用户名: 密码: 验证码:
白藜芦醇甙对缺氧缺血性脑损伤新生大鼠ERK通路的影响及其改善学习记忆能力的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:缺氧缺血性脑损伤(hypoxic-ischemic brain damage,HIBD)是新生儿期危害最大的神经系统疾病之一,常引起新生儿死亡,存活者也存在不同程度的神经系统发育障碍。HIBD发病机制十分复杂,治疗主要采取综合性措施减轻症状,对脑细胞进行保护,尽量减轻脑组织的进一步损害。但是由于围产期脑细胞较成年期容易受损以及治疗窗口期的问题,导致这些治疗措施在新生儿仍需进一步探讨。而且对于成熟脑行之有效的治疗是否在未成熟脑也能够表现出显著的神经保护作用,以及各种治疗方法对于不断发育的脑组织是否具有持续保护作用,仍需更多的研究。值得注意的是,在受到损伤同时,机体还会产生相应的保护性因子对抗损伤反应,如何上调保护性因子水平且降低损伤性因子水平是临床治疗的重要靶点。
     脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)是突触可塑性和记忆的重要调节因子,在HIBD修复中起着重要的神经保护作用,而MAPK/ERK信号通路的激活可以反馈性抑制神经元的兴奋性毒性,起到神经保护作用,在各种细胞内信号激酶瀑布链中,细胞外信号调节激酶ERK是脑源性神经营养因子发挥保护作用最可能的细胞内机制。脑缺氧缺血后磷酸化ERK的高表达可能是内源性神经保护反应的结果。缺氧缺血脑损伤后,即刻早基因(Immediate-early Genes,IEGS)如c-Jun在短期内迅速表达,导致了一些后期效应基因被抑制或激活,最终神经细胞坏死、凋亡。因此采用药物维持保护性信号通路的激活,上调脑损伤保护性神经营养因子水平,同时下调引起早期神经损伤的因子如c-Jun的水平,是临床治疗缺氧缺血性脑损伤的重要思路。
     已有的研究和我们的前期研究工作证明,中药单体白藜芦醇甙(Polydatin,PD)对心脑血管具有十分明显的保护作用,它具有调节血管张力,抑制血小板聚集,改善微循环,保护血管内皮、抗氧化等作用,并对脑缺氧缺血后急性期的大脑组织细胞损伤具有一定的保护作用。目前,应用PD治疗急性脑梗塞、帕金森病以及老年性痴呆均已取得很好的临床效果。这些基础研究和临床实践的结合为长期寻找一种有效治疗新生儿HIBD的潜力药物提供了新思路,更为重要的是它体现了整体调节效应的中药治疗疾病宗旨。但是迄今为止,有关PD对未成熟脑HIBD后远期学习记忆能力的影响及其作用机制的研究甚少。基于以上研究和理论基础,我们提出设想,将PD运用到新生大鼠HIBD的治疗,研究缺氧缺血性脑损伤对于新生大鼠远期学习记忆能力的影响,进一步探讨PD对于HIBD新生大鼠远期学习记忆能力的保护作用,从蛋白水平通过ERK通路以及神经保护性因子BDNF表达进一步探讨其对于HIBD新生大鼠学习记忆能力保护作用的可能机制,并从即刻早基因c-Jun表达进一步研究其神经保护机制,旨在进一步明确PD对HIBD的保护作用及机制,为PD在新生儿HIE中的临床应用提供实验基础和理论依据。
     方法:
     1.7日龄SD大鼠随机分为三组:假手术对照组(NS组),缺氧缺血组(HI组),PD干预组(PD组)。分离并结扎左侧颈总动脉2小时后吸入含氧8%的氮氧混合气体2小时参照Rice方法制备新生大鼠HIBD模型。NS组仅游离左颈总动脉但不结扎和行缺氧处理,PD组在缺氧缺血后每天腹腔注射0.1%PD10mg/kg10天,NS组和HI组注射等体积无菌生理盐水。缺氧缺血损伤后24小时、10天及21天三个时间HE染色光镜下观察各组大鼠皮层、海马区脑组织病理结构的变化。缺氧缺血损伤后21天采用Y-迷宫和跳台实验评估大鼠学习记忆功能的变化。
     2.给予PD组新生大鼠0.1%PD10mg/kg干预治疗1天,NS组和HI组注射等体积无菌生理盐水1天,在缺氧缺血后24小时Western Blot方法检测各组大鼠左侧海马p-ERK,p-CREB表达的变化,免疫组化方法检测左侧皮层、海马CA1区、CA3区及DG区c-Jun表达的变化,Western Blot方法检测左侧海马c-Jun表达的变化。
     3.给予PD组新生大鼠0.1%PD10mg/kg干预治疗10天,NS组和HI组注射等体积无菌生理盐水10天,免疫组化方法检测各组大鼠缺氧缺血后24小时、10天及21天三个时间点左侧皮层、海马CA1区、CA3区BDNF的表达变化。WesternBlot方法检测缺氧缺血后24小时、10天及21天三个时间点大鼠左侧海马BDNF的表达变化。
     结果:
     1. Y-迷宫实验结果显示,在第一天的学习测试和第二天的记忆保持测试中,同NS组比较,HI组全天总反应时间显著延长(P <0.01)、错误反应次数增加(P<0.01),主动回避率减少(P<0.01)。同HI组比较,PD组全天总反应时间显著减少(P<0.01)、错误反应次数减少(P<0.01),主动回避率增加(P<0.01)。
     2.跳台实验结果显示,同NS组比较,在第一天学习测试中,HI组反应时间延长(P<0.01),错误次数增加(P<0.01),在第二天记忆保持测试中,HI组潜伏期缩短(P<0.01),错误次数增多(P<0.01)。同HI组比较,在第一天学习测试中,PD组反应时间短于HI组(P<0.05),错误次数少于HI组(P<0.01),且错误次数与NS组比较无差异(P>0.05)。在第二天记忆保持测试中,PD组潜伏期长于HI组(P<0.05),错误次数少于HI组(P<0.01),且错误次数与NS组比较无差异(P>0.05)。
     3.缺氧缺血损伤后24小时,Western Blot结果显示NS组大鼠海马有p-ERK、p-CREB蛋白的基础表达,HI组大鼠海马p-ERK、p-CREB蛋白表达较NS组明显增高(P<0.01),PD组大鼠海马p-ERK、p-CREB蛋白表达同HI组相比明显增高(P<0.01)。
     4.免疫组化结果显示,缺氧缺血损伤后24小时,HI组大鼠左侧皮层及海马CA1区、CA3区BDNF表达同NS组相比较明显增高(P<0.01),10天仍高于NS组(P<0.01),随着损伤时间延长,HI组BDNF的表达逐渐回落,在21天HI组皮层及海马CA1区、CA3区BDNF表达同NS组相比无统计学差异(P>0.05)。PD组呈现出同样的趋势,缺氧缺血损伤后24小时,PD组左侧皮层及海马CA1区、CA3区BDNF表达同NS组相比较明显增高(P<0.01),皮层、海马CA1区与HI组相比较无统计学差异(P>0.05),CA3区BDNF的表达高于HI组(P<0.05),缺氧缺血损伤后10天PD组皮层及海马CA1区、CA3区BDNF的表达高于HI组(P<0.05),21天PD组皮层及海马CA1区、CA3区BDNF的表达高于HI组(P<0.05)。大鼠左侧海马BDNF Western Blot结果同免疫组化结果相近,缺氧缺血后,HI组及PD组海马BDNF表达同NS组相比增高,后随着时间延长逐渐回落,缺氧缺血损伤后21天HI组已降至NS组水平,PD组在24小时(P<0.05)、10天(P<0.01)及21天(P<0.05)BDNF表达高于HI组。
     5.缺氧缺血损伤后24小时,HI组左侧皮层、海马CA1、CA3及DG区免疫组化结果可见c-Jun阳性表达明显高于NS组(P<0.01),PD组较HI组明显减少(P<0.01)。Western Blot显示HI组左侧海马c-Jun的表达HI组高于NS组(P<0.01),而PD组的表达低于HI组(P<0.01)。
     6. HE染色结果显示光镜下NS组左侧大脑半球组织皮层、海马CA1区结构层次清晰,神经细胞形态、结构正常。缺氧缺血损伤后24小时、10天HI组左侧脑组织皮层变薄,海马锥体细胞层数减少,神经细胞排列紊乱,出现细胞肿胀、溶解,有明显神经元缺失、局灶性坏死。缺氧缺血损伤后21天皮层、海马等部位形成胶质瘢痕。PD组在各时间点仍有不同程度的神经细胞变性,但多数神经元结构较完整,海马锥体细胞层细胞形态、排列基本正常。
     结论:
     1. HIBD可以引起新生大鼠脑组织病理改变和学习记忆能力的下降,应用白藜芦醇甙干预可以减轻脑组织损伤,改善HIBD新生大鼠的学习记忆能力。
     2.缺氧缺血性脑损伤后,新生大鼠大脑海马p-ERK及p-CREB表达增加,表明MAPK/ERK信号通路被激活,应用白藜芦醇甙干预能进一步增强海马p-ERK及p-CREB表达,提示白藜芦醇甙干预对于学习记忆的改善作用可能同其作用于MAPK/ERK信号通路有关。
     3.缺氧缺血性脑损伤后,新生大鼠脑组织BDNF表达增加,应用白藜芦醇甙干预能进一步增强HIBD新生大鼠大脑皮层及海马BDNF的表达,并且延长其表达时间,这可能是白藜芦醇甙对于HIBD新生大鼠神经保护作用的机制之一。
     4.缺氧缺血性脑损伤后,新生大鼠脑组织c-Jun表达增加,应用白藜芦醇甙干预降低HIBD新生大鼠大脑皮层、海马c-Jun的表达,可能对缺氧缺血后的神经元具有早期保护作用。
Objective: Hypoxic-ischemic brain damage(HIBD)in neonatal period is one ofthe most harmful diseases of the nervous system, which often causes the death ofneonates. The survival also has the varying degree of nervous system developmentaldisorders. HIBD pathogenesis is complicated. For the majority of neonatals, HIBDcomprehensive treatment alleviates the symptoms, protects brain tissue, and minimizesfurther injury of brain. But perinatal cells are easier to be damaged than in adulthood,which leads to further investigation of these therapeutic measures in the neonatals. Andwhether the effective treatment in the mature brain also take effect in the immaturebrain, whether various treatment methods has consistent protective effect for long-termcontinuous development still needs more research. Notably, during the brain damage,the body will produce corresponding protective factors against injury response.Therefore, studies of up-regulations of the protective factor level and reduction of injuryfactor level can lead to important targets in clinical treatment.
