用户名: 密码: 验证码:
低能耗镁合金微弧氧化电解液设计及添加剂作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金以其密度小、比刚比强度高等优点在航空航天、汽车、电子等领域应用前景广阔。但镁合金耐磨耐蚀性能差限制了其应用范围的进一步扩大。因此对镁合金进行表面改性处理意义重大。微弧氧化以工艺简单环保、膜层性能好等特点在镁合金表面改性方面具有很大优势,但同时微弧氧化属于高电压、大电流密度的工作过程,能耗高限制了其工业化应用进程。发展低能耗微弧氧化技术是解决该问题的关键。本文提出了一种低能耗微弧氧化电解液的设计方法。为选择适当的添加剂,提出了一种基于阳极极化曲线判断微弧氧化起弧电压的方法,以指导选择具有低起弧电压的成膜促进剂;提出了Na_2CO_3诱导析气反应调制膜层结构的反应机制,提高膜层孔隙率进行,降低微弧氧化的工作电压;通过(NaPO_3)_6的络合增厚机制提高了膜层生长的速率。最终本文实现了镁合金低能耗微弧氧化过程并制备了微弧氧化膜层,借助于扫描电镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等手段对膜层的组织和结构进行了分析,利用摩擦磨损试验、腐蚀试验等测试对膜层的性能进行了测试。最后本文在镁合金低能耗电解液中以低于1kW的功率成功实现了一次性对12dm2的镁合金进行微弧氧化处理,以小功率实现了对较大面积试件的处理,体现了低能耗微弧氧化的技术优势。
     镁合金低能耗电解液的设计方法研究表明,选用适当的主盐和pH调节剂,在电解液中引入可以降低微弧氧化起弧电压的成膜促进剂、适量的可以提高膜层表面孔隙率的膜层结构调制剂以及适当的络合增厚剂,可以实现镁合金低能耗微弧氧化。对于镁合金,选用碱性磷酸盐体系作为基础溶液体系,引入成膜促进剂NaF、膜层结构调制剂Na_2CO_3和络合增厚剂(NaPO_3)_6作为低能耗微弧氧化电解液添加剂。
     阳极极化行为对镁合金微弧氧化放电特性指导方法的研究结果表明,阳极极化曲线可以作为判断微弧氧化放电特性的依据,进而选择利于降低微弧氧化起弧电压的成膜促进剂。在金属的阳极极化行为中不能发生钝化现象的,则金属在相应电解液不能发生微弧氧化行为;对于可以使金属前期形成氧化膜的电解液,阳极极化行为中曲线上对应的钝化区间宽度越大,则微弧氧化容易在低电压发生放电;在钝化区间宽度相近的情况下,钝化膜层失稳前极化电流越小则微弧氧化起弧电压越低。Na_2CO_3诱导阳极区CO2析气调制膜层结构的反应机制研究表明,Na_2CO_3添加剂对微弧氧化膜层结构的调制是通过二级析气反应完成的。CO_3~(2-)在电场作用下进入阳极区与Mg元素作用生成MgCO_3,MgCO_3在微弧氧化放电瞬间高温作用下发生分解CO2逸出,熔融的氧化物来不及回填气泡逸出时在膜层留下的大量孔隙,提高了膜层内部孔隙率,气体逸出时留下的通道增加了微弧氧化膜层表面的孔隙率,由此实现对微弧氧化膜层结构的调制。(NaPO_3)_6络合增厚机制研究表明,(NaPO_3)_6通过水解产物络合微弧氧化过程中溶解到电解液的镁元素,络合离子团在电场作用下重新进入阳极区参与反应可提高膜层生长速率。
     单一添加剂及添加剂复合作用对微弧放电特性的影响研究表明,NaF添加剂既可以降低微弧氧化的工作电压,又能有效提高微弧氧化膜层的成膜速率;Na_2CO_3可以有效降低微弧氧化的工作电压;(NaPO_3)_6添加剂对于提高膜层的生长速率具有积极作用。三种添加剂通过这些不同方式都可降低微弧氧化膜层的单位能耗。在镁合金微弧氧化电解液中同时引入NaF、Na_2CO_3以及(NaPO_3)_6三种添加剂可以起到良好的降低微弧氧化膜层单位能耗的效果。采用50g/LNa_3PO_4+2g/L KOH+30g/L NaF+10g/L Na_2CO_3+30g/L (NaPO_3)_6作为AZ31镁合金微弧氧化电解液时,微弧氧化膜层能耗可以低至4.71kJ/dm2·μm。低能耗微弧氧化过程中弧斑燃烧时间极短,并且氧化过程中参与等离子放电种类较常规微弧氧化少。
     添加剂对微弧氧化膜层组织结构及性能的影响研究结果表明,NaF添加剂的引入会使膜层中出现MgF2相,另外会使膜层内部缺陷减少,膜层变致密;适量NaF添加剂的引入有利于提高微弧氧化膜层耐腐蚀性能。Na_2CO_3添加剂的引入能够提高膜层表面和内部孔隙率,但不会改变膜层的组织结构和成分。适当剂量的Na_2CO_3可以提高膜层的耐腐蚀性能,剂量较大时会降低膜层的耐腐蚀性能。(NaPO_3)_6添加剂对微弧氧化膜层形貌有影响,但不降低膜层的致密性;(NaPO_3)_6的引入会在膜层中引入P元素,但不以晶体相形式存在;(NaPO_3)_6添加剂能够提高膜层的电化学腐蚀和耐盐雾腐蚀性能。
     基于对低能耗微弧氧化电解液的研究,本文在AZ31镁合金上制备了低能耗微弧氧化膜层。XRD、FT-IR和TEM等分析结果表明,镁合金低能耗微弧氧化膜层主要为非晶MgO组成。膜层具有与常规微弧氧化膜层相当的耐磨耐蚀性能以及优于常规微弧氧化膜层的可弯折性能。在镁合金低能耗微弧氧化电解液中,以1kW以下功率实现了微弧氧化处理过程,大大扩大现有电源的可处理面积,使得低能耗微弧氧化处理实现了其现实意义。
Magnesium alloys present a great potential in the field of aerospace,automobile, electronic and others for excellent properties such as low density, highspecific strength and specific rigidity. However, low hardness and poor corrosionresistance limit their further applications. So it is necessary for magnesium alloys tohave surface modification treatment. Micro-arc oxidation has been developedrapidly in recent years. However MAO is an anodizing process during which micro-discharges generate dielectric breakdown of the anodic oxide film under highelectric field. The question of high energy consumption limits its further applicationin industrial field. Developing low energy consumption MAO technology is the onlyway to solve the question. In this paper an idea of designing low energyconsumption electrolyte was brought out. A new method on predicting arc-initiatingof micro-arc oxidation by anodic polarization curve was given so as to choose theadditves which could lower the arcing voltage. The mechanism of reaction inducedby sodium carbonate additive to release carbon dioxide to modulate coatingformation was studied and the working voltage could be lowered.Coating formingvelocity was increased by complex reaction induced by sodium hexametahposphate.MAO coating was fabricated on magnesium alloys with low energy consumptionand the microstructure has been investigated by SEM, XRD, and TEM respectively.Meanwhile, the properties of MAO coatings formed on AZ31magnesium alloy havebeen studied. Ultimately a large-scale (12dm2) MAO coating with power less than1kW has been fabricated and the advantage of MAO with lower energy consumptionis demonstrated.
