用户名: 密码: 验证码:
浓度参量荧光光谱油种鉴别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋溢油事故的频发和其对海洋环境安全和人类健康的严重危害,将海洋溢油的研究提到了全球环境问题的焦点之一。溢油事故发生后,必须及时准确地进行油指纹分析鉴别,确定责任归属,为污染清除费用的索赔提供依据,这对有效地防治船舶运输、船上石油开发造成的油污染具有重要意义。因此,建立一套实时、经济、易于推广的海洋溢油样品多环芳烃(PAHs)分析技术,对中国这样一个环境压力日趋严重的世界上最大的发展中国家具有重要的实用价值。
     荧光光谱技术具有灵敏度高、分析结果快速、受风化影响小等优点,一直作为国际海事组织(IMO)推荐的主要标准的化学分析仪器之一,但光谱重叠严重,对于相近油源原油样品的鉴别能力有限,溢油指纹检测仅限于初期的普查阶段,未能成长为独立有效的检测手段。
     作为成熟的光谱技术,荧光技术近年来的发展趋势主要集中在(i)针对荧光鉴别能力有限的问题,改进光谱获取技术,增加信息维度,丰富荧光信息。(ii)针对多组分混合体系荧光光谱重叠严重的问题,利用先进的数据挖掘手段提取特征量,进行光谱分析及识别。
     论文针对原油相关样品,从荧光光谱技术的发展及数据挖掘手段的应用两个方面做了较为详细的综述。同时论文的主体工作也围绕这个两个方面进行了探索,以期提高荧光指纹鉴别技术的识别率。
     论文的第三章针对原油相关样品荧光光谱的光谱特征,提出了引入浓度作为辅助参量以增加荧光光谱信息量的方法,结合单质芳烃组分的荧光光谱随浓度变化的实验研究分析引入浓度参量的必要性和有效性。针对原油相关样品浓度参量荧光光谱的特点,就光谱技术的选择,参数的选择,试剂的选取进行了详细的实验分析和讨论。
     考虑到单一浓度不能反映原油相关样品芳烃组成比率的不同,引入浓度一维,全面反映不同环数的多环芳烃及其荧光特性,同时利用同步荧光光谱可通过单次测量反映三维光谱的主要信息。二者的结合构成的浓度同步荧光光谱矩阵(CSMF)全面地反映了原油相关样品芳烃组分荧光信息,为数据挖掘提供充足的组分信息。
     第四章基于浓度同步荧光光谱矩阵(CSMF)对不同层次原油相关样品进行光谱数据的采集。考虑到海洋溢油复杂条件对浓度参量荧光光谱技术可能造成的影响,在多种外扰条件进行了综合实验研究,获取了不同类别不同油田36个原油相关样品的光谱。从光谱角度全面考察了荧光溢油鉴别方法的有效性和适用范围。
     有效的特征提取是模式识别成功率的关键,第五章利用不同的特征提取方法对不同层次的原油相关样品进行了特征提取,并针对其特征提取量特点对方法的有效性进行了详细讨论。结果表明:主成分分析方法(PCA)的主成分载荷图可以很好的反映各个原油相关样品在油源上相近程度;而偏最小二乘法PLS的主成分提取方式在相近油源的原油相关样品的特征分析上要优于PCA;二维Gabor小波变换能够捕捉对应于空间位置、空间频率及方向选择性的局部结构信息,对风化条件下的相近油源样品的CSMF光谱实现了鲁棒性高的最优特征提取,为分类识别奠定了良好基础。
     第六章是在第五章浓度同步荧光光谱矩阵(CSFM)详细的特征分析的基础上,针对原油相关样品样本进行最终的分类识别。根据海洋溢油现场的要求,通过“浓度层析局部匹配方法”与“相对特征提取及模式识别方法”的结合,建立起一套基于原油样品浓度参量荧光光谱的溢油指纹鉴别技术。
     首先利用浓度层析光谱局部匹配方法分别对相近油源的原油相关样品鉴别和引入外扰原油相关样品集进行了测试。通过对不同参数选择的测试结果分析,对该方法参数的选定进行了讨论,确定了参数的最佳选择范围。结果表明,该方法不需要大量对可疑油样提取训练样本,只需单次测量可疑油样的浓度同步荧光光谱矩阵(CSFM),同时对肇事油样,只需采集6-8个浓度系列的CSFM光谱,十分符合快速、简便、易操作的溢油实时监测要求,并可同时对溢油在一定体积中的含量进行定量。但风化等外扰的引入也会使相近油种之间鉴别产生错误判断,准确率降低。当外扰较大的情况下,可以辅助其他指纹鉴别方法实现浓度定量。
     作为本论文的各类数据分析方法的总结,将PCA、PLS以及二维Gabor小波提取的特征量,分别与ANN和SVM结合进行原油相关样品的分类识别。在特征提取的选择上,Gabor要优于PCA和PLS,而针对模式识别,由于该油种鉴别技术是属于小样本分类识别,所以ANN的结果不稳定,SVM的分类效果较为理想。交叉检验的结果表明:针对引入外扰情况下的相近油源的溢油样品集,特征提取和分类器的选择对识别结果的影响较大,其中Gabor_SVM的识别准确率是最高的,可达到92%。同时由于两类分类区分的结果远远高于多类分类识别的结果,可利用多类识别的方法,逐步缩减嫌疑样本,最后实现原油相关样品的准确识别。
     作为论文的最后一部分,第七章在对论文工作进行总结的基础上,从方法改进和实用化两个角度提出了进一步努力的方向:实用化技术方案的充实完备、样品池的进一步改进、新的数据挖掘方法的引入、仪器的初步构想以及将本论文中实现的方法向其它领域扩展的设想。
Fingerprinting Technique of Oil Species Based on Concentration Parameter Fluorescence Spectra
     There has been a growing concern in recent years about increasing occurrence of spilled oils to the environment and proven toxic potential of these pollutants on human health and wildlife. The existence of these harmful substances in the environment has disrupted the natural cycles and processes and caused great economic loss to nations rich or poor. Precisely determining the sources of spilled oils can provide scientific evidence for the investigation and handling of spilled oils accidents.