     Brain derived neurotrophic factor is an important regulatory factor in synapticplasticity and memory, which plays a significant role in hypoxia-ischemia brain damagerepair as a neuro-protection. While in MAPK/ERK pathway activation, BDNF cancause feedback inhibition of the neuronal excitotoxicity and plays a neuro-protectiverole. In various intracellular signaling kinase cascade chains, extracellular signaling ofERK kinase is the most possible brain-derived neurotrophic intracellular mechanism inneuroprotection. After cerebral hypoxia-ischemia, the high expression ofphosphorylated ERK may be the results of endogenous neuroprotective responses. Afterhypoxia-ischemia brain damage, the immediate early genes such as c-Jun rapidly expresses in the short term, leading to some late effect genes inhibition or activation,and ultimately necrosis and apoptosis of nerve cells. Therefore the use of drugs tomaintain protective signaling pathway activation, up-regulation of the levels of braininjury protective neurotrophic factors, while reduction of early nerve injury caused byfactors such as c-Jun, is the important strategies of clinical treatment ofhypoxic-ischemic brain damage.
     The existing research and our previous work demonstrated the traditional Chinesemedicine, monomer polydatin(PD), has obvious protective effect in cardiovascular andcerebrovascular system. PD can function in the regulation of vascular tone, inhibition ofplatelet aggregation, improvement of microcirculation, protection of vascularendothelial cells and antioxidant effect. It also has the protective effect of cerebralhypoxia ischemia in acute period of brain tissue cell injury. Currently, PD achievedgood clinical results in clinical treatment of acute cerebral infarction, Parkinson'sdisease and senile dementia. These basic research and clinical practice provide a newthought to find an effective treatment for the potential drugs of neonatal HIBD. Moreimportantly, it reflects the aim of whole regulation in Chinese traditional medicinewithin the treatment of diseases. But so far, the study of the polydatin in long termlearning and memory ability of neonatal rat brains after cerebral hypoxia-ischemiainjury and its mechanism research is not well known. Based on the above research andtheoretical basis, we put forward a tentative idea about polydatin in which we appliedthe polydatin to the treatment of neonatal rat HIBD to study the effect ofhypoxic-ischemic brain damage in neonatal rats’ long term learning and memoryabilities. We further explored the possible mechanism of polydatin in HIBD neonatalrat’s long term learning and memory protection, protein levels of ERK pathway andnerve protection factor BDNF expression to clarify the mechanism of PD for HIBDneonatal rats’ learning and memory ability, and to detect the c-Jun expression to clarifythe neuroprotective mechanism of polydatin. These studies will further clarify theprotective role and mechanism of polydatin in cerebral hypoxic-ischemia injuryprotective effect, further provide the role of polydatin in clinical application andtheoretical basis of neonatal hypoxic-ischemic encephalopathy.
     Methods:
     1.7day old SD rats were randomly divided into three groups: false operationgroup (group NS), hypoxia and ischemia group (group HI), PD group (group PD).According to Rice’s methods for preparation of neonatal rat model of hypoxic-ischemic brain damage, separation and ligation of the left common carotid artery2hours afterinhalation of8%oxygen nitrogen oxygen gas mixture for2hour. In NS group, the ratswere only released left common carotid artery but were not ligated and gained anoxictreatment. In group PD, the hypoxia ischemia rats were intraperitoneal injected0.1%PD10mg/kg per day for10days. In group NS and group HI, the rats were injected theequal volume of sterile saline solution. After24hours,10days and21days hypoxiaischemia injury, the rat cortex, hippocampus brain tissue pathological structure changeswere observed by HE staining at the three times. After21days hypoxia ischemia injury,the rats were tested through Y maze and step-down test to evaluate the rats’ learningand memory function changes.
     2. In PD group, inject hypoxic-ischemia neonatal rats0.1%PD10mg/kgintervention therapy for1day. In group NS and HI, inject the equal volume of sterilesaline solution for1day. Use western blot to detect the expression changes of p-ERKand p-CREB of rats after24hours hypoxic-ischemia treatment. Utilizeimmunohistochemical method to detect the c-Jun expression in hippocampal CA1, CA3and DG area. Use western blot to detect the expression of c-Jun in rats after24hoursHIBD.
     3. In group PD, inject hypoxic-ischemia neonatal rats with0.1%PD10mg/kgintervention therapy for10days. In group NS and HI, inject the equal volume of sterilesaline solution for10days. Utilize immunohistochemical methods to detect the BDNFexpression in left cortical, hippocampal CA1and CA3area.
     Results:
     1. Y maze experimental results show that, in the first day of the learning test andthe next day of memory retention test, compared with the NS group, the total reactiontime in HI group was significantly prolonged (P <0.01), error number increased (P<0.01), active avoidance rate reduced (P <0.01). Compared with the HI group, the totalreaction time in PD group was significantly decreased (P <0.01), error numberdecreased (P <0.01), active avoidance rate increased (P <0.01).
     2. The experimental results of Step-down test show that, compared with the NSgroup, in the first day learning test, in HI group, reaction time extended (P <0.01), thenumber of errors increased (P <0.01), in the next day memory retention test, in HIgroup, latency reduced (P <0.01), the number of errors increased (P <0.01).Compared with the HI group, in the first day learning test, in PD group, reaction timereduced more than in HI group (P <0.05), the number of errors was less than in HI group (P <0.01), and the number of errors compared with NS group had nodifferences (P>0.05).in the next day memory retention test, in PD group, latency islonger than in HI group (P <0.05), the number of errors in less than in HI group (P <0.01), and the number of errors compared with NS group had no differences (P>0.05).
     3. After24hours hypoxic-ischemia injury, the western blot results showed that rathippocampal areas in NS group had the basal expression of p-ERK, p-CREB. In HIgroup, the p-ERK, p-CREB expression in rat hippocampal area were increased whencompared with NS group (P <0.01), In PD group, rat hippocampal p-ERK, p-CREBexpression were significantly increased when compared with HI group (P <0.01).
     4. Immunohistochemical results showed that, after24hours hypoxic-ischemiainjury, the BDNF expression of HI rats compared with the NS group significantlyincreased in cortex contralateral hippocampal CA1and CA3area (P <0.01). After10days, it is still higher than that of group NS (P <0.01), with the prolongation of injurytime, the BDNF expression in HI group gradually fall, on the21day, there are nosignificantly different BDNF expression in HI group cortex and hippocampal CA1area,CA3area when compared with NS group (P>0.05). The PD group showed the sametrend, after24hours hypoxic-ischemia injury, the BDNF expression of PD groupsignificantly increased in cortex contralateral hippocampal CA1area, CA3areacompared with the NS group (P <0.01), while in cortical, hippocampal CA1area, therewere no significant difference (P>0.05). The expression of BDNF in CA3area ishigher than that of HI group (P <0.05). The BDNF expression in CA3area is higherthan that of HI group (P <0.05), on the21day, the BDNF expression in PD group washigher than that of group HI (P <0.05). In rats with hypoxic-ischemic hippocampal area,western blot data gain the similar results with the immunohistochemical data, afterhypoxic-ischemia, BDNF expression in HI group and PD group were increased whencompared with NS group, with the prolongation of time, the expression of BDNFgradually fall. After21days hypoxic-ischemia injury in HI group, it had fallen to thelevel of NS group, in PD group, at24hours (P <0.05),10days (P <0.01) and21days(P <0.05), BDNF expression is higher than that of HI group.
