用户名: 密码: 验证码:
雅砻江两河口水电站坝肩边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两河口水电站是雅砻江中下游控制性水库工程,坝址区位于雅砻江与鲜水河汇合口下游约0.6~3.6km的河段上,拟建心墙堆石坝坝高达295m。坝肩边坡断裂裂隙较发育,地质条件复杂,心墙开挖量较大,坝肩边坡稳定性将对工程施工带来潜在危害。因此,研究坝肩边坡的稳定性,进而提出相应的支护措施,对确保工程施工安全具有重要的实际意义。
     本文在分析工程区基本地质条件、斜坡岩体结构特征、变形破裂迹象等研究的基础上,对坝肩边坡的变形破坏模式进行了分析,采用定性评价、极限平衡计算、块体稳定性计算、Flac3D和Plaxis软件进行数值模拟计算,分层次系统地评价了坝肩边坡稳定性,获得了如下主要认识:
     (1)坝肩边坡主要由三叠系上统两河口组地层组成,岩性主要为变质砂岩与板岩呈不等厚互层,斜坡总体为陡倾下游的横向坡。岩体中断裂、裂隙发育,其中规模相对较大的Ⅲ级、Ⅳ级结构面一般顺层发育,其中左岸陡倾下游偏坡外产出,右岸则陡倾下游偏坡内产出。
     (2)两岸节理裂隙发育程度具一定差异,其中左岸以①、②、⑥、④、③组裂隙较发育,斜坡的变形破坏方式主要为楔形滑移拉裂型;右岸以①、②、④、⑦、③组裂隙较发育,斜坡的变形破坏方式主要为滑移拉裂型或滑移压致拉裂型。局部存在旋转滑移拉裂型及冒落式滑塌型破坏模式。
     (3)坝肩斜坡除发育三个对坝肩边坡稳定性起重要影响作用的卸荷松弛变形体外,斜坡的变形破裂程度整体较弱。左坝肩发育Ⅰ、Ⅱ号楔形滑移拉裂型卸荷拉裂岩体,右坝肩发育滑移拉裂型卸荷拉裂岩体。稳定性计算结果表明,卸荷拉裂岩体整体处于稳定-基本稳定状态。
     (4)除左岸心墙部位工程边坡开挖量较大外,边坡开挖主要沿自然边坡坡表进行,对边坡的扰动较小。定性分析和稳定性计算表明,工程边坡整体稳定性较好,仅在开挖面揭露的断层、挤压错动带和长大节理出露处出现局部失稳块体。
     数值模拟结果表明,工程开挖对坝肩边坡整体稳定性影响不大,总体来讲,开挖引起的应力增量和位移增量均较小,未改变边坡总体的应力平衡状态,仅在开挖面坡脚、断层、挤压带等控制性结构面附近以及强卸荷底线以上产生相对明显的应力和位移集中分布现象,在相应部位出现拉应力区和塑性区,可能出现局部失稳块体。
     (5)根据稳定性评价结果,对坝肩边坡不同部位提出了相应的支护措施,对不稳定块体主要采用挂网喷浆及加强锚杆支护,对规模相对较大的潜在不稳定块体主要采用预应力锚索支护
Located in the about 0.6 ~ 3.6km in the downstream of the confluence where Yalong River and Xianshui River flow together, Liang he-kou hadroelectric power station is an important reservoir to control the middle and lower reaches of Yalong River with the proposal to construct a core rockfill dam being up to 295m. As the fault of abutment slope is more developed and geographical conditions are more complex, potential danger of excavating large amount of corewall will be increased, which implies that slope stability of abutment construction will bring potential hazards to the construction. Thus, it is of great significance to study abutment stability and procceed to make appropriate measures to ensure construction safety.
     Based on the basic geological conditions, structural features of rocks on the slope as well as the signs of deformation and fracture, this thesis analyses the abutment slope failure modes and evaluate abutment slope stability with a hierarchical system, by adoption of qualitative assessment, ultimate balance calculation, block stability calculation and numericak simulation with Flac3D Plaxis softwares. Finally, this thesis gains access to the following key understandings:
     (1) The abutment slope is generally horizontal, sloping steeply towards the downsteam. Rock fracture existed, crack also develops, of which relatively larger scale of gradeⅢ,Ⅲ-level structure has a general plane of bedding including that left bank of steep slpoe is outside the output of the downstream, right bank of the steep slopes is within the output of the downstream side.