     It can be proposed from the method of designing low energy consumptionelectrolyte that the introduction of additives with the ability to lower the arcingvoltage or additives with modulation effect on increasing the porosity of the coatingis beneficial for lowering the energy consumption. And additives with complexeffect to increase the forming velocity of MAO coating is needed. Phosphate alkaliis suitable to be the basic electrolyte of low energy consumption electrolyte. Andsodium fluoride is chosen to lower the arcing voltage and sodium carbonate isutilized to modulate the structure of the coating. Sodium hexametahposphate isemployed to increase coating velocity.
     A new method on predicting arc igniting of micro-arc oxidation on magnesiumalloy by anodic polarization curve was proposed to choose additives to lower thearcing voltage. The results show that arcing voltage is much dependent on thestability of passivating films formed during anodic polarization process. The arcing voltage is higher with a larger passivation region of the polarization curve. Whenthe stability of passivating films is at about the same level, the arcing voltagebecomes lower in the solution possessing a smaller polarization current at the latersection of passivation curves. Microstructure of the MAO coating can be modulatedby gas evolution on anodes during micro arc oxidation process. The modulatationprocessed with a two-step reaction. Carbonate ions combine with magnesiumelement and then magnesium carbonate decomposes under the high temperature.Carbon dioxide escapes and micropores generate in the coating. Sodiumhexametahposphate is easy to hydrolyze to have hydroniums with complex ability inthe solution. During MAO process some Mg~(2+)cations dissolved could becomplexed and the complex ions could return to anode region in the electrical fieldand take part in the reaction. And it is beneficial to the thickening of the coating.
     Effect of the three additives on MAO discharge has been studied. NaF hasadvantage in lowering the working voltage and increasing coating velocity. Thevoltage could be lowered with the introduction of sodium carbonate with themodulation effect on microstructure of coating and the coating formation velocitycoule be increased with sodium hexametahposphate introduced. Although the modeof reaction is different, the ECPUV could be lowered with introduction of the threeadditives. MAO process with low energy consumption coule be realized with all thethree additives in the electrolyte. In the electrolyte (50g/L Na_3PO_4+2g/L KOH+30g/L NaF+10g/L Na_2CO_3+30g/L (NaPO_3)_6) the ECPUV could be lowered to4.71kJ/dm2·μm. During lower energy consumption MAO a microarc lasts onlyhudrends of microseconds and fewer species of particles take part in the plasmadischarge compared to normal MAO.
     Magnesium fluoride generates with sodium fluoride introduced into theelectrolyte and the coatings become compact. It is beneficial for the corrosionresistance of the coating with a right amount of sodium fluoride in the electrolyte.The porosity of the coating increase without change the phase and composition ofthe coating when sodium carbonate is introduced into the electrolyte. It is beneficialfor the corrosion resistance of the coatings with a certain amount of sodiumcarbonate in the electrolyte and the corrosion resistance becomes weak when theamount is too large. Surface morphology will change with introducing sodiumhexametahposphate into the electrolyte but it has no negative effect on thecompactness of the coating. Phosphorus element is found in the coating formed inelectrolyte with sodium hexametahposphate addition. The coatings fabricated inelectrolyte exhibita good corrosion resistance.
     MAO coatings have been fabricated on magnesium alloys in the low energyconsumption electrolyte. The l coatings mainly are composed of MgO amorphousphase. Experimental results also demonstrate that the performance of the coatings is as good as that of the normal MAO coatings. Even the abending ability of thesample treated by MAO with low energy consumption is better than that treated bynormal MAO process.
     To investigate the feasibility of industrial application of ow energyconsumption MAO, a AZ31magnesium alloy plate with the area of12dm~2has beentreated by MAO process with power less than1kW. This promotion the treatingability of the MAO power equipment and industrialization of this technology maybe realized.