     5. After24hours hypoxic-ischemia injury, in HI group, in left cortex,hippocampal CA1, CA3and DG area, the immunohistochemical results showed thepositive expression of c-Jun was significantly higher than that of group NS (P <0.01),in PD group, it was significantly decreased (P <0.01). The western blot results showed that the c-Jun expression in left hippocampal in HI group was higher than that of groupNS (P <0.01), while in PD group, its expression was lower than that in the HI group (P<0.01).
     6. Under a light microscope, HE staining showed that the left hemisphere of thebrain organization of cortical, hippocampal CA1area in NS group displayed clear layers,normal nerve cell structure and morphology. After24hours hypoxic-ischemia injury in10days HI group, left brain tissue became thin, hippocampal pyramidal cell layerreduces, nerve cell deranged, cell swelled, dissoluted, and displayed the obviousneuronal loss and focal necrosis. After21days hypoxic-ischemia injury, cortex,hippocampus and other areas formed the glial scar. The rats in PD group at each timepoint still have various degrees of neuronal degeneration, but the majority of theneurons structure are complete, and the hippocampal pyramidal cell layer, cell shapeand arrangement are generally normal.
     Conclusion:
     1. HIBD can cause brain tissue pathological changes. The learning and memoryability of neonatal rats were reduced. Polydatin treatment can alleviate the injury ofbrain tissue of HIBD rats and improve the ability of learning and memory.
     2. After hypoxic-ischemic brain damage, the expression of p-ERK and p-CREBwere increased in hippocampal areas of neonatal rats, MAPK/ERK signaling pathwayis activated. Polydatin can enhance hippocampal p-ERK and p-CREB expression, whichsuggested that the learning memory protection of polydatin may be mediated by MAPK/ERK signal pathway.
     3. The expression of BDNF in HIBD neonatal rats is increased afterhypoxic-ischemia injury. Polydatin can up-regulate and last the expression of HIBD inbrain tissue of neonatal rats in cerebral cortex and hippocampus. This effect may beinvolved in hypoxic-ischemia neuroprotection.
     4. The expression of c-Jun is increased after hypoxic-ischemia injury. Polydatinreduces c-Jun expression in HIBD neonatal rats’ cerebral cortex, hippocampus, whichmay have an early protective effect in neurons after hypoxic-ischemia.
引文
1. Johnston MV, Trescher WH,Ishida A, et al. Neurpbiology of hypoxic-ischemic injury in thedeveloping brain[J]. Pediatri Res,2001,49(6):735-41.
    2.赵时敏.新生儿缺氧缺血性脑病的防治及研究方向[J].中华儿科杂志,1997,35(2):59-60.
    3. Perlman JM. Brain injury in the term infant[J]. Semin Perinatol,2004,28(6):415-24.
    4. Fan X, Bel F. Pharmacological neuroprotection after perinatal asphyxia[J]. J Matern FetalNeonatal Med,2010,23Suppl3:17-9. Review.
    5. Fan X, Kavelaars A, Heijnen CJ, et al. Pharmacological neuroprotection after perinatalhypoxic-ischemic brain injury[J]. Curr Neuropharmacol,2010,8(4):324-34.
    6. Jakawich SK, Nasser HB, Strong MJ, et al. Local presynaptic activity gates homeostatic changesin presynaptic function driven by dendritic BDNF synthesis[J]. Neuron,2010,68(6):1143-58.
    7. Cunha C, Brambilla R, Thomas KL, et al. A simple role for BDNF in learning and memory?[J].Front Mol Neurosci,2010,3:1.
    8. Ikeda T, Mishima K, Yoshikama K, et al. Selective and long-term learning impairment followingneonatal hypoxic-ischemic brain insult in rats[J]. Behav Brain Res,2001,118(1):17-25
    9.王作军,谢集建,李涛,等.尼莫通对缺氧缺血性脑损伤新生大鼠学习和记忆的影响[J].实用儿科临床杂志,2007,22(14):1061-3.
    10.Guo G, Bhat NR. Hypoxia/reoxygenation differentially modulates NF-kappaB activation andiNOS expression in astrocytes and microglia [J]. Antioxid Redox Signal,2006,8(5-6):911-8.
    11.Makoroff KL, Gecil KM, Gare M, et al. Elevated lactate as an early marker of brain injury ininflicted traumatic brain injury [J]. Pediatr Radiol,2005,35(7):668-76.
    12.高守红,杨少麟,范国荣.虎杖苷的研究进展[J].药学实践杂志,2005,23(3):145-7.
    13.Zhou S, Yang R, Teng Z, et al. Dose-dependent absorption and metabolism of trans-polydatin inrats[J]. J Agric Food Chem,2009,57(11):4572-9.
    14.杨润涛,周四元,章翔,等.液相色谱-串联质谱法同时测定血浆中白藜芦醇苷及其代谢产物[J].分析化学,2007,35(9):1309-13.
    15.Kundu JK, Surh YJ.Cancer chemopreventive and therapeutic potential of resveratrol:mechanisticperspectives[J]. Cancer Lett,2008,269(2):243-61.
    16.Athar M, Back JH, Kopelovich L, et al.Multiple molecular targets of resveratrol:Anti-carcinogenic mechanisms[J]. Arch Biochem Biophys,2009,486(2):95-102.
    17.Brisdelli F, D' Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiplechemopreventive properties[J]. Curr Drug Metab,2009,10(6):530-46.
    18.朱立贤,金征宇.白藜芦醇苷对高脂血症大鼠血脂代谢的影响及其抗氧化作用[J].中成药,2006,28(2):260-1.
    19.莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用[J].中国药理学通报,2000,16(5):519-21.
    20.Du J, Sun LN, Xing WW, et al. Lipid-lowering effects of polydatin from Polygonum cuspidatumin hyperlipidemic hamsters[J]. Phytomedicine,2009,16(6-7):652-8.
    21.Xing WW, Wu JZ, Jia M, et al. Effects of polydatin from Polygonum cuspidatum on lipid profilein hyperlipidemic rabbits[J]. Biomed Pharmacother,2009,(63)7:457-62.
    22.Kaga S, Zhan L,Matsumoto M,Maulik N.Resveratrol enhances neovascularization in the infarctedrat myocardium through the induction of thioredoxin-1, heme oxygenase-1and vascularendothelial growth factor[J]. J Mol Cell Cardiol,2005,39(5):813-22.
    23.Fukuda S, Kaga S, Zhan L, et al. Resveratrol ameliorates myocardial damage by inducingvascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1[J]. CellBiochem Biophys,2006,44(1):43-9.
    24.Rathel TR, Samtleben R, Vollmar AM, et al. Activation of endothelial nitric oxide synthase byred wine polyphenols:impact of grape cultivars,growing area and the vinification process[J]. JHypertens,2007,25(3):541-49.
    25.Cheng Y, Zhang HT, Sun L, et al. Involvement of cell adhesion molecules in polydatin protectionof brain tissues from ischemia-reperfusion injury[J]. Brain Res,2006,1110(1):193-200.
    26.Gao D, Zhang X, Jiang X, et al. Resveratrol reduces the elevated level of MMP-9induced bycerebral ischemia-reperfusion in mice[J]. Life Sci,2006,78(22):2564-70.
    27.Anekonda TS. Polydatin--a boon for treating Alzheimer's disease?[J]. Brain Res,2006,52:316-26.
    28.张永强,程岗,章薇,等.白藜芦醇对缺血再灌注小鼠神经干细胞增殖作用的研究[J].中华神经外科疾病研究杂志,2010,9(6):484-87.
    29.LEI Jun-rong, ZHANG Jing, QIN Jun. Neuroprotective effect of resveratrol on cerebral tissuesafter ischemia-reperfusion injury and its mechanisms in rats[J]. Chinese Journal of ClinicalNeurosurgery,2011,16(7):410-2,416.
    30.邓学军,孙圣刚,梅元武.白藜芦醇苷保护脑海马区缺血神经元的机制探讨[J].现代康复,2001,5(7):52-4.
    31.黄斌,王兴勇,匡凤梧,等.白藜芦醇苷对大鼠局灶性脑缺血的保护作用[J].中国急救医学,2005,25(3):192-3.
    32.Gao S, Fan G, Hong Z, et al. HPLC determination of polydatin in rat biological matrices:application to pharmacokinetic studies[J]. J Pharm Biomed Anal,2006,41(1):240-45.
    33.Zhou S, Yang R, Teng Z, et al. Dose-dependent absorption and metabolism of trans-polydatin inrats[J]. J Agric Food Chem,2009,(57)11:4572-9.
    1. Samson ML,Kajitani K,Robertson GS. Nitric-oxide synthase mediates the ability of darbepoetinalfa to attenuate pre-existing spatial working memory deficits in rats subjected to transient globalischemia[J]. J Pharmacol Exp Ther,2010,333(2):437-44.
