用户名: 密码: 验证码:
高分子—氧化钛纳米杂化膜的制备与初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机杂化膜结合了传统有机膜与无机膜的优良性能,其制备和应用研究是当前膜领域的研究前沿和热点。TiO_2具有较高的化学稳定性、耐光腐蚀性和光催化活性、很强的散射和吸收紫外光能力和杀菌能力,填充在有机膜中,可提高膜的热稳定性、机械强度和渗透性能,并且TiO_2本身的特性也会在杂化膜中得到体现,因此,近年来高分子-TiO_2杂化膜的研究受到广泛关注。
     目前,有机-无机杂化膜通常以物理或化学方法制备,随着近年来社会对环境保护的日益关注,寻求绿色合成方法逐渐成为一项具有挑战性的工作。
     本文制备了多种生物高分子-氧化钛杂化膜,发明了一种合成有机-无机杂化膜的纯生物方法,并探讨了这些杂化膜的初步应用。
     有鉴于此,本文首次利用纯生物方法制备了细菌纤维素-TiO_2纳米杂化膜,为有机-无机杂化膜的绿色合成提供了一个很好的思路;探讨了作为无机填充物的氧化钛的形貌和结构对高分子-TiO_2杂化膜分离性能的影响,并探索了这些杂化膜的初步应用。
     首先,以木醋杆菌为多功能微生物反应器,一步合成了细菌纤维素-TiO_2纳米杂化膜,并且对其形成机理和应用进行了初步研究,对制备材料进行了X射线衍射、X射线光电子能谱、扫描电子显微镜和投射电子显微镜等表征。通过向培养基中加入钛前驱体二(2-羟基丙酸)二氢氧化二铵合钛,合成了细菌纤维素-TiO_2纳米杂化膜。研究表明:细菌纤维素膜是由直径为60-120nm的纳米纤维构成的三维网状结构,TiO_2的引入未改变细菌纤维素的微观结构,生成的30-50nm的TiO_2颗粒主要镶嵌在细菌纤维素的网络中,含量可达到4wt%。木醋杆菌在合成细菌纤维素的同时,矿化钛前驱体生成TiO_2纳米颗粒,细胞壁/膜在TiO_2合成过程中起到了重要作用。类似的,通过向培养基中加入硅酸钠和硅酸,生物合成了细菌纤维素-SiO_2纳米杂化膜,表明这种生物方法具有一定的通用性。
     其次,为了解决生物合成法中TiO_2纳米颗粒在杂化膜中含量较低的问题,利用原位合成法制备细菌纤维素-TiO_2纳米杂化膜。通过向培养基中加入水热法合成的TiO_2凝胶纳米颗粒,原位合成了细菌纤维素-TiO_2纳米杂化膜,TiO_2凝胶颗粒的加入对木醋杆菌的生长未产生影响。TiO_2的引入未改变细菌纤维素的微观结构,TiO_2主要包埋在细菌纤维素网络结构中,含量可达到7.1%。据推测,在细菌纤维素膜的合成过程中,悬浮在培养基中的氧化钛胶体颗粒被包裹其中,从而最终形成了杂化膜。
     第三,为研究具有特殊形貌和结构TiO_2对纳米杂化膜性能的影响,将水热法制备的钛酸盐纳米管与生物高分子壳聚糖(CS)共混,制备了CS-TNTs纳米杂化膜,并研究了其作为直接甲醇燃料电池质子交换膜的性能。由于TNTs的表面羟基与壳聚糖高分子链段上的羟基和氨基形成氢键相互作用,使TNTs很好分散在CS基质中,提高了杂化膜的机械性能和热稳定性;TNTs引入降低了杂化膜的自由体积分数,有效降低了杂化膜的甲醇渗透性能。其中,含15wt%的TNTs的CS-TNTs纳米杂化膜的机械强度为85.0Mpa,甲醇渗透率为为0.497×10~(-6) cm~2/s,质子传导率为0.0151S cm~(-1),具有较好的应用前景。
Recently, it has been focused on the fabrication and application of organic-inorganic composite membranes, owing to its combining the advantages of traditional organic and inorganic membrane. TiO_2 has a high chemical stability, light corrosion and photocatalytic activity, strong scattering ability, absorption of UV light, and sterilization. When incorporated into Polymer matrix, TiO_2 can increase the thermal stability, mechanical strength and permeability of composite membrane. The characteristic properties of TiO_2 can be reflected in the hybrid membrane. Therefore, polymer-TiO_2 hybrid membranes have been attracted wide spread concern.