     (2) Developmemt of cross joints and fractures varies to some extent, among which①,①,①,①,①groups of fissures are more developed in the left bank. The main mode of eformation and failure of the slope is the wedge-shaped sliding fracturing. In the right bank,①,①,①,①and①groups are more developed, the main mode of deformation and failure of the slope is slip or slide tension type pressure-induced fracturing. Local rotated sliding fracturing and falling-type slump-type failure mode existed in some parts as well.
     (3) Abutment slope nurtures three pairs of deformed parts to unload and relax which plays an important role in keeping abutment slope stable. In addition to this, degree of slope deformation and fracture is generally weak. In the left abutment slope, No.Ⅰ,Ⅰdevelop the wedge sliding type rock which discharges Hera crack tension. Whereas in the right abutment slope, unloaded Hera type tension block is developed. Stability results show that the dumping mass stable Hera remains stable, basically stable.
     (4) The slope excavation is conducted along the natural slope of the main slope of the table in order to lessen the disturbance, except that there is a large amount of site excavation works of core wall in the left bank. Qualitative analysis and stability calculations reaveal that the overall stability of the slope remains better, only to find unstable blocks in the faults of excavation face, squeeze fault zone and mature exposed sections.
     Numerical simulation results demonstrate that the excavation of the dam has little effect on slope stability. Generally speaking, incremental stress caused by excavation and displacement increment are so small that it is unable to change the overall slope of the stress state of equilibrium. Phenomenons of relatively obvious concentration of stress and displacement distribution only occure near controlled-structure surface such as slope in the excavation, fault, extrusion and above the unloading bottom line. It is likely to happen that partial loss stable blocks exist in in the tensile stress parts and plastic zones of corresponding parts as well.
     (5) According to the stability of the evaluation results, this thesis proposes corresponding support measures in different parts of the abutment slope such as hanging block spray and strengthening the bolting rearding the unstable parts, adopting prestressed anchor support as the main measure when addressing potential unstable blocks of large size.
引文
[1]国家电力公司成都勘测设计研究院.四川省雅砻江两河口水电站预可行性研究报告(工程地质)[R],2007.6.
    [2]沈军辉,沈中超等.两河口水电站枢纽区工程边坡稳定性地质研究报告[R],2008.5.
    [3]黄润秋等.澜沧江小湾水电站高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社,1996.
    [4]张进林,沈军辉.大渡河长河坝水电站坝肩边坡稳定性研究[D].成都:成都理工大学,2006.
    [5]薛守义,刘汉东.岩体工程学科性质透视[M].郑州:黄河水利出版社,2002.
    [6]聂德新,杨建宏,崔长武等.岩体结构、岩体质量及可利用性研究[M].北京:地质出版社,2008.
    [7]孙玉科.工程地质学发展与创新思路探讨之五——岩体结构的发现及其理论意义[J].岩土工程界,2002,6(1):30.
    [8]孙玉科,古迅.赤平极射投影在岩体工程地质力学的应用[M].北京:科学出版社,1980.
    [9]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [10]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999.
    [11]杜时贵.岩体结构面抗剪强度经验估算[M].北京:地震出版社,2005.
    [12]黄志全,李华晔,马莎等.岩石边坡块状结构岩体稳定性分析和可靠性评价[J].岩石力学与工程学报,2004,23(24):4200-4205.
    [13]胡卸文,钟沛林,任志刚.岩体块度指数及其工程意义[J].水利学报,2002(3):80-83.
    [14]贾洪彪等.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社,2008.
    [15]黄润秋等.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [16]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [17]张倬元,王兰生,王士天.工程地质分析原理[M].北京:地质出版社,1994.
    [18]黄润秋,王士天,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究[M].成都:四川大学出版社,2001.
    [19]祁生文,伍法权.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797.
    [20]祁生文,伍法权.边坡动力响应规律研究[J].技术科学:2003,33(增刊):28-40.
    [21]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [22]姚爱军.边坡工程稳定性耦合分析理论与方法研究[D].中国矿业大学博士学位论文,1999.
    [23]何晖宇,李春雷.边坡稳定性分析理论和研究方法的发展与现状[J].交通科技,2008(S1):65-67.
    [24]李智毅,杨裕云.工程地质学概论(M).武汉:中国地质大学出版社,1994.
    [25]孙玉科,牟会宠,姚宝魁.边坡岩石稳定性分析[M].北京:科学出版,1998.