    2. Dell'Anna E, Iuvone L, Calzohti S,et al. Effect of acetyl-L-carnitine on hyperactivity and spatialmemeory deficits of rats exposed to neonatal anoxia[J]. Neurosci Lett,1997,223(3):201-5.
    3. Mishima K, Ikeda T, Aoo N, et al. hypoxic-ischemic insult in neonatal rats induced slowlyprogressive brain damaged related to memory impairment[J]. Neurosci Lett,2005,376(3):194-9.
    4.常燕群,谢集建,王淑珍,等.围产期缺氧缺血对大鼠学习记忆的影响及其机制探讨[J].中华物理医学与康复杂志,2002,24(5):265-8.
    5.谢集建,陈宝芳,刘忠武,等.新生大鼠缺氧缺血性脑损伤后远期学习记忆和海马长时程增强的研究[J].中华儿科杂志,2003,41(1):50-1.
    6. Garaiziar C, Prats-Vinas JM. Brain lesions of perinatal and late prenatal origin in a neuropediatriccontext. Ne[J]. Rev Neurol,1998,26(154):934-50.
    7.王岚,王学义,史少霞.丙戊酸钠对慢性酒中毒模型大鼠学习记忆损害的影响.中国神经精神疾病杂志,2010,36(5):257-60
    8. LeBlanc MH,Vig V,Smith B,et al. MK-801does not Protect against hypoxic-ischemic braininjury in piglets[J].Stroke,1991,22(10):1270-75.
    9. Brambrink AM, Martin LJ, Hanley DF, et al. Effects of the AMPA receptor antagonist NBQX onthe outcome of newborn pigs after asphyxic cardiac arrest[J]. J Cereb Blood Flow Metab,1999,19(8):927-38.
    10.Ikeda T, Mishima K, Aoo N, et al. Rehabilitative Training Tasks Improve Spatial LearningImpairment in the Water Maze Following Hypoxic-Ischemic Insult in Neonatal Rats[J]. PediatrRes,2006,59(1):61–5.
    11.Rice JE3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic braindamage in the rat[J]. Ann Neurol,1981,9(2):131-41.
    12.王跃春. Y型电迷宫在大鼠学习记忆功能测试中的合理运用[J].中国行为医学科学,2005,14(1):69-70.
    13.Han BH, D Costa A, Back SA, et al. BDNF blocks casapases-3activation in neonatalhypoxia-ischemia[J]. Neurobiol Dis,2000,7(1):38-53.
    14.Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalianspecies[J]. Neuroscience,2001,105(1):7-17.
    15.Markgraf CG, Kraydieh S, Prado R, et al. Comparative histopathologic consequences ofphotothrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wistarrats[J]. Stroke,1993,24(2):286-92,discussion292-3.
    16.Hagberg H, Peebles D, et al. Models of white matter injury: comparison of infectious,hypoxic–ischemic, and excitotoxic insults[J]. Ment Retard Dev Disabil Res Rev,2002,8(1):30-8.
    17.van der Worp HB, Sena ES, Donnan GA, et a1. Hypothermia in animal models of acute ischemicstroke:A systematic review and meta-analysis[J]. Brain,2007,130(12):3063-74.
    18.Gunn AJ, Wyatt JS, Whitelaw A, et a1. Therapeutic hypothermia changes the prognostic value ofclinical evaluation of neonatal encephalopathy[J]. J pediatr,2008,152(1):55-8.
    19.尹晓娟,巨容,封志纯.新生鼠缺氧缺血性脑病动物模型的建立及神经干细胞在缺氧缺血性脑病中的变化规律探讨[J].中华儿科杂志,2005,43(8):572-5.
    20.王跃春,王子栋.大鼠Y-型迷宫测试指标正常值的确定[J].中国行为医学科学,2003,12(3):333-5.
    21.邹伟,王红霞,刘晶,等.大鼠脑内caveolin-1蛋白的表达及其在分辨学习中的作用[J].生理学报,2006,58(5):429-34.
    22.Jung WR,Kim HG,Kim KL, et a1. Ganglioside GQ1b improves spatial learning and memory ofrats as measured by the Y-maze and the Morris water maze tests. NeurosciLett,2008,439(2):220-5
    23.Shin MK,Kim HG,Kim KL, et a1. A novel trimeric peptide, Neuropep-1-stimulatingbrain-derived neurotrophic factor expression in rat brain improves spatial learning and memory asmeasured by the Y-maze and Morris water maze[J]. J Neurochem,2011,116(2):205-16
    24.蒲昭霞,赵聪敏,鲁利群.缺氧缺血性脑损伤对大鼠学习记忆的慢性进行性影响及可能机制[J].四川医学,2006,27(11):1113-5.
    25.Li RP, Wang ZZ, Sun MX, et, al. Polydatin protects learning and memory impairments in a ratmodel of vascular dementia[J]. Phytomedicine.2012, Apr4.[Epub ahead of print]
    26.曲云霞.白藜芦醇甙对新生大鼠缺氧缺血性脑损伤的保护作用的研究[D].大连:大连医科大学,2010.
    27.Puzzo D, Vitolo O, Trinchese F,et al. Amyloid-β Peptide Inhibits Activation of the NitricOxide/cGMP/cAMP-Responsive Element-Binding Protein Pathway during HippocampalSynaptic Plasticity[J]. J Neurosic,2005,25(29):6887-6897.
    1. Golan H, Huleihel M. The effect of prenatal hypoxia on brain development: short-and long-termconsequences demonstrated in rodent models[J]. Dev Sci,2006,9(4):338-49.
    2. Gieron-Korthals M, Colón J. Hypoxic-ischemic encephalopathy in infants:new challenges[J].Fetal Pediatr Pathol,2005,24(2):105-20.
    3. Lindstrom K, Hallberg B, Blennow M, et al. Moderate encephalopthay:Pre-and perinatal riskfactors and long-term outcome[J]. Acta Obstet Gynceol Scand,2008,87(5):503-9.
    4. Schrader LA, Bimbaum SG, Nadin BM, et al. ERK/MAPK regulates the Kv4.2potassium channelby direct phosphorylation of the pore forming subunit[J]. Am J Physiol Cell Physiol,2006,290(3):852-61.
    5. Igaz LM, Winograd M, Cammarota M, et al. Early Activation of Exacellular Signal-RegulatedKinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation ofa Fear-Motivated Learning[J]. Cell Mol Neurobiol,2006,26(4-6):989-1002.
    6. Thomas GM, Huganir RL. MAPK cascade signaling and synaptic plasticity[J]. Neuroscience,2004,5:173-83.
    7. Sweatt JD. Motigen-activated protein kinases in synaptic plasticity and memory[J]. Curr OpinNeurobiol,2004,14(3):311-7.
    8. Feld M, Dimant B, Delorenzi A, et al. PhosPhorylation of extra-nuclear ERK/MAPK is requiredfor long-term memory consolidation in the crab Chasmagnathus[J]. Behav Brain Res,2005,158(2):251-61.
    9. Hayward P. Presenilin dysfunction leads to memory and plasticit defects[J]. Lancet Neurol,2004,3(6):327.
    10.Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade inmemory[J]. Annu Rev Pharmacol Toxicol,2002,42:135-63.
    11.Cohen-Matsliah SI, Seroussi Y, Rosenblum K, et al. Persistent ERK activation maintainslearning-induced long-lasting modulation of synaptic connectivity[J]. Learn Mem,2008,15(10):756-61.
    12.Morozov A, Muzzio IA, Bourtchouladze R, et al. Rap1couples cAMP signaling to a distinct poolof p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory[J]. Neuron,2003,39(2):309-25.
    13.Coogan AN, O'Leary DM, O'Connor JJ. P42/44MAP kinase inhibitor PD98059attenuatesmultiple forms of synaptic plasticity in rat dentate gyrus in vitro[J]. J Neurophysiol,1999,81(1):103-10.
    14.Kanterewicz BI, Urban NN, McMahon DB, et al. The extracellular signal-regulated kinasecascade is required for NMDA receptor-independent LTP in area CA1but not area CA3of thehippocampus[J]. J Neurosci,2000,20(9):3057-66.
    15.Blum S, Moore AN, Adams F, et al. A mitogen-activated protein kinase cascade in the CA1/CA2subfield of the dorsal hippocampus is essential for long-term spatial memory[J]. J Neurosci,1999,19(9):3535-44.
    16.Schafe GE, Nadel NV, Sullivan GM, et al. Memory consolidation for contextual and auditoryfear conditioning is dependent on protein synthesis, PKA, and MAP kinase[J]. Learn Mem,1999,6(2):97-110.
    17.Berman DE, Hazvi S, Rosenblum K, et al. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat[J]. JNeurosci,1998,18(23):10037-44.
    18.Schafe GE, Atkins CM, Swank MW, et al. Activation of ERK/MAP kinase in the amygdala isrequired for memory consolidation of pavlovian fear conditioning[J]. J Neurosci,2000,20(21):8177-87.
    19.Leon WC, Bruno MA, Allard S, et al. Engagement of the PFC in consolidation and recall ofrecent spatial memory[J]. Learn Mem,2010,17(6):297-305.