     Currently, organic-inorganic hybrid membranes are usually prepared by physical or chemical methods. Green synthesis method is becoming a challenging task with the growing concern on environmental protection.
     In this article, a pure biological method was used to one pot synthesizing bacterial cellulose-TiO_2 composite membrane at the first time. It provides a good green synthesis strategy. The effect of morphology and structure of TiO_2 on the separation property and the preliminary application of hybrid membranes were explored.
     First, Acetobacter was used as a multi-reactor to one pot synthesizing bacterial cllulose(BC)-TiO_2 nanocomoposite. The formation mechanism and preliminary application of BC-TiO_2 nanocomposite are explored, and characterized by X-ray diffraction, X-ray Photoelectron Spectroscopy, scanning electron microscope, and transmission electron microscopy. BC-TiO_2 nanocomposite was fabricated by adding the precursor titanium(IV) bis(ammonium lactato) dihydroxide into the culture medium. The results show that three dimensional bacterial cellulose membrane is composed of 60-120nm cellulose fibril. The introduction of TiO_2 does not change the microstructure of the membrane. TiO_2 nanoparticles with size of 30-50nm are main embedded in the bacterial cellulose network, the content of it can reach 4wt%. Acetobacter synthesize bacterial cellulose and mineralize TiO_2 simultaneously. Cell wall/membrane plays an important role in the mineralization of TiO_2. Similarly, when sodium silicate or silicic acid added into the culture medium, BC-SiO_2 nanocomposite membranes were synthesized. It shows that the biological method has some versatility.
     Secondly, in order to enhance the TiO_2 nanoparticles content in the BC-TiO_2 membrane, BC-TiO_2 nanocomposite membrane are fabricated by in situ method. The growth of Acetobacter is not affect by adding TiO_2 gel particles into the culture medium, and the microstructure of the nanocomposite membrane does not change. TiO_2 nanoparticles are mainly embedded in the bacterial cellulose network, the content of it can reach up to 7.1wt%. It is supposed that the suspended TiO_2 in the culture medium are wrapped into the network when the bacterial cellulose are synthesized, and finally formed a nanocomposite membrane.
     Third, in order to study the impact of the morphology and structure on the properties of composite membrane, Titanate nanotubes(TNTs) with layered structure synthesized by the hydrothermal method were incorporated into a chitosan matrix to fabricate organic-inorganic hybrid membranes. The strong hydrogen bond of surface -OH groups of TNTs with -OH or -NH_2 groups of chitosan chains facilitated the dispersion of TNTs, and rendered these hybrid membranes of lower methanol crossover and higher mechanical strength. Particularly, CS-TNTs-15 displayed the highest mechanical strength of 85.0 MPa, low methanol permeability of 0.497×10~(-6) cm2·s~(-1), and proton conductivity of 0.0151 S·cm~(-1), which had the potential for DMFC applications.
引文
[1] Chen, X. and Mao, S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 2007. 107(7): 2891-2959.
    [2] Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): 53-229.
    [3] Kitano, M., Matsuoka, M., Ueshima, M., et al., Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A: General, 2007. 325(1): 1-14.
    [4] Thompson, T.L. and Yates Jr, J.T., Surface science studies of the photoactivation of TiO_2 -New photochemical processes. Chemical Reviews, 2006. 106(10): 4428-4453.
    [5] Kariduraganavar, M.Y., Varghese, J.G., Choudhari, S.K., et al., Organic-inorganic hybrid membranes: Solving the trade-off phenomenon between permeation flux and selectivity in pervaporation. Industrial and Engineering Chemistry Research, 2009. 48(8): 4002-4013.
    [6] Sairam, M., Patil, M.B., Veerapur, R.S., et al., Novel dense poly(vinyl alcohol)-TiO_2 mixed matrix membranes for pervaporation separation of water-isopropanol mixtures at 30°C. Journal of Membrane Science, 2006. 281(1-2): 95-102.
    [7] Yu, L.Y., Shen, H.M., and Xu, Z.L., PVDF-TiO_2 composite hollow fiber ultrafiltration membranes prepared by TiO_2 sol-gel method and blending method. Journal of Applied Polymer Science, 2009. 113(3): 1763-1772.
    [8] Aerts, P., Greenberg, A.R., Leysen, R., et al., The influence of filler concentration on the compaction and filtration properties of Zirfon?-composite ultrafiltration membranes. Separation and Purification Technology, 2001. 22-23: 663-669.
    [9] Carlos, L.D., Ferreira, R.A.S., De Zea Bermudez, V., et al., Lanthanide-containing light-emitting organic-inorganic hybrids: A bet on the future. Advanced Materials, 2009. 21(5): 509-534.