     The development and implement of a method that is efficient, economic and easy to use routinely could offer decision-makers and model developers preliminary information of spilled oils in a short period, while the complicated approaches could provide more detailed information afterwards.
     The oil-bearing samples contain traces of polycyclic aromatic hydrocarbons (PAHs) that are highly fluorescent. Fluorescence-based techniques feature high sensitivity, good diagnostic potential, relatively simple instrumentation and suitability for portable instrumentation. Unfortunately, the chemical and physical complexities of crude oils and petroleum products lead to broad spectra without fine structures.
     Two main areas of interest distinguished themselves in fluorescence techniques over the last two decades:Multi-dimensional Fluorescence techniques to obtain more fluorescence information of multi-fluorehore mixtures, and the applications of chemometrics in spectroscopic study.
     The thesis begins with an overview of spilled oils fingerprinting technique and the development of Enviromental Forensics, followed by a detailed review of relevant studies, including (i) application of fluorescence techniques to petroleum-related samples and the concentration-depended fluorescence studies of PAHs and (ii) application of chemometrics to enviromental analysis of PAHs.
     In this thesis, two recent versions of this technique, Multi-dimensional Fluorescence techniques and data mining methods, have been applied to the analysis of spilled oils samples to improve identification accuracy.
     In Chapter 3, concentration-dependent fluorescence study of single PAH molecules and petroleum-related samples were presented first. Based on a detailed discussion on different spectrum approaches and extractants, the author described a novel method she developed for species identification of petroleum-related samples using the concentration auxiliary parameter synchronous fluorescence technique. By introducing concentration value as a parameter, a new Concentration-Synchronous-Matrix-Fluorescence (CSMF) spectrum was formed with a series of synchronous fluorescence spectra (SFS) at different levels of concentration. It was observed that the SFS varied with concentration level and the profiles of CSMF spectra changed from species to species. Therefore, CSMF spectra can be used for species identification.
     A detailed experimental investigation on different levels of petroleum-related samples is given in Chapter 4, along with the consideration of various disturbances, such as weathering, adulation of seawater, change of light source intensity, mixture of different oils, among others. The CSMF spectra of 36 petroleum-related samples from different oil-spill types had been obtained and three data sets were chosen to assess the feasibility and performance of the feature extraction and pattern recognition methods used in this thesis work.
     The author's main work is to perform data mining of the CSFM spectra, which is described in Chapters 5 and 6. Effective feature extraction is the key to accurate pattern recognition. In Chapter 5, principal components analysis (PCA) and partial least square analysis (PLS) are used to extract the main orthogonal contributions, which explain most of the variance of the spectra measurement matrix. The results show that the PCA can divide the samples to different oil types in the principal components space, while PLS can give a better classification of the closely-related source of petroleum-related samples due to its ability to find the multi-dimensional direction in the measurement matrix space that explains the maximum direction in the response vector space. The CSMF images transformed by Gabor wavelet exhibit strong characteristics of spatial locality, and scale and orientation selectivity, and Gabor is shown to be the best feature extraction method to the pattern recognition.
     The work presented in Chapter 6 was carried out to measure the effectiveness, computing speed, and accuracy of the classification methods used in this thesis. The partial surface fitting to CSFM with interpolation was introduced first. With surface fitting, CSMF spectra of the closely-related source crude oil samples were successfully discriminated, and the initial concentration of the test samples was also obtained. Large disturbances, however, result in low accuracy of discrimination.
     The feature extraction methods, such as PCA, PLS and Gabor wavelet, combining with the pattern recognition methods, such as artificial neural network (ANN) and supported vector machine (SVM), were used to identify the CSFMs of the data sets introduced in Chapter 4. An ideal result of closely-related oil source samples with the 92% of the correct rate of oil species recognition is achieved by combining Gabor wavelet with SVM. The obtained results suggest that the newly-developed method may become a more specifically applicable means in spilled oils identification.
     In the last chapter of the thesis, a thorough discussion of the thesis work is given. In addition, suggestions for future work are provided, including direction of data mining, concept of new instrumentation design, and several additional experiments, which should lead to a better understanding of the mechanisms involved in concentration-depended fluorescence spectra.
引文
[1]孙培艳,高振会,崔文林.油指纹鉴别技术发展及应用.北京:海洋出版社2007.