    20.Silingardi D, Angelucci A, De Pasquale R, et al. ERK pathway activation bidirectionally affectsvisual recognition memory and synaptic plasticity in the perirhinal cortex[J]. Front BehavNeurosci,2011,5:84.
    21.Countryman RA, Orlowski JD, Brightwell JJ, et al. CREB phosphorylation and c-Fos expressionin the hippocampus of rats during acquisition and recall of a socially transmitted foodpreference[J]. Hippocampus,2005,15(1):56-67.
    22.于玮,张莉,韩太真,等.成年大鼠海马P-CREB的分布[J].第四军医大学学报,2004,25(10):874-6.
    23.Viosca J, Malleret G, Bourtchouladze R, et al. Chronic enhancement of CREB activity in thehippocampus interferes with the retrieval of spatial information[J]. Learn Mem.2009,16(3):198-209.
    24.Restivo L, Tafi E, Ammassari-Teule M, Marie H. Viral-mediated expression of a constitutivelyactive form of CREB in hippocampal neurons increases memory[J]. Hippocampus,2009,19(3):228-34.
    25.Yang BH, Son H, Kim SH, et a1. Phosphorylation of ERK and CREB in cultured hippocampalneurons after and haloperidol risperidone administration[J]. Psychiatry Clin Neurosci,2004,58(3):262-7.
    26.Puzzo D, Vitolo O, Trinchese F, et al. Amyloid-β Peptide Inhibits Activation of the NitricOxide/cGMP/cAMP-Responsive Element-Binding Protein Pathway during HippocampalSynaptic Plasticity[J]. J Neurosic,2005,25(29):6887-97.
    27.付度关. ERK对缺血缺氧性脑损伤后神经元凋亡的影响[J].卒中与神经疾病,2007,14(6):346-9.
    28.Hu BR, Liu CL, Park DJ. Alteration of MAP kinase pathways after transient forebrainischemia[J]. J Cereb Blood Flow Metab,2000,20(7):1089-95.
    29.王耀岐,李军,曹红,等. ERK和JNK通路在沙土鼠脑缺血预处理中的表达及作用[J].中国药理学通报,2006,22:337-340.
    30.李军,曹红,连庆泉等. MAPK家族在沙土鼠前脑缺血再灌注期间海马神经元表达的动态变化[J].温州医学院学报,2006,36(5):407-10.
    31.杨忠华,许能贵,易玮等.针刺调节MAPK/ERK通路对脑缺血模型大鼠的干预作用[J].广州中医药大学学报,2010,27(1):23-6.
    32.Nakajima T, Iwabuchi S, Miyazaki H, et al. Relationship between the activation of cyclic AMPresponsive element binding protein and ischemic tolerance in the penumbra region of rat cerebralcortex[J]. Neurosic Lett,2002,331(1):13-6.
    33.lmpey S, Obrietan K, Storm DR. Making new connections:role of ER/MAPK kinase signal inneuronal plasticity[J]. Neuron,1999,23(1):11-4.
    34.Ito U, Kawakami E, Nagasao J, et al. Restitution of ischemic injuries in penumbra of cerebralcortex after temporary ischemia[J]. Acta Neurochir Suppl,2006,96:239-43.
    35.余瑞元,王燕峰,徐长法. CREB研究进展[J].中国生物工程杂志,2003,23(l):39-42.
    36.李金,张亚历.白藜芦醇在抑制炎症信号转导通路方面的研究进展[J].胃肠病学和肝病学杂志,2009,5(18):466-8.
    37.李珍,王斌生,孔德虎,等.白藜芦醇预处理对大鼠局灶性脑缺血/再灌注损伤的神经保护作用[J].中国药理学通报,2010,6:802-6.
    38.Almeida RD, Manadas BJ, Melo CV, et al. Neuroprotection by BDNF against glutamate-inducedapoptotic cell death is mediated by ERK and PI3-kinase pathways[J]. Cell Death Differ,2005,12(10):1329-43.
    39.Mitsuda N, Ohkubo N, Tamatani M, et al. Activated cAMP-response element-binding proteinregulates neuronal expression of Presenilin-1[J]. J Biol Chem,2001,276(13):9688-98.
    1. Yoshii A, Constantine-Paton M.Postsynaptic BDNF-TrkB signaling in synapse maturation,plasticity, and disease[J]. Dev Neurobiol,2010,70(5):304-22.
    2. Numakawa T, Suzuki S, Kumamaru E, et al. BDNF function and intracellular signaling inneurons[J]. Histol Histopathol,2010,25(2):237-58.
    3. Rahvar M, Nikseresht M, Shafiee SM, et al. Effect of oral resveratrol on the BDNF geneexpression in the hippocampus of the rat brain[J]. Neurochem Res,2011,36(5):761-5.
    4.曲云霞,李开花,何绘敏,等.白藜芦醇甙对新生大鼠缺氧缺血后脑组织细胞间黏附分子1表达的影响[J].国际儿科学杂志,2011,38(1):94-5.
    5. Barde YA, Edgar D, Thoenen H. purification of a new neurotrophic factor from mammalianbrain[J]. EMBO J,1982,1(5):549-53.
    6. Reagan LP, Hendry RM, Resnikov LR, et al. Tianeptineincreases Brain-derived neurotrophicfactor expression in the rat amygdale[J]. Enr J Phannacol,2007,565(1-3):68-75.
    7. Zhou J, Zhang H, Coben Rs, et al. Efect of estrogen treatment on expression of brain-derivedneurotrophic factor and cAMP response element-binding protein expression and phosphorylationinr at8ng dallied and hippocampalstructures[J]. Neuroendocrinology,2005,81(5):294-310.
    8. Li L, Xu Q, Wu Y, et al. Combined therapy of methylpredntsolone and brain-derivedneurotrophic neurotrophic factor promotes axonal regeneration and functional recovery afterspinal cord injury in rats[J]. Chin Med J(Eng1),2003,116(3):414-8.
    9. Aid T, Kazantseva A, Piirson M. Mouse and rat BDNF gene structure and expression revisited[J].J Neurosci Res,2007,85(3):525-35.
    10.Jia Y, Gall CM, Lynch G. Presynaptic BDNF promotes postsynaptic long-term potentiation in thedorsal striatum[J]. J Neurosci,2010,30(43):1440-5.
    11.Towne JE, Krane CM, Bachursiki CJ, et al. Tumoe necrosisfactor-alpha inhibits aquaporin5expression in mouse lung epithelial cells[J]. J Biol Chem,2001,276(22):18657-64.
    12.Tongiorgi E. Activity-dependent expression of brain-derived neurotrophic factor in dendrites:Facts and open questions[J]. Neurosci Res,2008,61(4):335-46.
    13.Liu L, Zhang X, Wang L, et a1. The neuroprotective effects of Tanshinone IIA are associatedwith induced nuclear translocation of TORC1and upregulated expression of TORC1, pCREBand BDNF in the acute stage of ischemic stroke[J]. Brain Res Bull,2010,82(3-4):228-33.
    14.Marini AM, Jiang X, Wu X, et a1. Role of brain-derived neurotrophic factor and NF-kappaB inneuronal plasticity and survival: From genes to phenotype[J]. Restor Neurol Neurosci,2004,22(2):121-30.
    15.Santos AR, Comprido D, Duarte CB. Regulation of local translation at the synapse by BDNF[J].Prog Neurobiol,2010,92(4):505-16.
    16.Kalb R. The protection actions of neurotrophins and their receptors on the life and death ofneurons[J]. Trends Neurosci,2005,28(1):5-11.
    17.Marini AM, Jiang X, Wu X, et a1. Role of brain-derived neurotrophic factor and NF-kappaB inneuronal plasticity and survival: From genes to phenotype[J]. Restor Neurol Neurosci,2004,22(2):121-30.
    18.Jiang Y, Wei N, Lu T, et al. Intranasal brain-derived neurotrophic factor protects brain fromischemic insult via modulating local inflammation in rats[J]. Neuroscience,2011,172:398-405.
    19.Shinoda Y, Sadakata T, Nakao K, et al. Calcium-dependent activator protein for secretion2(CAPS2) promotes BDNF secretion and is critical for the development of GABAergicinterneuron network[J]. Proc Natl Acard Sci U S A,2011,108(1):373-8.
    20.Sch bitz WR, Sommer C, Zoder W, et a1.Intravenous brain-derived neurotrophic factor reducesinfarct size and counterregulates Bax and Bcl-2expression after temporary focal cerebralischemia[J]. Stroke,2000,31(9):2212-7.
    21.Han Q, Li B, Feng H, et a1. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF[J]. Biomaterials,2011,32(22):5077-85.
    22.Han BH, Holtzman DM.BDNF Protects the Neonatal Brain from Hypoxic-Ischemic Injury InVivo via the ERK Pathway[J]. J Neurosci,2000,20(15):5775–81.
    23.Scharfmana H, Goodmana J, Macleoda A, et a1. Increased neurogenesis and the ectopic granulecells after intrahipp ocampal BDNF infusion in adult rats[J]. Exp Neurol,2005,192(2):348-56.