    [10] Chapman, P.D., Oliveira, T., Livingston, A.G., et al., Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008. 318(1-2): 5-37.
    [11] Cheetham, A.K., Rao, C.N.R., and Feller, R.K., Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006(46): 4780-4795.
    [12] Chen, Z., Holmberg, B., Li, W., et al., Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chemistry of Materials, 2006. 18(24): 5669-5675.
    [13] Choudalakis, G. and Gotsis, A.D., Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 2009. 45(4): 967-984.
    [14] Chung, T.S., Jiang, L.Y., Li, Y., et al., Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science (Oxford), 2007. 32(4): 483-507.
    [15] Ismail, A.F., Goh, P.S., Sanip, S.M., et al., Transport and separation properties of carbon nanotube-mixed matrix membrane. Separation and Purification Technology, 2009. 70(1): 12-26.
    [16] Jones, D.J. and Roziere, J., Advances in the Development of Inorganic-Organic Membranes for Fuel Cell Applications. Fuel Cells I, 2008. 215: 219-264.
    [17] Yang, D., Li, J., Jiang, Z., et al., Chitosan/TiO_2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 2009. 64(13): 3130-3137.
    [18] Jian-hua, T., Peng-fei, G., Zhi-yuan, Z., et al., Preparation and performance evaluation of a Nafion-TiO_2 composite membrane for PEMFCs. International Journal of Hydrogen Energy, 2008. 33(20): 5686-5690.
    [19] Yang, F., Ou, Y., and Yu, Z., Polyamide 6/silica nanocomposites prepared by in situ polymerization. Journal of Applied Polymer Science, 1998. 69(2): 355-361.
    [20] Zhang, P., Zhang, H.P., Li, Z.H., et al., Composite polymer electrolytes prepared by in situ copolymerization of poly(methyl methacrylate-acrylonitrile) on the surface of poly(methyl methacrylate)-coated nano-TiO_2. Polymers for Advanced Technologies, 2009. 20(6): 571-575.
    [21] Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997. 277(5330): 1232-1237.
    [22] Wang, L., Tang, F., Ozawa, K., et al., Layer-By-Layer assembled thin films of inorganic nanomaterials: Fabrication and photo-electrochemical properties. International Journal of Surface Science and Engineering, 2009. 3(1-2): 44-63.
    [23] Zhang, X., Chen, H., and Zhang, H., Layer-by-layer assembly: From conventional to unconventional methods. Chemical Communications, 2007(14): 1395-1405.
    [24] Jiang, L.Y., Chung, T.S., and Kulprathipanja, S., Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation. AIChE Journal, 2006. 52(8): 2898-2908.
    [25] Kotov, N.A., Dékány, I., and Fendler, J.H., Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. Journal of Physical Chemistry, 1995. 99(35): 13065-13069.
    [26] Dahl, J.A., Maddux, B.L.S., and Hutchison, J.E., Toward greener nanosynthesis. Chemical Reviews, 2007. 107(6): 2228-2269.
    [27] Dickerson, M.B., Jones, S.E., Cai, Y., et al., Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO_2 from aqueous solutions at room temperature. Chemistry of Materials, 2008. 20(4): 1578-1584.
    [28] Estroff, L.A., Introduction: Biomineralization. Chemical Reviews, 2008. 108(11): 4329-4331.
    [29] Evans, J.S., "Tuning in" to mollusk shell nacre- and prismatic-associated protein terminal sequences. Chemical Reviews, 2008. 108(11): 4455-4462.
    [30] Faivre, D. and Schüler, D., Magnetotactic bacteria and magnetosomes. Chemical Reviews, 2008. 108(11): 4875-4898.
    [31] Hildebrand, M., Diatoms, biomineralization processes, and genomics. Chemical Reviews, 2008. 108(11): 4855-4874.
    [32] Meldrum, F.C. and C?lfen, H., Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews, 2008. 108(11): 4332-4432.
    [33] Katagiri, K., Suzuki, T., Muto, H., et al., Low temperature crystallization of TiO_2 in layer-by-layer assembled thin films formed from water-soluble Ti-complex and polycations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 321(1-3): 233-237.
    [34] Bae, T.H. and Tak, T.M., Effect of TiO_2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science, 2005. 249(1-2): 1-8.
    [35] Bae, T.H., Kim, I.C., and Tak, T.M., Preparation and characterization of fouling-resistant TiO_2 self-assembled nanocomposite membranes. Journal of Membrane Science, 2006. 275(1-2): 1-5.