    [26] Bishop A W. The use of the slip circle in stability analysis of slopes [J]. Geotechnique, 1955,5(1):7-17.
    [27] Spencer E. A method for analysis of the stability of embankments assuming parallelinterslice forces[J]. Geotechnique, 1967,17(1):11-26.
    [28] Morgenstern N R and Price V E.The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15(1):79-93.
    [29] Sarma S K. Stability analysis of embankments and slopes[J].Geothechnique, 1973,23(3):423-433.
    [30]丰定祥,吴家秀,葛修润.边坡稳定性分析中几个问题探讨[J].岩土工程学报,1990,12(3):1-9.
    [31]张艳娇.传递系数法在边坡稳定性分析中的应用[J].北方交通,2007(1):41-42.
    [32] Sloan S. W. Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechnics and Foundations Division,ASCE,1970,96(4):1311-1333.
    [33] Chen W. F. Limit analysis and soil plasticity. Elsevier Am sterdam,1975.
    [34]李国英,沈珠江.下限原理有限单元法及其在土木问题的应用[J].岩土工程学报,1997,19(5):84-89.
    [35]陈祖煜.土质边坡稳定分析-原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [36]冯树仁,丰定祥,葛修润等.边坡稳定性的三维极限平衡分析方法及应用[J].岩土工程学报,1999,21(6):657-661.
    [37] Chen Z Y,et al Athree-dimendional slope stability analysis method using the upper bound theorem. PartⅠTheory and Methods [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:369-378.
    [38] Chen Z Y,et al A three-dimensional slope stability analysis method using the upper bound theorem. PartⅡNumerical Approaches,Applications and extensions[J]. International Journal of Rock Mechnics and Mining Sciences,2001,38:379-397.
    [39]张国祥,刘宝深.边坡滑动面三维空间有限元分析[J].中国公路学报,2003,16(4):25-29.
    [40]张常亮.边坡稳定性三维极限平衡法研究(D).西安:长安大学博士学位论文,2008.
    [41]汪益敏.有限元法在边坡岩体稳定分析中的应用[J].西安公路学院学报,1994,14(2):13-18.
    [42]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [43] Bathe K J.Finite Element Procedures in Engineering Analysis.Englewood Cliffs:Prentice-Hall,1982.
    [44] T.J.R.Hughes,W.K.Liu. Implicit-explicit finite element in Transient Analysis Stability Theory.J.Appl.Mechs.Vol.45,1978.
    [45] I.M.Smith and D.V.Griffiths.Programing the Finite Element method,2nd Edition.
    [46] Prober E J,Hasson O & Morgan K, Peraire J. An adaptive finite element for transient compressible flows with moving boundary. Int.J.Num.Meth.Eng.1991,32(4):751-765.
    [47] Goodman,R.E,Taylor,R.L.,Brekke,T.L:A model for the Menchanics of Jointed Rock.J.ASCE.Soil.Mechanics and Foundation Division,1968.
    [48]陈胜宏.三峡工程船闸边坡的弹粘塑性自适应有限元分析[J].岩土力学,1998,19(1):13-19.
    [49]焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法[J].岩石力学与工程学报,2001,19(4):453-458.
    [50]张社贵,贾世军,郭怀志.岩石边坡稳定的可靠性分析[J].岩土力学,1999,20(2):57-61.
    [51]刘汉东.水电工程岩质高边坡安全度标准研究[J].华北水利水电学院学报,1998,19(1):40-44.
    [52]张建海,范景伟,胡定.刚体弹簧元理论及应用[M].成都:成都科技大学出版社,1997.
    [53]刘波.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.
    [54]武清玺,王德信,方建瑞.拱坝坝肩稳定可靠度分析方法探讨[J].福州大学学报(自然科学版),2004(6):736-740.
    [55]周维亘,陈兴华,杨若琼.高拱坝整体稳定地质力学模型试验研究[J].水利规划与设计,2003,1
    [56]杨静.锦屏水电站地应力场回归分析与坝肩槽开挖高边坡稳定性三维非线性有限元分析[D].四川大学硕士学位论文,2003.
    [57]祝怀田,沈军辉,李泽泽等.两河口水电站引水进口边坡变形稳定性分析[J].地质灾害与环境保护,2008,(4):96-100.
    [58]代尔伏特技术大学,PLAXIS公司.PLAXIS 2D-版本8参考手册[CP].荷兰.2006:5-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700