    [2]王传远,贺世杰,李延太,侯西勇,杨翠云.中国海洋溢油污染现状及其生态影响研究.海洋科学,2009.6:57-60.
    [3]Wang Z.,Fingas M.F. Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin,2003.47(9-12):423-452.
    [4]高振会,杨建强,崔文林.海洋溢油对环境与生态损害评估技术及应用.北京:海洋出版社,2005.
    [5]Morrison R.D. Environmental Forensics:an International Forum. Environmental Forensics,2001. 2(4):261-261.
    [6]Morrison R.D. An Environmental Forensics Focus on Petroleum Hydrocarbons. Environmental Forensics,2002.3(3-4):203-203.
    [7]高振会,赵蓓,马文斋,杨东方.试论我国海上溢油应急反应体系专项基金.海洋开发与管理,2007(01):131-135.
    [8]赵蓓,唐伟,姜独祎.环境法医学在我国海洋溢油环境诉讼中的应用.海洋开发与管理,2009(03):33-35.
    [9]Morrison R.D. Application of Forensic Techniques for Age Dating and Source Identification in Environmental Litigation. Environmental Forensics,2000.1(3):131-153.
    [10]Morrison R.D. Critical Review of Environmental Forensic Techniques:Part I. Environmental Forensics,2000.1(4):157-173.
    [11]高振会,杨东方,刘娜娜.胶州湾及邻近海域的溢油风险及应急体系.海洋开发与管理,2009(11):88-91.
    [12]黄开胜,何小青,李思源,赵彦,柯灯明.化学特征指纹技术在溢油鉴别研究的应用进展.光谱实验室,2009(05):1325-1328.
    [13]孙培艳,包木太,王鑫平,赵蓓,高振会,王修林.国内外溢油鉴别及油指纹库建设现状及应用.西安石油大学学报(自然科学版),2006(05):72-75+78+94.
    [14]张春昌.论溢油鉴别在海事行政执法中的法律适用.交通环保,2001.22(6):15-23.
    [15]Wang Z., Fingas M.,Sigouin L. Using Multiple Criteria for Fingerprinting Unknown Oil Samples Having Very Similar Chemical Composition. Environmental Forensics,2002.3(3-4):251-262.
    [16]21247-2007,海面溢油鉴别系统规范[S]. G.T.
    [17]曾立新,于沉鱼,林伟,潘素京.美国海岸警备队的溢油鉴别系统.交通环保,1999(02):39-42.
    [18]刘敏燕,孙维维,王志霞,俞沅,孙安森.水上溢油鉴别体系的研究.海洋环境科学,2009.3:341-344.
    [19]庞士平,郑晓玲,何鹰,陈发荣,黎先春,王小如.近红外光谱识别模拟海面溢油.海洋科学进展,2007(01):91-94.
    [20]王丽,卓林,何鹰,赵英,李伟,王小如,Lee F.近红外光谱技术鉴别海面溢油.光谱学与光谱分析,2004(12):1537-1539.
    [21]王丽,何鹰,王颜萍,赵英,李伟,王小茹,FrankLee.近红外光谱技术结合主成分聚类分析判别海面溢油种类.海洋环境科学,2004.23(2):58-60.
    [22]孙培艳,王修林,邹洁,高振会.原油红外光谱鉴别中的小波分析法.青岛海洋大学学报:自然科学版,2003.33(6):969-974.
    [23]戴云从.用红外光谱法鉴别海面溢油源.海洋环境科学,1983(02):133-141.
    [24]李庆玲,徐晓琴,黎先春,王小如.固相微萃取-气相色谱-质谱联用测定海水和沉积物间隙水中的痕量多环芳烃中国科学B辑化学,2006.36(3):202-210.
    [25]Yang C., Wang Z., Hollebone B.P., Brown C.E.,Landriault M. Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. Journal of Chromatography A,2009. 1216(20):4475-4484.
    [26]Stout S.A.,Wang Z., Chemical fingerprinting of spilled or discharged petroleum--methods and factors affecting petroleum fingerprints in the environment, in Oil Spill Environmental Forensics. 2007, Academic Press:Burlington.1-53.
    [27]Peng X., Wang Z., Mai B., Chen F., Chen S., Tan J., Yu Y, Tang C., Li K., Zhang G.,Yang C. Temporal trends of nonylphenol and bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores. Science of The Total Environment, 2007.384(1-3):393-400.
    [28]Peng X., Zhang G., Mai B., Hu J., Li K.,Wang Z. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers. Marine Pollution Bulletin,2005.50(8):856-865.
    [29]Wang Z., Li K., Fingas M., Sigouin L.,Menard L. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. Journal of Chromatography A, 2002.971(1-2):173-184.
    [30]Wang Z., Fingas M.,Sigouin L. Characterization and identification of a "mystery" oil spill from Quebec (1999). Journal of Chromatography A,2001.909(2):155-169.
    [31]Fernandez-Varela R., Andrade J.M., Muniategui S., Prada D.,Ramirez-VilIalobos F. The comparison of two heavy fuel oils in composition and weathering pattern, based on IR, GC-FID and GC-MS analyses:Application to the Prestige wreackage. Water Research,2009.43(4):1015-1026.