    [36] Yang, Y. and Wang, P., Preparation and characterizations of a new PS/TiO_2 hybrid membranes by sol-gel process. Polymer, 2006. 47(8): 2683-2688.
    [37] Yang, Y., Zhang, H., Wang, P., et al., The influence of nano-sized TiO_2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 2007. 288(1-2): 231-238.
    [38] Wu, G., Gan, S., Cui, L., et al., Preparation and characterization of PES/TiO_2 composite membranes. Applied Surface Science, 2008. 254(21): 7080-7086.
    [39] Lee, H.S., Im, S.J., Kim, J.H., et al., Polyamide thin-film nanofiltration membranes containing TiO_2 nanoparticles. Desalination, 2008. 219(1-3): 48-56.
    [40] Damodar, R.A., You, S.J., and Chou, H.H., Study the self cleaning, antibacterial and photocatalytic properties of TiO_2 entrapped PVDF membranes. Journal of Hazardous materials, 2009. 172(2-3): 1321-1328.
    [41] Li, J.F., Xu, Z.L., Yang, H., et al., Effect of TiO_2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 2009. 255(9): 4725-4732.
    [42] Soroko, I. and Livingston, A., Impact of TiO_2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. Journal of Membrane Science, 2009. 343(1-2): 189-198.
    [43] Baglio, V., Aricò, A.S., Di Blasi, A., et al., Nafion-TiO_2 composite DMFC membranes: Physico-chemical properties of the filier versus electrochemical performance. Electrochimica Acta, 2005. 50(5): 1241-1246.
    [44] Saccà, A., Carbone, A., Passalacqua, E., et al., Nafion-TiO_2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). Journal of Power Sources, 2005. 152(1-2): 16-21.
    [45] Rhee, C.H., Kim, Y., Lee, J.S., et al., Nanocomposite membranes of surface-sulfonated titanate and Nafion? for direct methanol fuel cells. Journal of Power Sources, 2006. 159(2): 1015-1024.
    [46] Wu, Z., Sun, G., Jin, W., et al., Nafion? and nano-size TiO_2-SO42- solid superacid composite membrane for direct methanol fuel cell. Journal of Membrane Science, 2008. 313(1-2): 336-343.
    [47] Devrim, Y., Erkan, S., Ba?, N., et al., Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2009. 34(8): 3467-3475.
    [48] Santiago, E.I., Isidoro, R.A., Dresch, M.A., et al., Nafion-TiO_2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochimica Acta, 2009. 54(16): 4111-4117.
    [49] Nunes, S.P., Ruffmann, B., Rikowski, E., et al., Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 2002. 203(1-2): 215-225.
    [50] Di Vona, M.L., Ahmed, Z., Bellitto, S., et al., SPEEK-TiO_2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. Journal of Membrane Science, 2007. 296(1-2): 156-161.
    [51] Kalappa, P. and Lee, J.H., Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO_2 nanocomposites for a direct methanol fuel cell. Polymer International, 2007. 56(3): 371-375.
    [52] Wu, H., Hou, W., Wang, J., et al., Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. Journal of Power Sources, 2010. 195(13): 4104-4113.
    [53] Bernardo, P., Drioli, E., and Golemme, G., Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 2009. 48(10): 4638-4663.
    [54] [54] Hu, Q., Marand, E., Dhingra, S., et al., Poly(amide-imide)/TiO_2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science, 1997. 135(1): 65-79.
    [55] Kong, Y., Du, H., Yang, J., et al., Study on polyimide/TiO_2 nanocomposite membranes for gas separation. Desalination, 2002. 146(1-3): 49-55.
    [56] Kubacka, A., Serrano, C., Ferrer, M., et al., High-performance dual-action polymer-TiO_2 nanocomposite films via melting processing. Nano Letters, 2007. 7(8): 2529-2534.
    [57] Krumov, N., Perner-Nochta, I., Oder, S., et al., Production of inorganic nanoparticles by microorganisms. Chemical Engineering and Technology, 2009. 32(7): 1026-1035.
    [58] Korbekandi, H., Iravani, S., and Abbasi, S., Production of nanoparticles using organisms Production of nanoparticles using organisms. Critical Reviews in Biotechnology, 2009. 29(4): 279-306.
    [59] Mohanpuria, P., Rana, N.K., and Yadav, S.K., Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 2008. 10(3): 507-517.
    [60] Crookes-Goodson, W.J., Slocik, J.M., and Naik, R.R., Bio-directed synthesis and assembly of nanomaterials. Chemical Society Reviews, 2008. 37(11): 2403-2412.