引文
[1]张丁非,彭建,丁培道,等.镁及镁合金的资源、应用及其发展现状[J].材料导报,2004,18(4):72-76.
    [2] Eliezer D, Aghiion E, Froes F H. Magnesium Science, Technology andApplications[J]. Advanced Performance Materials,1998,5(3):201-212.
    [3]许越,陈湘.镁合金表面腐蚀特性及防护技术[J].哈尔滨工业大学学报,2001,3(6):753-755.
    [4]李青.镁的表面处理[J].功能材料,1996,27(3):281-282.
    [5]张永君,严川伟,王福会,等.镁及镁合金环保型阳极氧化电解液及其工艺[J].材料保护,2002,35(3):39-40.
    [6] Bardon T F, Johnson C B. The Effect of Electrolyte on the Anodized Finish ofa Magnesium alloy[J]. Plating and Surface Finishing,2004,82(5):76-79.
    [7] Brillas E, Cabot P L, Centellas F, et al. Electrochemical Oxidation of High-Purity and Homogeneous Al-Mg Alloys with Low Mg Contents[J].Electrochimica Acta,1998,43(7):799-812.
    [8]边风刚,李国禄,刘金海,等.镁合金表面处理的发展现状[J].材料保护,2002,35(3):1-3.
    [9] Majumdar J D, Galun R, Mordike B L, et al. Effect of Laser Surface Meltingon Corrosion and Wear Resistance of a Commercial Magnesium Alloy[J].Materials Science and Engineering,2003, A361(1-2):119-129.
    [10] Chen Z T, Li G, Wu Z Q, et al. The Crack Propagating Behavior of CompositeCoatings Prepared by PEO on Aluminized Steel during in Situ TensileProcessing[J]. Materials Science and Engineering: A,2011,528(3):1409-1414.
    [11]薛文斌,王超,陈如意,等. ZL101铸造铝合金微弧氧化陶瓷层的组织和性能[J].材料热处理学报,2003,24(2):20-23.
    [12] Kadary V, Klein N. Electrical Breakdown during the Anodic Grown ofTantalum Pentoxide[J]. Journal of the Electrochemical Society,1998,27(1):139-151.
    [13] Tian J, Luo Z Z, Qi S K, et al. Structure and Antiwear Behavior of Micro-ArcOxidized Coatings on Aluminum Alloy[J]. Surface and Coatings Technology,2002,154(1):1-7.
    [14] Wasekar N P, Jyothirmayi A, Krishna L R, et al. Effect of Micro Arc OxidationCoatings on Corrosion Resistance of6061-Al Alloy[J]. Journal of MaterialsEngineering and Performance,2008,17(5):708-713.
    [15] Jin F Y, Tong H H, Li J, et al. Structure and Microwave-Absorbing Propertiesof Fe-Particle Containing Alumina Prepared by Micro-Arc DischargeOxidation[J]. Surface and Coatings Technology,2006,201(1-2):292-295.
    [16] Arslan E, Totik Y, Demirci E E, et al. High Temperature Wear Behavior ofAluminum Oxide Layers Produced by AC Micro Arc Oxidation[J]. Surfaceand Coatings Technology,2009,204(6-7):829-833.
    [17]袭建军,辛铁柱,罗晶,等.铝及铝合金微弧氧化技术的特点及应用[J].航天制造技术,2002,4:44-47.
    [18] Shlottig F, Schrechenbach J, Marx G. Preparation and Characterization ofChromium and Sodium Tantalate Layers by Anodic Spark Deposition[J].Fresenius’ Journal of Analytical Chemistry,1999,363(2):209-211.
    [19]薛文斌,邓志威,来永春,等.铝合金微弧氧化量热分析[J].北京师范大学学报(自然科学版),1996,32(3):386-390.
    [20] Güntherschulze A, Betz H. Die Elektronenstr mung in Isolatoren BeiExtremen Feldst rken[J]. Zeitschrift für Physik A Hadrons and Nuclei,1934,91(1-2):70-96.
    [21] Van T B, Sherman D B, Gerald P W. Mechanism of Anodic SparkDeposition[J]. American Ceramic Society Bulletin,1977,56(6):563-566.
    [22] Monfort F, Berkani A, Matykina E, et al. Development of Anodic Coatings onAluminium under Sparking Conditions in Silicate Electrolyte[J]. CorrosionScience,2007,49(2):672-693.
    [23] Yerokhin A L, Ashitkov R V. Phase Formation in Ceramic Coatings duringPlasma Electrolytic Oxidation of Aluminum Alloys[J]. Ceramics International,2004,24(1):1-6.
    [24] Rakoch A G, Khokhlov V V, Bautin V A, et al. Model Concepts on theMechanism of Microarc Oxidation of Metal Materials and the Control overThis Process[J]. Protection of Metals,2006,42(2):158-169.
    [25] Barik R C, Wharton J A, Wood R J K, et al. Corrosion, Erosion and Erosion-Vorrosion Performance of Plasma Electrolytic Oxidation (PEO) DepositedAl2O3Coatings[J]. Surface and Coatings Technology,2005,199(2-3):158-167.
    [26] Xue W B, Wang C, Tian H, et al. Corrosion Behaviors and Galvanic Studies ofMicroarc Oxidation Films on Al-Zn-Mg-Cu Alloy[J]. Surface and CoatingsTechnology,2007,201(21):8695-8701.
    [27]吴汉华,汪剑波,龙北玉,等.电流密度对铝合金微弧氧化膜物理化学特性的影响[J].物理学报,2005,54(12):5743-5478.