    24.Binder DK, Scharfman HE. Brain-derived neurotrophic factor[J]. Growth Factors,2004,22(3):123.
    25.宁晓霞,师社会,邢亮,等. BDNF、TrkB在大鼠海马CA3区的表达及其与学习记忆的关系[J].陕西医学杂志,2008,37(9):1130-2.
    26.Radecki DT, Brown LM, Martinez J, et al. BDNF Protects against stress-induced impairments inspatial learning and memory and LTP[J]. Hippocampus,2005,15(2):246-53.
    27.Monteggia LM, Barrot M, Powell CM, et al. Essential role of brain-derived neurotrophic factor inadult hippocampal function[J]. Proc Natl Acad Sci U S A,2004,101(29):10827-32.
    28.Dragunow M, Hughes P, Mason Parker SE, et a1. TrkB expression in dentate granule cells isassociated with a late phase of long-term potentiation[J]. Brain Res Mol Brain Res,1997,46(1-2):274-80.
    29.Li B, Arime Y, Hall FS, et a1. Impaired spatial working memory and decreased frontal cortexBDNF protein level in dopamine transporter knockout mice[J]. Eur J Pharmacol,628(1-3):104-7.
    30.Nagahara AH, Merrill DA, Coppola G, et a1. Neuriprotective effects of brain-derivedneurotrophic factor in rodent and primate models of Alzhemer’s disease[J]. Nat Med,2009,15(3):331-7.
    31.Im SH, Yu JH, Park ES, et a1. Induction of striatal neurogenesis enhances functional recovery inan adult animal model of neonatal hypoxic-ischemic brain injury[J]. Neuroscience,2010,169(1):259-68.
    32.韩太真,吴馥梅.学习与记忆的神经生物学[M].第1版.北京:北京医科学大学中国协和医科大学联合出版社,1998,162-176.
    33.Golan H, Huleihel M. The effect of prenatal hypoxia on brain development: short and long-termconsequences demonstrated in rodent models[J]. Dev Sci,2006,9(4):338–49.
    34.Ding Y, Li J, Luan X, et al. Exercise pre-conditioning reduces brain damage in ischemic rats thatmay be associated with regional angiogenesis and cellular overexpression of neurotrophin[J].Neuroscience,2004,124(3):583-91.
    35.Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cellspromote functional recovery and reduce infarct size in the rat middle cerebral artery occlusionmodel[J]. Mol Ther,2004,9(2):189-97.
    36.林百喜,谢明,武衡.大脑中动脉阻塞大鼠脑内BDNF蛋白表达变化[J].中国现代医学杂志,2008,18(6):702-5.
    37.Wenjin W, Wenchao L, Hao Z, et al. Electrical stimulation promotes BDNF expression in spinalcord neurons through Ca(2+)-and Erk-dependent signaling pathways[J]. Cell Mol Neurobiol,2011,31(3):459-67.
    38.邢雪松,吕威力,张国斌. bFGF对脑缺血大鼠脑组织HSP70mRNA表达影响[J].中国公共卫生,2008,24(7):810-2.
    39.邢雪松,吕威力. bFGF对大鼠缺血性脑损伤CaMKⅡmRNA表达影响[J].中国公共卫生,2008,24(10):1227-8.
    40.Sauer H, Fischer W, Nikkhah G, et al. Brain-derived neurotrophic factor enhances unction ratherthan surivival intrastriatal dopamine cell-rich geafts[J]. Brain Res,1993,626(1-2):37-44.
    1. Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy[J]. Biomed Biotechnol,2011,2011:609813.
    2. Pappas A, Shankaran S, Laptook AR, et al. Hypocarbia and adverse outcome in neonatalhypoxic-ischemic encephalopathy[J]. J Pediatr,2011,158(5):752-8.
    3. Perlman M, Shah PS. Hypoxic-ischemic encephalopathy: challenges in outcome and prediction[J].J Pediatr,2011,158(2)Suppl:e51-4.
    4.刘志勇.即刻早基因c-fos和c-Jun与学习记忆[J].实用临床医学,2004,5(1):121-2.
    5. Perrone S, Stazzoni G, Tataranno ML, et al. New pharmacologic and therapeutic approaches forhypoxic-ischemic encephalopathy in the newborn[J]. J Matern Fetal Neonatal Med,2012,25Suppl(1):83-8.
    6.张贺敏,毕国荣.C-jun基因与脑血管病及学习记忆[J].解剖科学进展,2007,13(2):186-9.
    7. Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network[J]. Protein Cell,2011,2(11):889-98.
    8.江克文,杨翠微,水泉祥.新生大鼠缺氧缺血脑损伤后μ-caLpain活化及其他相关因子表达变化的时程及意义[J].中华儿科杂志,2004,42(6):441-5.
    9. Hala R, Maeda K, Hermann D, et al. Dynamics of regional brain metabolism and gene expressionafter middle cerebral artery occlusion in mice [J].J Cereb Blood Flow Metab,2000,20(2):306-15.
    10.Sonia, Agnes, Cedric, et al. AS601245, a c-Jun NH2-terminal protein kinase inhibitor withneuroprotective properties [J].J Pharmacol Exp Ther,2004,310(1):25-32.
    11.Ginsberg MD. The new language of cerebral ischemia [J].AJNR Am J Neuroradiol,1997,18:1435-45.
    12.Taylor RC, Cullen SP, Martin SJ. Apoptosis:controlled demolition at the cellular level[J].Nat RevMol Cell Biol,2008,9:231-41.
    13.Lindwall C, Kanje M. The Janus role of c-Jun: cell death versus survival and regeneration ofneonatal sympathetic and sensory neurons[J]. Exp Neuarl,2005,196(1):184-94.
    14.Okuno S, Saito A, Hayashi T, et al. The c-Jun N-terminal protein kinase signaling pathwaymediates Bax activation and subsequent neuronal apoptosis through interaction with Bim aftertransient focal cerebral ischemia[J]. J Neurosci,2004,24(36):7879-87.
    15.GUAN QH, PEI DS, ZONG YY, et al. Neuroprotection against ischemic brain injury by a smallpeptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways [J].Neuroscience,2006,139(2):609-27.
    16.Nijboer CH, van der Kooij MA, van Bel F, et al. Inhibition of the JNK/AP-1pathway reducesneuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury[J].Brain Behav Immun,2010,24(5):812-21.
    17.Wang Q, Yin XH, Liu Y, et al. K252a suppresses neuronal cells apoptosis through inhibiting thetranslocation of Bax to mitochondria induced by the MLK3/JNK signaling after transient globalbrain ischemia in rat hippocampal CA1subregion[J]. J Recept Signal Transduct Res,2011,31(4):307-13.
    18.Michel-Monigadon D,Bonny C,Hirt L. c-Jun N-terminal kinase pathway inhibition inintracerebral hemorrhage[J].Cerebrovasc Dis,2010,29(6):564-70.
    19.Repici M, Centeno C, Tomasi S, et al. Time-course of c-Jun N-terminal kinase activation aftercerebral ischemia and effect of D-JNK1on c-Jun and caspase-3activation[J]. Neurosci,2007,150(1):40-9.
    20.Whitfield J, Neame SJ, Paquet L, et al. Dominant-negative c-Jun promotes neuronal survival byreducing BIM expression and inhibiting mitochondrial cytochrome c release [J]. Neuron,2001,29(3):629-43.
    21.Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence[J]. Nat Rev DrugDiscov,2006,5:493-506.
    22.Zhang LP, Ma HJ, Bu HM, et al. Polydatin attenuates ischemia/reperfusion-induced apoptosis inmyocardium of the rat[J]. Sheng Li Xue Bao,2009,61(4):367-72.
    23.曲云霞.白藜芦醇甙对新生大鼠缺氧缺血性脑损伤的保护作用的研究[D].大连:大连医科大学,2010.
    24.Yao J, Wang JY, Liu L, et al. Polydatin ameliorates DSS-induced colitis in mice throughinhibition of nuclear factor-kappaB activation[J]. Planta Med,2011,77(5):421-7.
    25.曾星星,章军建.白藜芦醇的神经保护实验研究进展[J].中国临床神经科学,2011,19(1):79-82.
    26.何蓉,王兴勇.脑缺血海马CA1区突触可塑性及白藜芦醇苷对缺血性脑损伤的保护机制[J].儿科药学杂志,2008,14(4):61-3.
    27.FAN Xi-yong, Kavelaars A, Heijnen C J, et al. Pharmacological neuroprotection after perinatalhypoxic-ischemic brain injury[J].Curr Neuropharmacol,2010,8(4):324-34.
    28.Nijboer C H, van der Kooij M A, van Bel F, et al. Inhibition of the JNK/AP-1pathway reducesneuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury[J].Brain Behav Immun,2010,24(5):812-21.
    1. Maren S, Baudry M. Properties and mechanisms of long-term synaptic plasticity in themammalian brain: relationships to learning and memory[J]. Neurobiol Learn Mem,1995,63(1):1-18.