    [32]Bassompierre M., Tomasi G., Munck L., Bro R.,Engelsen S.B. Dioxin screening in fish product by pattern recognition of biomarkers. Chemosphere,2007.67(9):S28-S35.
    [33]Wang Z., Yang C., Kelly-Hooper F., Hollebone B.P., Peng X., Brown C.E., Landriault M., Sun J.,Yang Z. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Journal of Chromatography A,2009.1216(7):1174-1191.
    [34]李洪,吕吉斌,周传光,姚子伟,尚龙生,徐学仁,徐恒振,马永安.用荧光光谱和毛细管GC-FID法鉴别海面溢油.海洋通报,1998(06):66-70.
    [35]Wang Z., Christensen J.H., Ph D.R.D.M.,Brian L.M., Crude Oil and Refined Product Fingerprinting: Applications, in Environmental Forensics.2005, Academic Press:Burlington.409-464.
    [36]Fingas M., Fieldhouse B.,Wang Z. The Long Term Weathering of Water-in-Oil Emulsions. Spill Science & Technology Bulletin,2003.8(2):137-143.
    [37]Wang Z., Fingas M., Blenkinsopp S., Sergy G., Landriault M., Sigouin L., Foght J., Semple K.,Westlake D.W.S. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. Journal of Chromatography A,1998.809(1-2):89-107.
    [38]Wang Z., Fingas M., Landriault M., Sigouin L., Feng Y.,Mullin J. Using systematic and comparative Application of chemometric methods to environmental analysis of organic pollutantsanalytical data to identify the source of an unknown oil on contaminated birds. Journal of Chromatography A,1997. 775(1-2):251-265.
    [39]Wang Z.,Fingas M. Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry. Journal of Chromatography A,1995. 712(2):321-343.
    [40]Wang Z., Yang C., Fingas M., Hollebone B., Hyuk Yim U.,Ryoung Oh J., Petroleum biomarker fingerprinting for oil spill characterization and source identification, in Oil Spill Environmental Forensics.2007, Academic Press:Burlington.73-146.
    [41]Peng X., Wang Z., Yang C., Chen F.,Mai B. Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography-mass spectrometry. Journal of Chromatography A,2006.1116(1-2):51-56.
    [42]Wang Z., Fingas M., Lambert P., Zeng G., Yang C.,Hollebone B. Characterization and identification of the Detroit River mystery oil spill (2002). Journal of Chromatography A,2004. 1038(1-2):201-214.
    [43]Li Y.,Xiong Y. Identification and quantification of mixed sources of oil spills based on distributions and isotope profiles of long-chain n-alkanes. Marine Pollution Bulletin,2009.58(12):1868-1873.
    [44]Sanpera C., Valladares S., Moreno R., Ruiz X.,Jover L. Assessing the effects of the Prestige oil spill on the European shag (Phalacrocorax aristotelis):Trace elements and stable isotopes. Science of The Total Environment,2008.407(1):242-249.
    [45]Revesz K., Coplen T.B., Baedecker M.J., Glynn P.D.,Hult M. Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota. Applied Geochemistry,1995.10(5):505-516.
    [46]王传远,车桂美,盛彦清,李延太,秦志江.碳同位素在溢油鉴定中的应用研究.环境污染与防治,2009(07):21-24.
    [47]Henderson R. K., Baker A., Murphy K. R., Hambly A., Stuetz R. M.,Khan S. J. Fluorescence as a potential monitoring tool for recycled water systems:A review. Water Research,2009. 43(4):863-881.
    [48]Bro Rasmus. Multivariate calibration:What is in chemometrics for the analytical chemist? Analytica Chimica Acta,2003.500(1-2):185-194.
    [49]Christensen Jan H.,Tomasi Giorgio. Practical aspects of chemometrics for oil spill fingerprinting. Journal of Chromatography A,2007.1169(1-2):1-22.
    [50]Patra Digambara,Mishra A. K. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends in Analytical Chemistry,2002.21(12):787-798.
    [51]Sharma H., Jain V.K.,Khan Z.H. Identification of polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter by synchronous fluorescence spectroscopic technique. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007.68(1):43-49.
    [52]Brown Carl E.,Fingas Mervin F. Review of the development of laser fluorosensors for oil spill application. Marine Pollution Bulletin.47(9-12):477-484.
    [53]Ryder Alan G. Time-Resolved Fluorescence Spectroscopic Study of Crude Petroleum Oils:Influence of Chemical Composition. Applied Spectroscopy491-638,2004.58(5):118A-144A and 491-638 (May 2004), pp.613-623(11).
    [54]Bruno A., Alf M., Apicella B., de Lisio C.,Minutolo P. Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy. Optics and Lasers in Engineering, 2006.44(7):732-746.
    [55]Alan G. Ryder Milonsz A. Przyjalgowski, Martin Feely, et al. Time-resolved fluorescence microspectroscopy for characterizing crude oil in bulk and hydrocarbon-bearing fluid inclusions. Applied Spectroscopy,2004.58(1106-1114).
    [56]Hegazi E.,Hamdan A. Estimation of crude oil grade using time-resolved fluorescence spectra. Talanta, 2002.56(6):989-995.