    [28] Vijh A K. Sparking Voltages and Side Reactions during Anodization of ValveMetals in Terms of Electron Tunnelling[J]. Corrosion Science,1971,11(6):411-417.
    [29] Curran J A, Clyne T W. Porosity in Plasma Electrolytic Oxide Coatings[J].Acta Materialia,2006,54(7):1985-1993.
    [30] Ikonopisov S. Theory of Electrical Breakdown during Formation of BarrierAnodic Films[J]. Electrochimica Acta,1977,22(10):1077-1082.
    [31] Albella J M, Montern I. Electron Injection and Avalancke during the AnodicOxidation of Tantalum[J]. Journal of The Electrochemical Society,1984,131:1101-1108.
    [32] Albella J M, Montero I, Martínez-Duart J M. Anodization and BreakdownModel of Ta2O5Films[J]. Thin Solid Films,1985,125(1-2):57-62.
    [33] Timoshenko A V, Opara B K, Magurova Y V, et al. Formation of ProtectiveWear resistent Oxide Coatings on Aluminium Alloys by the MicroplasmaMethods from Aqueous Electrolyte Solutions(C).12th Procedure InternationalCorrosion Congress Nace:Houston,1993,1(12):280-293.
    [34] Dittrich K H. Microarc Oxidation of Aluminum Alloy Components[J]. CrystalResearch and Technology,1984,19(1):93-96.
    [35] Krysmann W, Kurze P, Dittrich K H, et al. Process Characteristics andParameters of Anodic Oxidation by Spark Discharge(ANOF)[J]. CrystalResearch and Technology,1984,19(7):973-979.
    [36] Nikolacv A V, Markov G V, Peshchevitskii B I. A New PhenomenonEletrolysis[J]. Izv Sib Otd Akad Nauk SSSR, Ser Khim,1977,34(5):32-35.
    [37] Yerokhin A L, Snizhko L O, Gurevina N L, et al. Discharge Characterizationin Plasma Electrolytic Oxidation of Aluminum[J]. Journal of Physiscs D:Applied Physics,2003,36(17):110-2120.
    [38] Dunleavy C S, Golosnoy I O, Curran J A, et al. Characterisation of DischargeEvents during Plasma Electrolytic Oxidation[J]. Surface and CoatingsTechnology,2009,203(22):3410-3419.
    [39] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEOCoatings on Magnesium Alloys[J]. Surface and Coatings Technology,2009,203(16):2207-2220.
    [40] Yao Z P, Jiang Y L, Jia F Z, et al. Growth Characteristics of PlasmaElectrolytic Oxidation Ceramic Coatings on Ti-6Al-4V Alloy[J]. AppliedSurface Science,2008,254(13):4084-4091.
    [41] Hussein R O, Nie X, Northwood D O, et al. Spectroscopic Study ofElectrolytic Plasma and Discharging Behaviour during The PlasmaElectrolytic Oxidation (PEO) Process[J]. Journal of Physics D: AppliedPhysics,2010,43(10):105203-105215.
    [42]张新平,熊守美,许庆彦,等.微弧氧化工艺参数对覆盖层厚度的影响规律模型[J].材料保护,2004,37(8):19-20.
    [43]邓志威,薛文彬,汪新福,等.铝合金微弧氧化陶瓷膜的形貌及相组成分析[J].北京师范大学学报(自然科学版),1996,1:67-70.
    [44] Barik R C, Wharton J A, Wood R J K, et al., Corrosion, Erosion and Erosion-Corrosion Performance of Plasma Electrolytic Oxidation (PEO) DepositedAl2O3Coatings[J]. Surface and Coatings Technology,2005,199:158-167.
    [45] Voevodin A A, Yerokhin A L, Lyubimov V V, et al. Characterization of WearProtective Al-Si-O Coatings Formed on Al-Based Alloys by Microarcdischarge Treatment[J]. Surface and Coatings Technology,1996,86-87:516-521.
    [46] Nie X, Wilson A, Leyland A, et al., Deposition of Duplex Al2O3/DLCCoatings on Al Alloys for Tribological Applications using a Combined Micro-arc Oxidation and Plasma-immersion Ion Implantation Technique[J]. Surfaceand Coatings Technology,2000,121:506-513.
    [47] Nykyforchyn H M, Klapkiv M D, Posuvailo V M, et al. Properties ofSynthesised Oxide-ceramic Coatings in Electrolyte Plasma on AluminiumAlloys[J]. Surface and Coatings Technology,1998,100-101:219-221.
    [48] Krishna L R, Somaraju K R C, Sundararajan G, et al. The TribologicalPerformance of Ultra-hard Ceramic Composite Coatings Obtained throughMicroarc Oxidation[J]. Surface and Coatings Technology,2003,163-164:484-490.
    [49]薛文斌,王超,马辉,等. TA2纯钛表面微弧氧化膜的成分和相结构分析[J].稀有金属材料与工程,2002,5:345-348.
    [50] Wang Y M, Jiang B L, Lei T Q, et al. Microarc Oxidation Coatings Formed onTi6Al4V in Na2SiO3System Solution: Microstructure, Mechanical andTribological Properties[J]. Surface and Coatings Technology,2006,201:82-89.
    [51] M. Dwain. A Global Review of Magnesium Parts in Automobile[J]. LightMetal Age,1996,8:60-67.
    [52] Wu K, Wang Y Q, Zheng M Y, et al. Effects of Microarc Oxidation SurfaceTreatment on the Mechanical Properties of Mg Alloy and Mg MatrixComposites[J]. Materials Science and Engineering A,2007,447:227-232.