    2. Morris RG, Frey U. Hippocampal synaptic plasticity: role in spatial learning or the automaticrecording of attended experience?[J]. Philos Trans R Soc Lond B Biol Sci,1997,352(1360):1489-503.
    3. Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neuralnetwork approach to causality[J]. Nat Rev Neurosci,2008,9(1):65-75.
    4.朱道立.突触长时程增强形成与学习记忆的相关研究[J].生理学通报,2004,39(7):6-8.
    5. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of theanaesthetized rabbit following stimulation of the perforant path[J]. J Physiol,1973,232(2):331-56.
    6.周星娟,凌树才.学习与记忆机制研究进展[J].国际病理科学与临床杂志,2008,28(2):138-41.
    7.韩太真.长时程增强形成机理的研究进展[J].生理科学进展,1994,25(1):60-3.
    8.左昕,潘奇波,林春辉.学习记忆中长时记忆形成的分子机制[J].海军医学杂志,2008,29(4):364-6.
    9. Miyashita T, Kubik S, Lewandowski G, et al. Networks of neurons, networks of genes: anintegrated view of memory consolidation[J]. Neurobiol Learn Mem,2008,89(3):269-84.
    10. Adams JP, Dudek SM. Late-phase long-term potentiation: getting to the nucleus[J]. Nat RevNeurosci,2005,6(9):737-43.
    11. Guzowski JF, McNaughton BL, Barnes CA, et al. Environment-specific expression of theimmediate-early gene Arc in hippocampal neuronal ensembles[J]. Nat Neurosci,1999,2(12):1120-4.
    12. Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature,2001,410(6824):37-40.
    13. Ji RR, Gereau RW4th, Malcangio M, et al. MAP kinase and pain[J]. Brain Res Rev,2009,60(1):135-48.
    14. English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade inhippocampal long term potentiation[J]. J Biol Chem,1997,272(31):19103-6.
    15. Schafe GE, Swank MW, Rodrigues SM, et al. Phosphorylation of ERK/MAP kinase is requiredfor long-term potentiation in anatomically restricted regions of the lateral amygdala in vivo[J].Learn Mem,2008,15(2):55-62.
    16. Silingardi D, Angelucci A, De Pasquale R, et al. ERK pathway activation bidirectionally affectsvisual recognition memory and synaptic plasticity in the perirhinal cortex[J]. Front BehavNeurosci,2011,5:84.
    17. Dupont E, Stevens L, Cochon L, et al. ERK is involved in the reorganization of somatosensorycortical maps in adult rats submitted to hindlimb unloading[J]. PLoS One,2011,6(3): e17564.
    18. Molina-Luna K, Hertler B, Buitrago MM, et al. Motor learning transiently changes corticalsomatotopy[J]. Neuroimage,2008,40(4):1748-54.
    19. Atkins CM, Selcher JC, Petraitis JJ, et al. The MAPK cascade is required for mammalianassociative learning[J]. Nat Neurosci,1998,1(7):602-9.
    20. Leon WC, Bruno MA, Allard S, et al. Engagement of the PFC in consolidation and recall ofrecent spatial memory[J]. Learn Mem,2010,17(6):297-305.
    21. Amadoro G, Ciotti MT, Costanzi M, et al. NMDA receptor mediates tau-induced neurotoxicityby calpain and ERK/MAPK activation[J]. Proc Natl Acad Sci U S A,2006,103(8):2892-7.
    22. Zhang S, Danielsen M. Evidence denies the presence of O-GlcNAcylation on mouseglucocorticoid receptor and its potential involvement in receptor transcriptional activity[J]. JRecept Signal Transduct Res,2006,26(3):129-45.
    23. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinasephosphatase regulation: roles in cell growth, death, and cancer[J]. Pharmacol Rev,2008,60(3):261-310.
    24. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificityprotein phosphatases. Oncogene[J].2007,26(22):3203-13.
    25. Jeanneteau F, Deinhardt K, Miyoshi G, et al. The MAP kinase phosphatase MKP-1regulatesBDNF-induced axon branching[J]. Nat Neurosci.2010,13(11):1373-9.
    26. Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond[J]. Trends PharmacolSci,2005,26(12):631-8.
    27. Dolmetsch RE, Pajvani U, Fife K, et al. Signaling to the nucleus by an L-type calciumchannel-calmodulin complex through the MAP kinase pathway[J]. Science,2001,294(5541):333-9.
    28. Kornhauser JM, Cowan CW, Shaywitz AJ, et al. CREB transcriptional activity in neurons isregulated by multiple, calcium-specific phosphorylation events[J]. Neuron,2002,34(2):221-33.
    29. Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory[J]. Annu Rev Neurosci,1998,21:127-48.
    30. Benito E, Barco A. CREB's control of intrinsic and synaptic plasticity: implications forCREB-dependent memory models[J]. Trends Neurosci,2010,33(5):230-40.
    31. Lopez de Armentia M, Jancic D, Olivares R, et al. cAMP response element-bindingprotein-mediated gene expression increases the intrinsic excitability of CA1pyramidalneurons[J]. J Neurosci,2007,27(50):13909-18.
    32. Viosca J, Malleret G, Bourtchouladze R, et al. Chronic enhancement of CREB activity in thehippocampus interferes with the retrieval of spatial information[J]. Learn Mem,2009,16(3):198-209.
    33. Restivo L, Tafi E, Ammassari-Teule M, Marie H. Viral-mediated expression of a constitutivelyactive form of CREB in hippocampal neurons increases memory[J]. Hippocampus,2009,19(3):228-34.
    34. Porte Y, Buhot MC, Mons N. Alteration of CREB phosphorylation and spatial memory deficitsin aged129T2/Sv mice[J]. Neurobiol Aging,2008,29(10):1533-46.
    35. Sekeres MJ, Neve RL, Frankland PW,et al. Dorsal hippocampal CREB is both necessary andsufficient for spatial memory[J]. Learn Mem,2010,17(6):280-3.
    36. Gonzalez GA, Yamamoto KK, Fischer WH, et al. A cluster of phosphorylation sites on thecyclic AMP-regulated nuclear factor CREB predicted by its sequence[J]. Nature.1989,337(6209):749-52.
    37. Suzuki A, Fukushima H, Mukawa T, et al. Upregulation of CREB-mediated transcriptionenhances both short-and long-term memory[J]. J Neurosci,2011,31(24):8786-802.
    38. Ahn S, Olive M, Aggarwal S, et al. A dominant-negative inhibitor of CREB reveals that it is ageneral mediator of stimulus-dependent transcription of c-fos[J]. Mol Cell Biol,1998,18(2):967-77.
    39. Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervoussystem: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins[J]. BrainRes Brain Res Rev,1998,28(3):370-490.
    40. Li L, Yun SH, Keblesh J, et al. Egr3, a synaptic activity regulated transcription factor that isessential for learning and memory[J]. Mol Cell Neurosci,2007,35(1):76-88.
    41. Marek KW, Kurtz LM, Spitzer NC. cJun integrates calcium activity and tlx3expression toregulate neurotransmitter specification[J]. Nat Neurosci,2010,13(8):944-50.
    42. Clayton DF. The genomic action potential[J]. Neurobiol Learn Mem,2000,74(3):185-216.
    43. Greenberg ME, Ziff EB, Greene LA. Stimulation of neuronal acetylcholine receptors inducesrapid gene transcription[J]. Science,1986,234(4772):80-3.
    44. Kim TK, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulatedenhancers[J]. Nature,2010,465(7295):182-7.
    45. Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature,2000,403(6765):41-5.
    46. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome[J]. Cell,2007,128(4):669-81.
    47. Qiu Z, Ghosh A. A calcium-dependent switch in a CREST-BRG1complex regulatesactivity-dependent gene expression[J]. Neuron,2008,60(5):775-87.
    48. Impey S, Fong AL, Wang Y, et al. Phosphorylation of CBP mediates transcriptional activationby neural activity and CaM kinase IV[J]. Neuron,2002,34(2):235-44.
    49. Fleischmann A, Hvalby O, Jensen V, et al. Impaired long-term memory and NR2A-type NMDAreceptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS[J]. J Neurosci,2003,23(27):9116-22.
    50. Jenkins TA, Amin E, Brown MW, et al. Changes in immediate early gene expression in the ratbrain after unilateral lesions of the hippocampus[J]. Neuroscience,2006,137(3):747-59.
    51. Countryman RA, Orlowski JD, Brightwell JJ, et al. CREB phosphorylation and c-Fos expressionin the hippocampus of rats during acquisition and recall of a socially transmitted foodpreference[J]. Hippocampus,2005,15(1):56-67.
    52. Vanelzakker MB, Zoladz PR, Thompson VM, et al. Influence of Pre-Training Predator Stress onthe Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum FollowingLong-Term Spatial Memory Retrieval[J]. Front Behav Neurosci,2011,5:30.
    53. Wu J, Hu Q, Huang D, et al. Effect of electrical stimulation of sciatic nerve on synaptic plasticityof spinal dorsal horn and spinal c-fos expression in neonatal, juvenile and adult rats[J]. BrainRes,2012,1448:11-9.