    [61] Mandal, D., Bolander, M.E., Mukhopadhyay, D., et al., The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 2006. 69(5): 485-492.
    [62] Eisenstein, M., Bacteria find work as amateur chemists. Nature Methods, 2005. 2(1): 6-7.
    [63] Sastry, M., Ahmad, A., Khan, M.I., et al., Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 2003. 85(2): 162-170.
    [64] Klaus-Joerger, T., Joerger, R., Olsson, E., et al., Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 2001. 19(1): 15-20.
    [65] Southam, G. and Beveridge, T.J., The in vitro formation of placer gold by bacteria. Geochimica Et Cosmochimica Acta, 1994. 58(20): 4527-4530.
    [66] Silver, S., Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 2003. 27(2-3): 341-353.
    [67] Slawson, R.M., Vandyke, M.I., Lee, H., et al., Germanium and silver resisitance, accumulation, and toxicity in microorganisms. Plasmid, 1992. 27(1): 72-79.
    [68] Klaus, T., Joerger, R., Olsson, E., et al., Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(24): 13611-13614.
    [69] Joerger, R., Klaus, T., and Granqvist, C.G., Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials, 2000. 12(6): 407-409.
    [70] Roh, Y., Lauf, R.J., McMillan, A.D., et al., Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Communications, 2001. 118(10): 529-534.
    [71] Nair, B. and Pradeep, T., Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Crystal Growth & Design, 2002. 2(4): 293-298.
    [72] Yong, P., Rowson, N.A., Farr, J.P.G., et al., Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 2002. 80(4): 369-379.
    [73] Sweeney, R.Y., Mao, C., Gao, X., et al., Bacterial biosynthesis of cadmium sulfide nanocrystals. Chemistry & Biology, 2004. 11(11): 1553-1559.
    [74] Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., et al., Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 2000. 290(5497): 1744-1747.
    [75] Husseiny, M.I., El-Aziz, M.A., Badr, Y., et al., Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007. 67(3-4): 1003-1006.
    [76] Lengke, M.F., Fleet, M.E., and Southam, G., Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes. Langmuir, 2006. 22(6): 2780-2787.
    [77] Lengke, M.F., Ravel, B., Fleet, M.E., et al., Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environmental Science and Technology, 2006. 40(20): 6304-6309.
    [78] Lengke, M.F., Fleet, M.E., and Southam, G., Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial Biomass with a palladium(II) chloride complex. Langmuir, 2007. 23(17): 8982-8987.
    [79] Parikh, R.Y., Singh, S., Prasad, B.L.V., et al., Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. ChemBioChem, 2008. 9(9): 1415-1422.
    [80] Ahmad, A., Senapati, S., Khan, M.I., et al., Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 2003. 19(8): 3550-3553.
    [81] Ahmad, A., Senapati, S., Khan, M.I., et al., Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 2003. 14(7): 824-828.
    [82] Dameron, C.T., Reese, R.N., Mehra, R.K., et al., Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989. 338(6216): 596-597.
    [83] Kowshik, M., Deshmukh, N., Vogel, W., et al., Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002. 78(5): 583-588.
    [84] Kowshik, M., Vogel, W., Urban, J., et al., Microbial Synthesis of semiconductor PbS nanocrystallites. Advanced Materials, 2002. 14(11): 815-818.
    [85] Cui, J., He, W., Liu, H., et al., Ordered hierarchical mesoporous anatase TiO_2 from yeast biotemplates. Colloids and Surfaces B: Biointerfaces, 2009. 74(1): 274-278.
    [86] Mukherjee, P., Ahmad, A., Mandal, D., et al., Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition, 2001. 40(19): 3585-3589.
    [87] Mukherjee, P., Ahmad, A., Mandal, D., et al., Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 2001. 1(10): 515-519.
    [88] Shankar, S.S., Ahmad, A., Pasricha, R., et al., Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 2003. 13(7): 1822-1826.
    [89] Mukherjee, P., Senapati, S., Mandal, D., et al., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 2002. 3(5): 461-463.
    [90] Ahmad, A., Mukherjee, P., Senapati, S., et al., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B-Biointerfaces, 2003. 28(4): 313-318.
    [91] Senapati, S., Ahmad, A., Khan, M.I., et al., Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 2005. 1(5): 517-520.
    [92] Ahmad, A., Mukherjee, P., Mandal, D., et al., Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 2002. 124(41): 12108-12109.
    [93] Bansal, V., Rautaray, D., Ahmad, A., et al., Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Materials Chemistry, 2004. 14(22): 3303-3305.