    [57]Gangopadhyay S., Landis C. R., Pleil M. W., Borst W. L., Mukhopadhyay P. K. Time-resolved fluorescence spectroscopy of crude oils and condensates. Fuel,1988.67(12):1674-1679.
    [58]Saitoh Naoki,Takeuchi Shigeki. Fluorescence imaging of petroleum accelerants by time-resolved spectroscopy with a pulsed Nd-YAG laser. Forensic Science International,2006.163(1-2):38-50.
    [59]Howerton Samuel B., Goodpaster John V.,McGuffin Victoria L. Characterization of polycyclic aromatic hydrocarbons in environmental samples by selective fluorescence quenching. Analytica Chimica Acta,2002.459(1):61-73.
    [60]刘智深,丁宁,赵朝方,齐敏.主成分分析法在油荧光光谱波段选择中的应用.地理空间信息,2009(03):12-15.
    [61]Gomez Veronica,Callao Maria Pilar. Analytical applications of second-order calibration methods. Analytica Chimica Acta,2008.627(2):169-183.
    [62]宋继梅,唐碧莲.原油样品的三维荧光光谱特征研究.光谱学与光谱分析,2000(01):115-118.
    [63]宋继梅,王凌峰.油气样品的固定波长同步荧光光谱特征研究.光谱学与光谱分析,2002.(05):803-805.
    [64]Patra Digambara,Mishra A. K. Investigation on simultaneous analysis of multicomponent polycyclic aromatic hydrocarbon mixtures in water samples:a simple synchronous fluorimetric method. Talanta, 2001.55(1):143-153.
    [65]Luthe G., Scharp J., Brinkman U. A. Th,Gooijer C. Monofluorinated polycyclic aromatic hydrocarbons in Shpol'skii spectroscopy. Analytica Chimica Acta,2001.429(1):49-54.
    [66]杨杰,陈丽华.利用荧光光谱进行原油测定及对比的方法.石油勘探与开发,2002(06):69-71.
    [67]Lambert P. A literature review of portable fluorescence-based oil-in-water monitors. Journal of Hazardous Materials,2003.102(I):39-55.
    [68]Li Jianfeng, Fuller Steven, Cattle Julie, Pang Way Christopher,Brynn Hibbert D. Matching fluorescence spectra of oil spills with spectra from suspect sources. Analytica Chimica Acta,2004. 514(1):51-56.
    [69]尚丽平,张娜,齐广学.三维荧光光谱差谱法测定燃油质量.西南科技大学学报(自然科学版),2006(01):76-79.
    [70]尚丽平,李占锋.矿物油三维荧光光谱特征参数的提取.仪器仪表学报,2006(S3):2107-2108.
    [71]蔡宗群,鹿贞彬,朱亚先,洪丽玉,张勇.同步荧光法同时测定水溶解态的蒽和芘.分析试验室,2006(04):61-64.
    [72]Hua Guoxiong, Killham Ken,Singleton Ian. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts. Environmental Pollution,2006. 139(2):272-278.
    [73]Deepa Subbiah, Sarathi R.,Mishra Ashok K. Synchronous fluorescence and excitation emission characteristics of transformer oil ageing. Talanta,2006.70(4):811-817.
    [74]陈银节,姚亚明,赵欣.利用三维荧光技术判识油气属性.物探与化探,2007(02):138-142+148.
    [75]章汝平,何立芳.导数恒能量同步荧光法快速同时分析芴、咔唑、苯并[α]芘和苝.光谱学与光谱分析,2007(02):350-354.
    [76]章汝平,郭健.恒能量同步荧光法测定食品中的多环芳烃.食品工业科技,2007.28(12):198-200.
    [77]章汝平,陈克华,何立芳.大气飘尘中多环芳烃的超声波萃取-恒能量同步荧光法测定.分析测试学报,2007.26(6):830-832.
    [78]何立芳,章汝平.龙岩大气颗粒物中多环芳烃源识别及污染评价.环境科学研究,2008.21(3):7-12.
    [79]何立芳,林丹丽,李耀群.导数恒能量同步荧光法同时分析咔唑、苯并(a)芘、苝和2,3-苯并蒽.环境化学,2005(01):89-93.
    [80]杨仁杰,张伟玉,卫勇,单慧勇,尚丽平.同步荧光光谱方法测定柴油中的溶剂油.光谱实验室,2007(02):89-91.
    [81]Yang Xiu-Pei, Shi Bing-Fang, Zhang You-Hui, Tang Jing,Cai Duo-Chang. Identification of polycyclic aromatic hydrocarbons (PAHs) in soil by constant energy synchronous fluorescence detection. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008. 69(2):400-406.
    [82]金丹,张玉钧,李国刚,肖雪,王志刚,殷高方,赵南京,刘文清.四种多环芳烃的三维荧光谱解析.大气与环境光学学报,2008(06):448-453.
    [83]陈佳宁,蔡宗群,朱亚先,张勇.双波长荧光法同时测定水溶解态的茚、萘和菲.分析化学,2008.36(3):301-305.
    [84]钟润生,张锡辉,管运涛,毛献忠.三维荧光指纹光谱用于污染河流溶解性有机物来源示踪研究.光谱学与光谱分析,2008(02):347-351.