    [53] Chen F, Zhou H, Yao B, et al. Corrosion Resistance Property of the CeramicCoating Obtained through Microarc Oxidation on the AZ31Magnesium AlloySurfaces[J]. Surface and Coatings Technology,2007,201:4905-4908.
    [54] Boinet M, Verdier S, Maximovitch S, et al. Application of AcousticEmission Technique for in Situ study of Plasma Anodizing[J]. NDT&Einternational,2004,37(3):213-219.
    [55] Wang Y L, Jiang Z H, Liu X R, et al. Influence of Treating Frequency onMicrostructure and Properties of Al2O3Coating on304Stainless Steel byCathodic Plasma Electrolytic Deposition[J]. Applied Surface Science,2009,255(21):8836-8840.
    [56]高殿奎,沈德久,王玉林,等.低碳钢热浸镀铝微弧氧化陶瓷层厚度研究[J].材料保护,2001,5:26-28.
    [57]贺子凯,唐培松.不同基体材料微弧氧化生产陶瓷膜的研究[J].材料保护,2002,35(4):31.
    [58] Khaselev O, Weiss D, Yahalom J. Structures and Composition of Anodic FilmsFormed on Binary Mg-Al alloys in KOH-Aluminate Solutions underContinuous Sparking[J]. Corrosion Science,2001,43:1295-1307.
    [59] Mukhopadhyay A K, Rama R V V, Chakravorty C R. The Influence ofConstituent Particles on the Quality of Hard Anodic Coating on Fully HeatTreated AA7075Extrusion Products[J]. Materials Science Forum,1996,217-222:1617-1622.
    [60]宋雨来.稀土改性AZ91镁合金组织与腐蚀性能[D].吉林大学博士论文,2006:89-91.
    [61] Krishtal M M. Effect of Structure of Aluminum-Silicon Alloys on the Processof Formation and Characteristics of Oxide Layer in Microarc Oxidizing[J].Metal Science and Heat Treatment,2004,46:378-384.
    [62] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEOCoatings on Magnesium Alloys[J]. Surface and Coatings Technology,2009,203(16):2207-2220.
    [63] Guntherschulze A, BetZ H. Die Elektronenstromungin Isolatorenbei ExtremenFeledstarken[J]. Zeitchrift fur Phisik,1934,91:70-96.
    [64] Kurze R, Krysmann G A. Magnesium Leglierungen ElectrochemischBeschichten[J]. Metal-loberflache,1994,48(2):104-105.
    [65] Eauvir J,Gersion M. The AlTiM TD Process Enables New Application forAluminium[J]. Galvan ograno-Traitement de Surface(France).2001,67(710):173-175.
    [66] Wang Y M, Jia D C, Guo L X, et al. Effect of Discharge Pulsating on MicroarcOxidation Coatings Formed on Ti6Al4V Alloy[J]. Materials ChemistryPhysics,2005,90:128-133.
    [67] Rudnev V S, Vasilyeva M S, Kondrikov N B, et al. Plasma-electrolyticFormation, Composition and Catalytic Activity of Manganese OxideContaining Structures on Titanium[J]. Applied Surface Science,2005,252:1211-1220.
    [68] Curran J A, Clyne T W. Porosity in Plasma Electrolytic Oxide Coatings[J].Acta Materialia,2006,54:1985-1993.
    [69]魏同波,张学俊,王博,等.电流密度对铝合金微弧氧化膜的生长及结合力的影晌[J].材料保护,2004,37(4):4-6.
    [70]贺子凯,唐培松.电流密度对微弧氧化膜层厚度和硬度的影响[J].表面技术,2003,32(3):21-24.
    [71]蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析[J].表面技术,2001,30(2):37-39.
    [72]卢立红,沈德久,王玉林,等.微弧氧化陶瓷膜层的性能及其应用[J].材料保护,2001,34(1):17-18.
    [73]李淑华,程金生,尹玉军,等. LY12Al合金微弧氧化过程中电流和电压变化规律[J].腐蚀科学与防护技术,2001,13(6):362-364.
    [74]李淑华,程金生,尹玉军,等.微弧氧化过程中电流和电压变化规律的探讨[J].特种铸造及有色合金,2001,3:4-5.
    [75] Wang Y, Wang J, Zhang J, et al. Characteristics of Anodic Coatings Oxidizedto Different Voltage on AZ91D Mg Alloy by Micro-arc OxidizationTechnique[J]. Materials and Corrosion,2005,56(2):88-92.
    [76] Mu W Y, Han Y. Characterization and Properties of the MgF2/ZrO2CompositeCoatings on Magnesium Prepared by Micro-arc oxidation[J]. Surface andCoatings Technology,2008,202:4278-4284.
    [77] Han Y, Hong S H., Xu K W. Structure and in Vitro Bioactivity of Titania-basedFilms by Micro-arc Oxidation[J]. Surface and Coatings Technology,2003,168:249-258.
    [78] Wang Y J, Wang L, Zheng H D, et al. Effect of Frequency on the Structure andCell Response of Ca-and P-containing MAO Films. Applied Surface Science,2010,256:2018-2024.
    [79]郝建民,陈宏,张荣军,等.电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响[J].腐蚀与防护,2003,24(6):249-251.
    [80] Jian F L, Li W, Jia Y F. Micro Arc Oxidationi of S-Containing TiO2Films bySulfur Bearing Electrolytes[J]. Journal of Materials Processing Technology,2009,209(2):762-766.
    [81]贺子凯,唐培松.溶液体系对微弧氧化陶瓷膜的影响[J].材料保护,2001,34(11):12-13.
    [82] Bakovets V V, Dolgovesova I P, Nikiforova G L, et al. Zashch. Met,1986,22(3):440.