    [94] Bansal, V., Rautaray, D., Bharde, A., et al., Fungus-mediated biosynthesis of silica and titania particles. Journal of Materials Chemistry, 2005. 15(26): 2583-2589.
    [95] Bansal, V., Sanyal, A., Rautaray, D., et al., Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Advanced Materials, 2005. 17(7): 889-+.
    [96] Bansal, V., Ahmad, A., and Sastry, M., Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. Journal of the American Chemical Society, 2006. 128(43): 14059-14066.
    [97] Bharde, A., Rautaray, D., Bansal, V., et al., Extracellular biosynthesis of magnetite using fungi. Small, 2006. 2(1): 135-141.
    [98] Bansal, V., Syed, A., Bhargava, S.K., et al., Zirconia enrichment in zircon sand by selective fungus-mediated bioleaching of silica. Langmuir, 2007. 23(9): 4993-4998.
    [99] [99] Bharde, A., Wani, A., Shouche, Y., et al., Bacterial aerobic synthesis of nanocrystalline magnetite. Journal of the American Chemical Society, 2005. 127(26): 9326-9327.
    [100] Bharde, A.A., Parikh, R.Y., Baidakova, M., et al., Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir, 2008. 24(11): 5787-5794.
    [101] Singh, S., Bhatta, U.M., Satyam, P.V., et al., Bacterial synthesis of silicon/silica nanocomposites. Journal of Materials Chemistry, 2008. 18(22): 2601-2606.
    [102] Rautaray, D., Sanyal, A., Adyanthaya, S.D., et al., Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir, 2004. 20(16): 6827-6833.
    [103] Ahmad, A., Rautaray, D., and Sastry, M., Biogenic calcium carbonate: Calcite crystals of variable morphology by the reaction of aqueous Ca2+ ions with fungi. Advanced Functional Materials, 2004. 14(11): 1075-1080.
    [104] Rautaray, D., Ahmad, A., and Sastry, M., Biological synthesis of metal carbonate minerals using fungi and actinomycetes. Journal of Materials Chemistry, 2004. 14(14): 2333-2340.
    [105] Rautaray, D., Ahmad, A., and Sastry, M., Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. Journal of the American Chemical Society, 2003. 125(48): 14656-14657.
    [106] Bansal, V., Poddar, P., Ahmad, A., et al., Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. Journal of the American Chemical Society, 2006. 128(36): 11958-11963.
    [107] Bhainsa, K.C. and D'Souza, S.F., Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 2006. 47(2): 160-164.
    [108] Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., et al., Alfalfa Sprouts?: A Natural source for the synthesis of silver nanoparticles. Langmuir, 2003. 19(4): 1357-1361.
    [109] Gardea-Torresdey, J.L., Rodriguez, E., Parsons, J.G., et al., Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearisusing thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry, 2005. 382(2): 347-352.
    [110] Sharma, N.C., Sahi, S.V., Nath, S., et al., Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science and Technology, 2007. 41(14): 5137-5142.
    [111] Haverkamp, R.G., Marshall, A.T., and Van Agterveld, D., Pick your carats: Nanoparticles of gold-silver-copper alloy produced in vivo. Journal of Nanoparticle Research, 2007. 9(4): 697-700.
    [112] Shankar, S.S., Ahmad, A., and Sastry, M., Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 2003. 19(6): 1627-1631.
    [113] Shankar, S.S., Rai, A., Ahmad, A., et al., Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004. 275(2): 496-502.
    [114] Shankar, S.S., Rai, A., Ankamwar, B., et al., Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004. 3(7): 482-488.
    [115] Shankar, S.S., Rai, A., Ahmad, A., et al., Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 2005. 17(3): 566-572.
    [116] Chandran, S.P., Chaudhary, M., Pasricha, R., et al., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006. 22(2): 577-583.
    [117] Jiale, H. and et al., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007. 18(10): 105104.
    [118] Armendariz, V., Herrera, I., peralta-videa, J.R., et al., Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research, 2004. 6(4): 377-382.
    [119] Rai, A., Singh, A., Ahmad, A., et al., Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006. 22(2): 736-741.
    [120] Singh, A., Chaudhari, M., and Sastry, M., Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing. Nanotechnology, 2006. 17(9): 2399-2405.
    [121] Klemm, D., Heublein, B., Fink, H.P., et al., Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 2005. 44(22): 3358-3393.
    [122] Czaja, W.K., Young, D.J., Kawecki, M., et al., The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007. 8(1): 1-12.
    [123] Shoda, M. and Sugano, Y., Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 2005. 10(1): 1-8.
    [124] Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., et al., Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001. 36(9): 2107-2131.