    [85]邹伟.三维荧光分析技术在东濮凹陷西斜坡油源分析中的应用.石油与天然气地质,2008(04):511-516.
    [86]章汝平,何立芳.多环芳烃混合物的快速同步荧光光谱分析.分析科学学报,2008(04):437-440.
    [87]赵彦,张世元,凌萍,李思源,黄开胜,周永生,谢月亮.三维荧光光谱法鉴别原油指标的探讨.光谱学与光谱分析,2009(12):3335-3338.
    [88]金丹,张玉钧,李国刚,肖雪,王志刚,殷高方,刘文清.菲的三维荧光光谱特性研究.光谱学与光谱分析,2009.29(5):1319-1322.
    [89]张伟,周娜,李呐,谢永生,骆和东,李耀群.低温恒能量同步荧光法同时快速检测食品中多种多环芳烃.光谱学与光谱分析,2009.10:2806-2809.
    [90]张前前,朱丽丽,安伟,梁生康,张栋梅.应用气相色谱和同步荧光光谱鉴别溢油.中南民族大学学报:自然科学版,2009.2:5-9.
    [91]黄殿男,景逵,李建华,李爱萍,王家玉,尹常花.同步荧光光谱法测定石油中的晕苯.光谱实验室,2009(01):85-89.
    [92]宋成文,刘璃,李颖,韩云利,郭菁菁.普通荧光谱图法鉴别海上溢油研究.长江大学学报(自然科学版)理工卷,2009(01):57-59.
    [93]宋成文,刘璃,李颖,韩云利,郭菁菁.同步荧光谱法鉴别海上溢油研究.船海工程,2009.3(6):160-163.
    [94]Kavanagh Richard J., Burnison B. Kent, Frank Richard A., Solomon Keith R.,Van Der Kraak Glen. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere,2009.76(1):120-126.
    [95]Saitoh Tohru, Itoh Hiroto,Hiraide Masataka. Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of polycyclic aromatic hydrocarbons in water. Talanta, 2009.79(2):177-182.
    [96]Gaganis Vassilis,Pasadakis Nikos. Characterization of oil spills in the environment using parallel factor multiway analysis. Analytica Chimica Acta,2006.573-574:328-332.
    [97]饶竹,李松,何淼,苏劲.高效液相色谱-荧光-紫外串联测定土壤中16种多环芳烃.分析化学,2007.35(7):954-958.
    [98]钱薇,倪进治,骆永明,李秀华,邹德勋.高效液相色谱-荧光检测法测定土壤中的多环芳烃.色谱,2007.25(2):221-225.
    [99]Ni Bing-Jie, Fang Fang, Xie Wen-Ming, Sun Min, Sheng Guo-Ping, Li Wei-Hua,Yu Han-Qing. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research,2009.43(5):1350-1358.
    [100]梁逸曾,杜一平.分析化学计量学,重庆:重庆大学出版社.2004
    [101]Divya O.,Mishra Ashok K. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures:A comparative study. Analytica Chimica Acta,2007. 592(1):82-90.
    [102]Dirz R., Sarabia L.,Ortiz M. C. Rapid determination of sulfonamides in milk samples using fluorescence spectroscopy and class modeling with n-way partial least squares. Analytica Chimica Acta,2007.585(2):350-360.
    [103]Chunyan Wang, Wendong Li, Xiaoning Luan, Qianqian liu, Jinliang Zhang,Zheng Ronger. Species identification and concentration quantification of crude oil samples in petroleum exploration using the concentration-synchronous-matrix-fluorescence spectroscopy. Talanta,2010.81(1-2):684-691.
    [104]Smith G. C.,Sinski J. F. Red-Shift Cascade:Investigations into the concentration dependent wavelength shifts in 3-dimensional fluorescence spectra of petroleum samples. Appl. Spectrosc,1999. 53:1459-1469.
    [105]Sinski J.F, Compton B.S., Nicoson M.C.,Perkins B.S. Using 3-D Fluorescence's Red Shift Cascade Effect to Monitor Mycobacterium PRY-1 Degradation of Aged Petroleum. Applied Spectroscopy, 2004.58(1):91-95.
    [106]Sinski J.F,Exner J. Concentration Dependence in the Spectra of Polycyclic Aromatic Hydrocarbon Mixtures by Front Surface Fluorescence Analysis. Applied Spectroscopy,2007.61(9):970-977.
    [107]Patra Digambara,Mishra A. K. Concentration dependent red shift:qualitative and quantitative investigation of motor oils by synchronous fluorescence scan. Talanta,2001.53(4):783-790.
    [108]Patra Digambara,Mishra A. K. Fluorescence quenching of benzo[k]fluoranthene in poly(vinyl alcohol) film:a possible optical sensor for nitro aromatic compounds. Sensors and Actuators B: Chemical,2001.80(3):278-282.
    [109]Patra Digambara,Mishra A. K. Study of diesel fuel contamination by excitation emission matrix spectral subtraction fluorescence. Analytica Chimica Acta,2002.454(2):209-215.
    [110]Patra Digambara. Distinguishing motor oils at higher concentration range by evaluating total fluorescence quantum yield as a novel sensing tool. Sensors and Actuators B:Chemical,2008. 129(2):632-638.