    [83]刘风岭,骆更新.微弧氧化与材料表面陶瓷化[J].材料保护,1998,3l(3):22-24.
    [84] Ono S, Kijima H, Masuko N. Microstructure and Voltage-currentCharacteristics of Anodic Films Formed Magnesium Alloy in ElectrolytesContaining Fluoride[J]. Materials Transactions,2003,44(4):539-545.
    [85] Wan L, Li J F, Feng J Y, et al. Anatase TiO2films with2.2eV band gapprepared by micro-arc oxidation[J]. Materials Science and Engineering B,2007,139:216-220.
    [86] Hsiao H Y, Tsung H C, Tsai W T. Anodization of AZ91D Magnesium Alloy inSilicate-containing Electrolytes[J]. Surface and Coatings Technology,2005,199:127-134.
    [87] Yerokhin A L, Nie X, Leyland A, et al. Plasma Electrolysis for SurfaceEngineering[J]. Surface and Coatings Technology,1999,122:73-93.
    [88] Vladimir M. Mikrolichtbogen oxidation[J]. Obeerfchentechnik,1995,49(8):606.
    [89]黄京浩,张永君.镁合金微弧氧化新型电解液配方研究[J].材料保护,2007,40(2):30-37.
    [90]梁永政.镁合金表面微弧氧化工艺的研究[D].兰州理工大学硕士学位论文,2004:42-47.
    [91] Bakovets V V, Dolgovesova I P, Nikiforova G L, et al. Zashch. Met,1986,22(3):440.
    [92]刘文亮.铝合金在不同溶液中的微弧氧化膜层性能研究[J].电镀与精饰,1999,21(4):9.
    [93]李炳生.等离子体电解氧化陶瓷涂层的方法及其设备[P]. CN1446945A,2003.
    [94]辛世刚. LY12铝合金等离子体氧化陶瓷膜的制备工艺与性能研究
    [D].哈尔滨工业大学博士学位论文.2003.
    [95] Zheng H Y, Wang Y K, Li B S,et al. The effects of Na2WO4Concentrationon the Properties of Microarc Oxidation Coatings on Aluminum alloy[J].Materials Letters,2005,59:139-142.
    [96]刘元刚,张巍,李久清,等.镁合金微弧氧化膜结构及耐蚀性的初步研究[J].材料保护,2004,37:17-22.
    [97] Shi L L, Xu Y J, Li K, et al. Effect of Additives on Structure and CorrosionResistance of Ceramic Coatings on Mg–Li Alloy by Micro-arc Oxidation[J].Current Applied Physics,2010,10:719-723.
    [98] Alex J Z, Duane E B. Anodized Coatings for Magnesium Alloys[J]. MetalFinishing,2003,92(3):39-44.
    [99] Wu D, Liu X D, Lu K, et al. Influence of C3H8O3in the Electrolyte onCharacteristics and Corrosion Resistance of the Microarc Oxidation CoatingsFormed on AZ91D Magnesium Alloy Surface[J]. Applied Surface Science,2009,255:7115-7120
    [100] Barton T F, Johnson C B. The Effect of Electrolyte on the Anodized Finish ofa Magnesium Alloy[J]. Plating and Surface Finishing.1995,82(5):138-141.
    [101]蒋百灵,白力静,,蒋永峰,等.铝合金微弧氧化技术[J].西安理工大学学报,2000,16(2):138-142.
    [102]熊仁章,盛磊,杨生荣,等.添加剂对铝合金微弧氧化陶瓷涂层结构和耐磨性能的影响[J].兵器材料科学与工程,2002,5(3):17-18.
    [103] Liang J, Guo B G, Tian J, et al. Effects of NaAlO2on Structure and CorrosionResistance of Microarc Oxidation Coatings Formed on AM60B MagnesiumAlloy in Phosphate-KOH Electrolyte[J]. Surface and Coatings Technology,2005,199:121-126.
    [104]姜兆华,辛世刚,王福平,等.铝合金在水玻璃-KOH-NaAlO2体系中的微等离子体氧化研究[J].中国有色金属学报,2000,10(4):519-524.
    [105]张欣宇,方明,吕江川,等.电解液参数对铝合金微弧氧化的影响[J].材料保护,2002,35(8):39-41.
    [106]李均明,蒋百灵,井晓天,等.溶液电导率对LY12铝合金微弧氧化陶瓷层的生长速度和致密度的影响[J].材料热处理学报,2003,24(1):63-65.
    [107] Barik R C, Wharton J A, Wood R J K, et al. Corrosion, Erosion and Erosion-Corrosion Performance of Plasma Electrolytic Oxidation (PEO) depositedAl2O3coatings[J]. Surface and Coatings Technology,2005,199:158-167.
    [108] Xu J L, Liu F, Wang F P, et al. The Corrosion Resistance Behavior of Al2O3Coating Prepared on NiTi alloy by Micro-arc Oxidation[J]. Journal of Alloysand Compounds,2009,472:276-280.
    [109]薛文斌,杜建成,吴晓玲,等. LY12合金表面微弧放电沉积陶瓷膜的抗磨损性[J].北京师范大学学报(自然科学版),2005,41(4):380-382.
    [110]陈飞,周海,万汉城,等.铝合金表面微弧氧化陶瓷层摩擦学性能的研究[J].材料热处理,2006,35(24):40-42.
    [111] Song W H, Jun Y K, Han Y,, et al. Biomimetic Apatite Coatings on Micro-arcOxidized Titania[J]. Biomaterials,2004,25:3341-3349.
    [112] Zhao B H, Lee I S, Han I H, et al. Effects of Surface Morphology on HumanOsteosarcoma Cell Response[J]. Current Applied Physics,2007,7S1: e6-e10.