    [125] Iguchi, M., Yamanaka, S., and Budhiono, A., Bacterial cellulose - a masterpiece of nature's arts. Journal of Materials Science, 2000. 35(2): 261-270.
    [126] Klemm, D., Schumann, D., Udhardt, U., et al., Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Progress in Polymer Science (Oxford), 2001. 26(9): 1561-1603.
    [127] Juntaro, J., Pommet, M., Kalinka, G., et al., Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Advanced Materials, 2008. 20(16): 3122-3126.
    [128] Luo, H., Xiong, G., Huang, Y., et al., Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Materials Chemistry and Physics, 2008. 110(2-3): 193-196.
    [129] Rambo, C.R., Recouvreux, D.O.S., Carminatti, C.A., et al., Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science and Engineering C, 2008. 28(4): 549-554.
    [130] Grande, C.J., Torres, F.G., Gomez, C.M., et al., Morphological characterisation of bacterial cellulose-starch nanocomposites. Polymers and Polymer Composites, 2008. 16(3): 181-185.
    [131] Yan, Z., Chen, S., Wang, H., et al., Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydrate Research, 2008. 343(1): 73-80.
    [132] Yano, S., Maeda, H., Nakajima, M., et al., Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose, 2008. 15(1): 111-120.
    [133] Grande, C.J., Torres, F.G., Gomez, C.M., et al., Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomaterialia, 2009. 5(5): 1605-1615.
    [134] Maeda, H., Nakajima, M., Hagiwara, T., et al., Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. Journal of Materials Science, 2006. 41(17): 5646-5656.
    [135] Nakayama, A., Kakugo, A., Gong, J.P., et al., High mechanical strength double-network hydrogel with bacterial cellulose. Advanced Functional Materials, 2004. 14(11): 1124-1128.
    [136] Dubey, V., Pandey, L.K., and Saxena, C., Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosan-poly(vinyl alcohol) blends. Journal of Membrane Science, 2005. 251(1-2): 131-136.
    [137] Yoon, S.H., Jin, H.J., Kook, M.C., et al., Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 2006. 7(4): 1280-1284.
    [138] Nakagaito, A.N., Iwamoto, S., and Yano, H., Bacterial cellulose: The ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A: Materials Science and Processing, 2005. 80(1): 93-97.
    [139] Nogi, M., Handa, K., Nakagaito, A.N., et al., Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Applied Physics Letters, 2005. 87(24): 1-3.
    [140] Nogi, M. and Yano, H., Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Advanced Materials, 2008. 20(10): 1849-1852.
    [141] Evans, B.R., O'Neill, H.M., Malyvanh, V.P., et al., Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics, 2003. 18(7): 917-923.
    [142] Hong, L., Wang, Y.L., Jia, S.R., et al., Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Materials Letters, 2006. 60(13-14): 1710-1713.
    [143] Wan, Y.Z., Hong, L., Jia, S.R., et al., Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Composites Science and Technology, 2006. 66(11-12): 1825-1832.
    [144] Wan, Y.Z., Huang, Y., Yuan, C.D., et al., Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Materials Science and Engineering C, 2007. 27(4): 855-864.
    [145] Barud, H.S., Assun??o, R.M.N., Martines, M.A.U., et al., Bacterial cellulose-silica organic-inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008. 46(3): 363-367.
    [146] Barud, H.S., Barrios, C., Regiani, T., et al., Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering C, 2008. 28(4): 515-518.
    [147] de Santa Maria, L.C., Santos, A.L.C., Oliveira, P.C., et al., Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Materials Letters, 2009. 63(9-10): 797-799.
    [148] Zhang, D. and Qi, L., Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chemical Communications, 2005(21): 2735-2737.
    [149] Sun, D., Yang, J., and Wang, X., Bacterial cellulose/TiO_2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale, 2010. 2(2): 287-292.
    [150] Chen, S., Zou, Y., Yan, Z., et al., Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 2009. 161(2-3): 1355-1359.
    [151] Klemm, D., Schumann, D., Udhardt, U., et al., Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science, 2001. 26(9): 1561-1603.
    [152] Pommet, M., Juntaro, J., Heng, J.Y.Y., et al., Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to rreate hierarchical fiber reinforced nanocomposites. Biomacromolecules, 2008. 9(6): 1643-1651.
    [153] Yu, J.-G., Yu, H.-G., Cheng, B., et al., The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition. The Journal of Physical Chemistry B, 2003. 107(50): 13871-13879.
    [154] Lu, F.-H. and Chen, H.-Y., XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere. Thin Solid Films, 1999. 355-356: 374-379.