    [111]Divya O.,Mishra Ashok K. Understanding the concept of concentration-dependent red-shift in synchronous fluorescence spectra:Prediction of and optimization of [Delta][lambda] for synchronous fluorescence scan. Analytica Chimica Acta,2008.630(1):47-56.
    [112]王春艳,王新顺,王延华,高居伟,郑荣儿.基于不同光谱技术的原油样品的荧光分析.光谱学与光谱分析,2006(04):728-732.
    [113]王春艳,江华鸿,高居伟,张金亮,郑荣儿.基于三维同步荧光光谱确定原油样品浓度的新方法.光谱学与光谱分析,2006(06):1080-1083.
    [114]王春艳,邓美寅,杨晓明,张金亮,郑荣儿.同步荧光光谱多点函数拟合确定原油样品浓度技术. 石油勘探与开发,2006(02):205-207.
    [115]Mas Sivia, de Juan Anna, Tauler Rom, Olivieri Alejandro C.,Escandar Graciela M. Application of chemometric methods to environmental analysis of organic pollutants:A review. Talanta,2010. 80(3):1052-1067.
    [116]Bro Rasmus. Review on Multiway Analysis in Chemistry-2000-2005. Critical Reviews in Analytical Chemistry,2006.36:279-293.
    [117]范红波,张英堂,任国全,罗鸿飞.基于SVM的柴油机油液光谱预测模型研究.润滑与密封,2006(11):148-150.
    [118]田广军,基于三维荧光谱参数化及模式识别的水中油类鉴别与测定.2005,燕山大学.
    [119]田广军,史锦珊.基于表观特征的三维荧光谱参量化油种鉴别.仪器仪表学报,2005(S1):727-728+734.
    [120]田广军.基于泛基因概念的矿物油三维荧光谱参量化.仪器仪表学报,2006(S3):2127-2129.
    [121]李宏斌,刘文清,王志刚,张玉钧,赵南京,司马伟昌,陈东.基于三维荧光光谱技术的多组分分析浓度校准方法研究.量子电子学报,2007(03):306-310.
    [122]崔志成,刘文清,赵南京,肖雪,王志刚,张玉钧,司马伟昌,刘建国,魏庆农.水中油浓度快速测量方法研究.光谱学与光谱分析,2008(06):1332-1335.
    [123]职统兴,尚丽平,邓琥,李朕,陈亮.主成分回归荧光光谱法同时分析多组分混合体系.应用化工,2008(10):1231-1234.
    [124]张婕,彭黔荣,杨敏,朱红波,刘钟祥,周静.偏最小二乘——带荧光检测器的高效液相色谱法测定间-甲酚和对-甲酚异构体及其他酚的研究.河北化工,2008(05):13-15.
    [125]Ma Wan-Li, Li Yi-Fan, Qi Hong, Sun De-Zhi, Liu Li-Yan,Wang De-Gao. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere,2010.79(4):441-447.
    [126]Santos Larissa Macedo dos, Simoes Marcelo Luiz, de Melo Wanderley Jos, Martin-Neto Ladislau,Pereira-Filho Edenir Rodrigues. Application of chemometric methods in the evaluation of chemical and spectroscopic data on organic matter from Oxisols in sewage sludge applications. Geoderma,2010.155(1-2):121-127.
    [127]Jiang Fenghua, Lee Frank Sen-Chun, Wang Xiaoru,Dai Dejun. The application of Excitation/Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China. Marine Chemistry,2008.110(1-2):109-119.
    [128]Ebrahimi Diako,Hibbert D. Brynn. Identification of sources of diesel oil spills using parallel factor analysis:A bridge between American society for testing and materials and Nordtest methods. Journal of Chromatography A,2008.1198-1199:181-187.
    [129]Bouveresse Delphine Jouan-Rimbaud, Benabid Hamida,Rutledge Douglas N. Independent component analysis as a pretreatment method for parallel factor analysis to eliminate artefacts from multiway data. Analytica Chimica Acta,2007.589(2):216-224.
    [130]Murioz de la Pena A., Mora Diez N., Bohoyo Gil D., Olivieri A. C.,Escandar G. M. Simultaneous determination of flufenamic and meclofenamic acids in human urine samples by second-order multivariate parallel factor analysis (PARAFAC) calibration of micellar-enhanced excitation-emission fluorescence data. Analytica Chimica Acta,2006.569(1-2):250-259.
    [131]Holbrook R. David, Yen James H.,Grizzard Thomas J. Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC. Science of The Total Environment,2006.361 (1-3):249-266.
    [132]Bosco M. V., Callao M. P.,Larrechi M. S. Simultaneous analysis of the photocatalytic degradation of polycyclic aromatic hydrocarbons using three-dimensional excitation-emission matrix fluorescence and parallel factor analysis. Analytica Chimica Acta,2006.576(2):184-191.
    [133]Abbas O., Rebufa C., Dupuy N., Permanyer A., Kister J.,Azevedo D. A. Application of chemometric methods to synchronous UV fluorescence spectra of petroleum oils. Fuel,2006. 85(17-18):2653-2661.