    [113] Xin S G, Song L X, Zhao R G, et al. Properties of Aluminium Oxide Coatingon Aluminium Alloy Produced by Micro-Arc Oxidation[J]. Surface andCoatings Technology,2005,199(2-3):184-188.
    [114]周慧,刘正堂,李争显,等.钛合金表面微弧氧化膜及抗氧化性能的研究[J].稀有金属材料与工程,2005,34(11):1835-1838.
    [115]苏会东,刘瑛,魏守强,等.光沉积银微弧氧化TiO2膜光催化杀菌研究[J].表面技术,2006,35(1):25-27.
    [116]阎峰云,范松岩,张文群,等.镁合金微弧氧化绿色陶瓷膜的制备[J].材料保护,2008,41(7):4-6.
    [117]来永春,吴晓玲,施修龄,等.等离子微弧氧化膜的抗静电特性[J].北京师范大学学报(自然科学版),2004,40(3):347-349.
    [118] Monfort F, Berkani A, Matykina E, et al. A Tracer Study of Oxide Growthduring Spark Anodizing of Aluminum[J]. Journal of The ElectrochemicalSociety,2005,152(6): C382-C387.
    [119] Matykina E, Berkani A, Skeldon P, et al. Real-Time Imaging of CoatingGrowth during Plasma Electrolytic Oxidation of Titanium[J]. ElectrochimicaActa,2007,53(4):1987-1994.
    [120] Monfort F, Berkani A, Matykina E, et al. Development of Anodic Coatings onAluminium under Sparking Conditions in Silicate Electrolyte[J]. CorrosionScience,2007,49(2):672-693.
    [121]薛文斌,邓志威,来永春,等.铝合金微弧氧化过程中能量转换的实验研究[J].表面技术,1997,26(3):21-23.
    [122] Guan Y J, Xia Y. Correlation between Discharging Property and CoatingsMicrostructure during Plasma Electrolytic Oxidation[J]. Transactions ofNonferrous Metals Society of China,2006,16:1097-1102.
    [123] Freitas M B J G, Bulhoes L O S. Breakdown and Crystallization Processes inNiobium Oxide Films in Oxalic Acid Solution[J]. Journal of AppliedElectrochemistry,1997,27(5):612-615.
    [124]薛文斌,邓志威,来永春,等.铝微弧氧化电流效率的测定[J].电镀与精饰,1998,20(3):1-4.
    [125] Yerokhin A L, Leyland A, Matthews A. Kinetic Aspects of Aluminium TitanateLayer Formation on Titanium Alloys by Plasma Electrolytic Oxidation[J].Applied Surface Science,2002,200(1-4):172-184.
    [126]李春旭,赵介勇,陈克选,等.大面积镁合金件的微弧氧化工艺研究[J].材料保护,2006,39(10):67-70.
    [127] Timoshenko A V, Magurova Y V. Investigation of Plasma ElectrolyticOxidation Processes of Magnesium Alloy MA2-1under Pulse PolarisationModes[J]. Surface and Coatings Technology,2005,199(2-3):135-140.
    [128]刘杰.低能耗铝合金微弧氧化技术研究.大连海事大学硕士论文[D],2008:10.
    [129] Yerokhin A L, Shatrov A, Samsonov V, et al. Oxide Ceramic Coatings onAluminium Alloys Produced by A Pulsed Bipolar Plasma ElectrolyticOxidation Process[J]. Surface and Coatings Technology,2005,199(2-3):150-157.
    [130]严志军,朱新河,程东,等.影响铝合金微弧氧化起弧电压的因素[J].金属热处理,2007,32(11):81-83.
    [131]严志军,朱新河,程东,等.影响铝合金微弧氧化成膜效率的因素分析[J].大连海事大学学报,2007(11):113-117.
    [132]刘杰,严志军,朱新河,等.低能耗铝合金微弧氧化技术的研究[J].装备制造技术,2007,6:54-56.
    [133]张欣盟.大面积铝合金局部放电微弧氧及热阻隔膜层制备[D].哈尔滨工业大学博士论文,2011:23-24.
    [134] Moon S, Jeong Y. Generation Mechanism of Microdischarges during PlasmaElectrolytic Oxidation of Al in Aqueous Solutions[J]. Corrosion Science,2009,51(7):1506-1512.
    [135]姚晓菊,樊康乐,王瑶,等. NaOH加入量对AZ91D镁合金微弧氧化单位能耗和膜层质量影响[J].材料热处理技术.2010,39(12):129-131.
    [136]杜肖,谢发勤,吴向清,等. ZM5镁合金在不同溶液体系中微弧氧化行为的研究[J].电镀与环保,2009,29(2):19-22.
    [137]蒋百灵,赵仁兵,梁戈,等. Na2WO4对铝合金微弧氧化陶瓷层形成过程及耐磨性的影响[J].材料导报.2006,20(9),155-157.
    [138]张欣盟,陈东方,巩春志,等.添加K2ZrF6对LY12铝合金微弧氧化膜层结构调制及隔热性能影响[J].无机材料学报,2010,25(8):865-870.
    [139] Guo H F, An M Z, Xu S, Huo H B. Formation of Oxygen Bubbles and ItsInfluence on Current Efficiency in Micro-arc Oxidation Process of AZ91DMagnesium Alloy[J]. Thin Solid Films,2005,485:53-58.
    [140] Matykina E, Arrabal R, Skeldon P, et al. Optimisation of the PlasmaElectrolytic Oxidation Process Efficiency on Aluminium[J]. Surface andInterface Analysis,2009,42(4):221-226.