    [155] Oh, S.Y., Yoo, D.I., Shin, Y., et al., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 2005. 340(3): 417-428.
    [156] Maréchal, Y. and Chanzy, H., The hydrogen bond network in Iβcellulose as observed by infrared spectrometry. Journal of Molecular Structure, 2000. 523(1-3): 183-196.
    [157] Haigler, C., Brown, R., Jr, and Benziman, M., Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science, 1980. 210(4472): 903-906.
    [158] Focher, B., Palma, M.T., Canetti, M., et al., Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products, 2001. 13(3): 193-208.
    [159] Tahir, M.N., Theato, P., Muller, W.E.G., et al., Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chemical Communications, 2005(44): 5533-5535.
    [160] Kr?ger, N., Dickerson, M.B., Ahmad, G., et al., Bioenabled synthesis of rutile (TiO_2) at ambient temperature and neutral pH. Angewandte Chemie International Edition, 2006. 45(43): 7239-7243.
    [161] Luckarift, H., Dickerson, M., Sandhage, K., et al., Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small, 2006. 2(5): 640-643.
    [162] Sewell, S.L. and Wright, D.W., Biomimetic Synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chemistry of Materials, 2006. 18(13): 3108-3113.
    [163] Cole, K.E. and Valentine, A.M., Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules, 2007. 8(5): 1641-1647.
    [164] Kharlampieva, E., Tsukruk, T., Slocik, J.M., et al., Bioenabled surface-mediated growth of titania nanoparticles. Advanced Materials, 2008. 20(17): 3274-3279.
    [165] Klem, M.T., Young, M., and Douglas, T., Biomimetic synthesis of TiO_2 inside a viral capsid. Journal of Materials Chemistry, 2008. 18(32): 3821-3823.
    [166] Sewell, S.L., Rutledge, R.D., and Wright, D.W., Versatile biomimetic dendrimer templates used in the formation of TiO_2 and GeO2. Dalton Transactions, 2008(29): 3857-3865.
    [167] Kr?ger, N. and Poulsen, N., Diatoms - From cell wall biogenesis to nanotechnology, in Annual Review of Genetics. 2008. p. 83-107.
    [168] Schr?der, H.C., Wang, X., Tremel, W., et al., Biofabrication of biosilica-glass by living organisms. Natural Product Reports, 2008. 25(3): 455-474.
    [169] Wang, X. and Müller, W.E.G., Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology, 2009. 27(6): 375-383.
    [170] Alberti, G. and Casciola, M., Composite membranes for medium-temperature PEM fuel cells. Annual Review of Materials Research, 2003. 33(1): 129-154.
    [171] Mustarelli, P., Carollo, A., Grandi, S., et al., Composite proton-conducting membranes for PEMFCs. Fuel Cells, 2007. 7(6): 441-446.
    [172] Xu, J., Jia, C., Cao, B., et al., Electrochemical properties of anatase TiO_2 nanotubes as an anode material for lithium-ion batteries. Electrochimica Acta, 2007. 52(28): 8044-8047.
    [173] Li, J., Tang, Z., and Zhang, Z., H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005. 7(1): 62-67.
    [174] Yuan, W., Wu, H., Zheng, B., et al., Sorbitol-plasticized chitosan/zeolite hybrid membrane for direct methanol fuel cell. Journal of Power Sources, 2007. 172(2): 604-612.
    [175] Winberg, P., DeSitter, K., Dotremont, C., et al., Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Macromolecules, 2005. 38(9): 3776-3782.
    [176] Ma, R., Bando, Y., and Sasaki, T., Nanotubes of lepidocrocite titanates. Chemical Physics Letters, 2003. 380(5-6): 577-582.
    [177] Geng, J.Q., Hang, Z.Y., Wang, Y., et al., Carbon-modified TiO_2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method. Scripta Materialia, 2008. 59(3): 352-355.
    [178] Mao, Y. and Wong, S.S., Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. Journal of the American Chemical Society, 2006. 128(25): 8217-8226.
    [179] Bavykin, D.V., Parmon, V.N., Lapkin, A.A., et al., The effect of hydrothermal conditions on the mesoporous structure of TiO_2 nanotubes. Journal of Materials Chemistry, 2004. 14(22): 3370-3377.
    [180] Kreuer, K.-D., Proton conductivity: materials and applications. Chemistry of Materials, 1996. 8(3): 610-641.
    [181] Smitha, B., Sridhar, S., and Khan, A.A., Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules, 2004. 37(6): 2233-2239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700