn2+ doped SnO2 nanoparticles[J].Inorganic Chemistry Communications,2003,6(7):882-885.
    [224]Chang H J, Chen Y F, Lin H P, Mou C Y.Strong visible photoluminescence from SiO2 nanotubes at room temperature[J].Applied Physics Letters,2001,78(24): 3791-3793.
    [225]Shen J L, Lee Y C, Liu Y L, Yu C C, Cheng P W, Cheng C F. Photoluminescence sites on MCM-48[J].Microporous and Mesoporous Materials, 2003,64(1-3):135-143.
    [226]Skuja L. Isoelectronic series of twofold coordinated Si,Ge and Sn atoms in glassy SiO2:a luminescence study[J].Journal of Non-Crystalline Solids,1992, 149(1-2):77-95,
    [227]Luo S,Chu P K, Liu W, Zhang M, Lin C. Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients[J].Applied Physics Letters,2006,88(18): 183112-1-183112-3.
    [228]Gu F, Wang S F, Song C F, Lu M K, Qi Y X, Zhou G J, Xu D, Yuan D R. Synthesis and luminescence properties of SnO2 nanoparticles[J].Chemical Physics Letters,2003,372(3-4):451-454.
    [229]Cheng B, Russell J M, Shi W, Zhang L, Samulski E T. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J].Journal of American Chemical Society,2004,126(19):5972-5973.
    [230]Das S,Kar S,Chaudhuri S.Optical properties of SnO2 nanoparticles and nanorods synthesized by solvolthermal process[J].Journal of Applied Physics,2006, 99(11):114303-114309.
    [231]Vinu A, Sawant D P, Ariga K, Hossain K Z, Halligudi S B, Hartmann M, Nomura. Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves[J].Chemistry of Materials,2005,17(21):5339-5345.
    [232]Cheng C-F, He H, Zhou W, Klinowski J, Goncalves S J A, Gladden L F. Synthesis and characterization of the gallosilicate mesoporous molecular sieve MCM-41[J].J Phys Chem,1996,100(1):390-396.
    [233]Gomez S,Giraldo O, Garces L J, Villegas J, Suib S L. New synthetic route for the incorporation of manganese species into the pores of MCM-48[J].Chemistry of Materials,2004,16(12):2411-2417.
    [234]Shao Y, Wang L, Zhang J, Aupo M. Synthesis of hydrothermal stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 materials[J].J.Phys. Chem.B, 2005,109(44):20835-20841.
    [235]Sun Y, Yue Y, Gao Z. Synthesis and characterization of AlMCM-41 molecular sieves[J].Applied Catalysis A:General,1997,161(1-2):121-127.
    [236]Wouters B H,Chen T H,Grobet P J. Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y[J].Journal of the American Ceramic Society,1998,120(44):11419-11425.
    [237]Hitz S,Prins R. Influence of template extraction on structure, activity, and stability of MCM-41 catalysts[J].Journal of Catalysis,1997,168(2):194-206.
    [238]Workneh S,Shukla A. Synthesis of sodalite octahydrate zeolite-clay composite membrane and its use in separation of SDS[J].Journal of Membrane Science,2008, 309(1-2):189-195.
    [239]Ma Y, Tong W, Zhou H, Suib S L. A review of zeolite-like porous materials[J]. Microporous and Mesoporous Materials,2000,37(1-2):243-252.
    [240]Ng E P, Mintova S.Nanoporous materials with enhanced hydrophilicity and high water sorption capacity[J].Microporous and Mesoporous Materials,2008, 114(1-3):1-26.
    [241]蒋荣立,周怀兰,吕小丽,仇友爱,郭鑫.煤系高岭土合成吸附干燥剂4A分子筛的试验研究[J].中国矿业大学学报,2005,34(6):793-797.
    [242]吴杰,秦永宁,马智,罗永康.分子筛合成工艺中原料高岭土及其焙烧特性研究[J].非金属矿,2004,27(6):25-27.
    [243]李凤春,陈毓.利用煤系高岭土制备4A分子筛的研究[J].江苏化工,2002,30(3):40-43.
    [244]Sanz J, Madani A, Serratosa J M, Moya J S,Aza S.Aluminum-27 and silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation[J].Journal of the American Ceramic Society,1988, 71(10):C418-C421.
    [245]Murat M, Amokrane A, Bastide J P, Montanaro L. Synthesis of zeolites from thermally activated kaolinite. Some observations on nucleation and growth[J].Clay Minerals,1992,27(1):119-130.
    [246]Rocha J, Klinowski J.Solid state NMR studies of the structure and reactivity of metakaolinite[J].Angewandte Chemie International Edition English,1990,29(5): 553-554.
    [247]曹南萍.以低质高岭土合成4A分子筛[J].非金属矿,1999,22(6):20-21.
    [248]Wang C F, Li J S, Wang L J, Sun X Y,155,.Influence of NaOH concentration on synthesis of pure-form zeolite A from fly ash using two-stage method[J].Journal of Hazardous Materials B,2008,155(1-2):58-64.
    [249]付克明,路迈西,朱虹.煤矸石制备4A分子筛研究[J].中国煤炭,2006,32(5):52-56.
    [250]Chandrasekhar S,Pramada P N. Microwave assisted synthesis of zeolite A from metakaolin[J].Microporous and Mesoporous Materials,2008,108(1-3):152-161.
    [251]高俊,乔淑萍,简丽,高智,崔秀兰.高岭土合成4A分子筛晶化历程[J].应用化学,1999,16(6):53-55.
    [252]Hui K S, Chao C Y H. Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash[J].Microporous and Mesoporous Materials, 2006,88(1-3):145-151.
    [253]Sulaymon A H, Mahdi A S.Spherical zeolite-binder agglomerates[J].Chemical Engineering Research & Design,1999,77(4):342-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700