    [141]陈萧显,李秋书,范燕燕. AZ31的镁合金研究现状[J].山西冶金,2009,117(1):1-3.
    [142]陈显明,罗承萍,刘江文,等.镁合金微弧氧化热力学和动力学分析[J].兵器材料科学与工程,2006,29(3):17-20.
    [143]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998:135.
    [144] Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles bySurface-enhanced Raman Scattering[J]. Science,1997,275(5303):1102-1106.
    [145]查全性,等.电极过程动力学导论[M].北京:科学出版社,2004:326-329.
    [146]吴辉煌.电化学[M].北京:化学工业出版社,2004:214.
    [147]杨巍,蒋百灵,时惠英,等.预制备膜特性对铝合金微弧氧化膜层形成过程的影响[J].材料热处理学报,2010,31(3):116-120.
    [148]杨巍,蒋百灵,鲜云林,等.溶质离子在镁合金微弧氧化膜形成过程中的作用[J].材料热处理学报,2009,30(1):157-160.
    [149]张鉴清,等.电化学测试技术[M].化学工业出版社,2010:226-229.
    [150] Li X, Yang H, Li C H, et al. Effects of Additives on the Morphologies of ThinTitania Films From Self-assembly of a Block Copolymer[J]. Polymer,2008,49(5):1376-1384.
    [151] Ryu H S, Song W H, Hong S H. Biomimetic Apatite Induction of P-containing Titania Formed by Micro-arc Oxidation before and afterHydrothermal Treatment[J]. Surface and Coatings Technology,2008,202:1853-1858.
    [152]胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用[J].中国有色金属学报,2003,13(1):222-228.
    [153]王毓华,陈兴华,胡业民,等.磷酸盐对细粒铝硅酸盐矿物分散行为的影响[J].中南大学学报(自然科学版),2007,38(2):238-244.
    [154] Liang J, Guo B G, Tian J, et al. Effect of Potassium Fluoride in ElectrolyticSolution on the Structure and Properties of Microarc Oxidation Coatings onMagnesium Alloy[J]. Applied Surface Science,2005,252:345-351.
    [155] Wei D Q, Zhou Y, Jia D C, et al. Structure of Calcium Titanate/TitaniaBioceramic Composite Coatings on Titanium Alloy and Apatite Deposition onTheir Surfaces in a Simulated Body Fluid[J]. Surface and CoatingsTechnology,2007,201:8715-8722.
    [156]郑亚君,党利琴,张智平,等.搅拌时间对水合碳酸镁形貌和组成的影响[J].精细化工,2007,24(9):835-837.
    [157]张世刚,许磊,刘红超,等.鸟巢状氧化镁球形材料的合成、表征及催化性能[J].催化学报,2009,30(6):514-518.
    [158] Choudhary V R, Pataskar S G, Gunjikar V G, et al. Influence of PreparationConditions of Basic Magnesium Carbonate on Its Thermal Analysis[J].Thermochimica Acta,1994,232(1):95-110.
    [159] Snizhko L O, Yerokhin A L, Gurevina N L, et al. A Model for GalvanostaticAnodising of Al in Alkaline Solutions[J]. Electrochimimica Acta,2005,50(27):5458-5464.
    [160]沈德久,廖波,王玉林,等.影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨[J].材料开发与应用,2002,17(4):22-28.
    [161]邓志威,来永春,薛文彬,等.微弧氧化材料表面陶瓷化机理的探讨[J].原子核物理评论,1997,14:193-195.
    [162] Yao Z P, Jiang Z H, Wu X H, et al. Effects of Ceramic Coating by Micro-Plasma Oxidation on the Corrosion Resistance of Ti-6Al-4V alloy[J]. Surfaceand Coatings Technology,2005,200:2445-2450.
    [163] Wang L, Chen L, Yan Z C, et al. Effect of Potassium Fluoride on Structure andCorrosion Resistance of Plasma Electrolytic Oxidation Films Formed onAZ31Magnesium Alloy[J]. Journal of Alloys and Compounds,2009,480:469-474.
    [164]王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究[D].中国科学院研究生院博士学位论文,2005:38-39.
    [165]骆海贺,蔡启舟,魏伯康,等.(NaPO3)6对AZ91D镁合金微弧氧化陶瓷层电化学腐蚀特性的影响[J].物理化学学报,2008,24(3):481-486.
    [166] Luo H H, Cai Q Z, Wei B K, et al. Effect of (NaPO3)6Concentrations onCorrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed onAZ91D Magnesium Alloy[J]. Journal of Alloys and Compounds,2008,464:537-543.
    [167]陈振华.镁合金[M].化学工业出版社,2004:435-438.
    [168]惠华英. AZ31镁合金环保型阳极氧化工艺的研究[D].湖南大学硕士论文,2006:10-12.
    [169]张建刚. AZ31镁合金阳极氧化新工艺的研究[D].重庆大学硕士论文,2008:21.
    [170] Ko Y G, Namgung S, Shin D H. Correlation between KOH Concentration andSurface Properties of AZ91Magnesium Alloy Coated by Plasma ElectrolyticOxidation[J]. Surface and Coatings Technology,2010,205(7):2525-2531.
    [171]韩春霞,刘向东,王晓军,等. ZAlSi12Cu2Mg1微弧氧化陶瓷膜层形成过程研究[J].稀有金属材料与工程,2007,36(S3):581-584.
    [172]王亚明,雷廷权,蒋百灵,等. Na2SiO3-KOH-(NaPO3)6溶液中Ti6Al4V微弧氧化陶瓷膜研究[J].稀有金属材料与工程.2003,32(12):1041-1044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700