    [134]Sikorska Ewa, Gorecki Tomasz, Khmelinskii Igor V., Sikorski Marek,Koziol Jacek. Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chemistry,2005. 89(2):217-225.
    [135]Antunes Maria Cristina G.,Esteves da Silva Joaquim C. G. Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances. Analytica Chimica Acta,2005. 546(1):52-59.
    [136]Selli Elena, Zaccaria Cristina, Sena Fabrizio, Tomasi Giorgio,Bidoglio Giovanni. Application of multi-way models to the time-resolved fluorescence of polycyclic aromatic hydrocarbons mixtures in water. Water Research,2004.38(9):2269-2276.
    [137]Golobocanin Dusan D., Skrbic Biljana D.,Miljevic Nada R. Principal component analysis for soil contamination with PAHs. Chemometrics and Intelligent Laboratory Systems,2004.72(2):219-223.
    [138]Fernandez-Sanchez J. F., Segura Carretero A., Benirez-Sanchez J. M., Cruces-Blanco C.,Fernandez-Gutierez A. Fluorescence optosensor using an artificial neural network for screening of polycyclic aromatic hydrocarbons. Analytica Chimica Acta,2004.510(2):183-187.
    [139]Stedmon Colin A., Markager Stiig,Bro Rasmus. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry,2003. 82(3-4):239-254.
    [140]Marhaba Taha F., Bengraire Karim, Pu Yong,Arag Jaime. Spectral fluorescence signatures and partial least squares regression:model to predict dissolved organic carbon in water. Journal of Hazardous Materials,2003.97(1-3):83-97.
    [141]Kitti Anna, Harju Mikael, Tysklind Mats,van Bavel Bert. Multivariate characterization of polycyclic aromatic hydrocarbons using semi-empirical molecule orbital calculations and physical data. Chemosphere,2003.50(5):627-637.
    [142]He L. M., Kear-Padilla L. L., Lieberman S. H.,Andrews J. M. Rapid in situ determination of total oil concentration in water using ultraviolet fluorescence and light scattering coupled with artificial neural networks. Analytica Chimica Acta,2003.478(2):245-258.
    [143]r Jos A. Murillo, Molina Aurelia Alairn,Lirez Pablo Fernerdez. Direct analysis of amiloride and triamterene mixtures by fluorescence spectrometry using partial-least squares calibration. Analytica Chimica Acta,2001.449(1-2):179-187.
    [144]Saurina J., Leal C., Compar R., Granados M., Tauler R.,Prat M. D. Determination of triphenyltin in sea-water by excitation-emission matrix fluorescence and multivariate curve resolution. Analytica Chimica Acta,2000.409(1-2):237-245.
    [145]Ferrer R., Guiteras J.,Beltran J. L. Artificial neural networks (ANNs) in the analysis of polycyclic aromatic hydrocarbons in water samples by synchronous fluorescence. Analytica Chimica Acta,1999. 384(3):261-269.
    [146]韩云利.海上溢油的油指纹鉴定研究.2008,大连海事大学.
    [147]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.北京:科学出版社,2003.
    [148]刘平,梁逸曾.多元非线性荧光校正的人工神经网络方法.化学学报,1997.54(386-392).
    [149]王春艳,用于石油录井的原油同步荧光光谱分析技术研究.2005,中国海洋大学.
    [150]栾晓宁,不同萃取剂下原油样品荧光光谱的实验研究.2008,中国海洋大学.
    [151]李文东,王春艳,高居伟,郑荣儿.油样品的可变角同步荧光光谱的计算机模拟.中国海洋大学学报(自然科学版),2007(01):168-172.
    [152]梁逸增,俞汝勤.化学计量学.北京:高等教育出版社,2003.
    [153]杜一平,潘铁英,张玉兰.化学计量学应用.北京:化学工业出版社,2008.
    [154]于欣洋,人工神经网络在识别海面溢油中的应用研究.2006,大连海事大学.
    [155]Chauchard F., Svensson J., Axelsson J., Andersson-Engels S.,Roussel S. Localization of embedded inclusions using detection of fluorescence:Feasibility study based on simulation data, LS-SVM modeling and EPO pre-processing. Chemometrics and Intelligent Laboratory Systems,2008. 91(1):34-42.
    [156]Jack Feng C.-X., Yu Z.-G.S., Kingi U.,Pervaiz Baig M. Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. Journal of Manufacturing Systems,2005.24(2):93-107.
    [157]Gidskehaug L., Anderssen E.,Alsberg B.K. Cross model validation and optimisation of bilinear regression models. Chemometrics and Intelligent Laboratory Systems,2008.93(1):1-10.
    [158]Tomasi Giorgio,Bro Rasmus. A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis,2006.50(7):1700-1734.
    [159]Zachariassen Christian B., Larsen Jan, van den Berg Frans, Bro Rasmus, de Juan Anna,Tauler Rom. Comparison of PARAFAC2 and MCR-ALS for resolution of an analytical liquid dilution system. Chemometrics and Intelligent Laboratory Systems,2006.83(1):13-25.
    [160]Dong Trang T. T.,Lee Byeong-Kyu. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere,2009.74(9):1245-1253.
    [161]Oleszczuk Patryk. Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresource Technology,2009. 100(1):413-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700