    54. Link W, Konietzko U, Kauselmann G, et al. Somatodendritic expression of an immediate earlygene is regulated by synaptic activity[J]. Proc Natl Acad Sci U S A,1995,92(12):5734-8.
    55. Li L, Carter J, Gao X,et al. The neuroplasticity-associated arc gene is a direct transcriptionaltarget of early growth response (Egr) transcription factors[J]. Mol Cell Biol,2005,25(23):10286-300.
    56. Pintchovski SA, Peebles CL, Kim HJ, et al. The serum response factor and a putative noveltranscription factor regulate expression of the immediate-early gene Arc/Arg3.1in neurons[J]. JNeurosci,2009,29(5):1525-37.
    57. Bloomer WA, VanDongen HM, VanDongen AM. Arc/Arg3.1translation is controlled byconvergent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways[J]. J Biol Chem,2008,283(1):582-92.
    58. Tiron A, Vasilescu C. Role of the spleen in immunity. Immunologic consequences ofsplenectomy[J]. Chirurgia (Bucur),2008,103(3):255-63.
    59. Plath N, Ohana O, Dammermann B, et al. Arc/Arg3.1is essential for the consolidation ofsynaptic plasticity and memories[J]. Neuron,2006,52(3):437-44.
    60. Messaoudi E, Kanhema T, Soule J, et al. Sustained Arc/Arg3.1synthesis controls long-termpotentiation consolidation through regulation of local actin polymerization in the dentate gyrusin vivo[J]. J Neurosci,2007,27(39):10445-55.
    61. Guzowski JF, Lyford GL, Stevenson GD, et al. Inhibition of activity-dependent arc proteinexpression in the rat hippocampus impairs the maintenance of long-term potentiation and theconsolidation of long-term memory[J]. J Neurosci,2000,20(11):3993-4001.
    62. Ploski JE, Pierre VJ, Smucny J, et al. The activity-regulated cytoskeletal-associated protein(Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateralamygdala[J]. J Neurosci,2008,28(47):12383-95.
    63. Robert C, Jacques F. Reception, observation and prevention[J]. Soins Psychiatr,1994,(170-171):42-4.
    64. Stevens CF, Wang Y. Reversal of long-term potentiation by inhibitors of haem oxygenase[J].Nature,1993,364(6433):147-9.
    65. Murad F. Nitric oxide and cyclic GMP in cell signaling and drug development[J]. N Engl J Med,2006,355(19):2003-11.
    66.鲁薇苏,李锦.逆行信使NO在突触长时程增强过程中的作用[J].基础医学与临床,2008,28(9):1001-3.
    67. Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-termpotentiation in hippocampus[J]. Plog Brain Res,1998,118:155-72.
    68. Koesling D, Russwurm M, Mergia E, et al. Nitric oxide-sensitive guanylyl cyclase: structure andregulation[J]. Neurochem Int,2004,45(6):813-9.
    69. Mergia E, Russwurm M, Zoidl G, et al. Major occurrence of the new alpha2beta1isoform ofNO-sensitive guanylyl cyclase in brain[J]. Cell Signal,2003,15(2):189-95.
    70. Russwurm M, Behrends S, Harteneck C, et al. Functional properties of a naturally occurringisoform of soluble guanylyl cyclase[J]. Biochem J,1998,335(Pt1):125-30.
    71. Ninan I, Arancio O. Presynaptic CaMKII is necessary for synaptic plasticity in culturedhippocampal neurons[J]. Neuron,2004,42(1):129-41.
    72. Wang HG, Lu FM, Jin I, et al. Presynaptic and postsynaptic roles of NO, cGK, and RhoA inlong-lasting potentiation and aggregation of synaptic proteins[J]. Neuron,2005,45(3):389-403.
    73. Liu S NI, Antonova I, Battaglia F, et al. alpha-Synuclein produces a long-lasting increase inneurotransmitter release[J]. Embo J,2004,23(22):4506-16.
    74. Neitz A, Mergia E, Eysel UT, et al. Presynaptic nitric oxide/cGMP facilitates glutamate releasevia hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus[J]. Eur JNeurosci,2011,33(9):1611-21.
    75. Stamler JS, Toone EJ, Lipton SA, et al.(S)NO signals: translocation, regulation, and a consensusmotif[J]. Neuron,1997,18(5):691-6.
    76. Sullivan BM, Wong S, Schuman EM. Modification of hippocampal synaptic proteins by nitricoxide-stimulated ADP ribosylation[J]. Learn Mem,1997,3(5):414-24.
    77. Riccio A, Alvania RS, Lonze BE, et al. A nitric oxide signaling pathway controlsCREB-mediated gene expression in neurons[J]. Mol Cell,2006,21(2):283-94.
    78. Harooni HE, Naghdi N, Sepehri H, et al. The role of hippocampal nitric oxide (NO) on learningand immediate, short-and long-term memory retrieval in inhibitory avoidance task in maleadult rats[J]. Behav Brain Res,2009,201(1):166-72.
    79. Rickard NS, Gibbs ME. Hemispheric dissociation of the involvement of NOS isoforms inmemory for discriminated avoidance in the chick[J]. Learn Mem,2003,10(5):314-8.
    80. Bernabeu R, de Stein ML, Fin C, et al. Role of hippocampal NO in the acquisition andconsolidation of inhibitory avoidance learning[J]. Neuroreport,1995,6(11):1498-500.
    81. Kendrick KM, Guevara-Guzman R, Zorrilla J, et al. Formation of olfactory memories mediatedby nitric oxide[J]. Nature,1997,388(6643):670-4.
    82. Okere CO, Kaba H. Increased expression of neuronal nitric oxide synthase mRNA in theaccessory olfactory bulb during the formation of olfactory recognition memory in mice[J]. Eur JNeurosci,2000,12(12):4552-6.
    83. Yildiz Akar F, Ulak G, Tanyeri P, et al.7-Nitroindazole, a neuronal nitric oxide synthaseinhibitor, impairs passive-avoidance and elevated plus-maze memory performance in rats[J].Pharmacol Biochem Behav,2007,87(4):434-43.
    84. Vanaja P, Ekambaram P. Demonstrating the dose-and time-related effects of7-nitroindazole onpicrotoxin-induced convulsions, memory formation, brain nitric oxide synthase activity, andnitric oxide concentration in rats[J]. Pharmacol Biochem Behav,2004,77(1):1-8.
    85. Prickaerts J, Steinbusch HW, Smits JF, et al. Possible role of nitric oxide-cyclic GMP pathway inobject recognition memory: effects of7-nitroindazole and zaprinast[J]. Eur J Pharmacol,1997,337(2-3):125-36.
    86. dos Reis EA, de Oliveira LS, Lamers ML, et al. Arginine administration inhibits hippocampalNa(+),K(+)-ATPase activity and impairs retention of an inhibitory avoidance task in rats[J].Brain Res,2002,951(2):151-7.
    87. Pitsikas N, Rigamonti AE, Cella SG, et al. The nitric oxide donor molsidomine antagonizesage-related memory deficits in the rat[J]. Neurobiol Aging,2005,26(2):259-64.
    88. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system[J]. Annu RevPhysiol,1995,57:683-706.
    89. Reckelhoff JF, Kellum JA, Blanchard EJ,et al. Changes in nitric oxide precursor, L-arginine, andmetabolites, nitrate and nitrite, with aging[J]. Life Sci,1994,55(24):1895-902.
    90. Piedrafita B, Cauli O, Montoliu C, et al. The function of the glutamate-nitric oxide-cGMPpathway in brain in vivo and learning ability decrease in parallel in mature compared withyoung rats[J]. Learn Mem,2007,14(4):254-8.
    91. Goshen I, Yirmiya R. Interleukin-1(IL-1): a central regulator of stress responses[J]. FrontNeuroendocrinol,2009,30(1):30-45.
    92. Schneider H, Pitossi F, Balschun D, et al. A neuromodulatory role of interleukin-1beta in thehippocampus[J]. Proc Natl Acad Sci U S A,1998,95(13):7778-83.
    93. Balschun D, Randolf A, Pitossi F, et al. Hippocampal interleukin-1beta gene expression duringlong-term potentiation decays with age[J]. Ann N Y Acad Sci,2003,992:1-8.
    94. Pedersen LM, Jacobsen LM, Mollerup S, et al. Spinal cord long-term potentiation (LTP) isassociated with increased dorsal horn gene expression of IL-1beta, GDNF and iNOS[J]. Eur JPain,2010,14(3):255-60.
    95. Schmid AW, Lynch MA, Herron CE. The effects of IL-1receptor antagonist on beta amyloidmediated depression of LTP in the rat CA1in vivo[J]. Hippocampus,2009,19(7):670-6.
    96. Ross FM, Allan SM, Rothwell NJ, et al. A dual role for interleukin-1in LTP in mousehippocampal slices[J]. J Neuroimmunol,2003,144(1-2):61-7.
    97. Avital A, Goshen I, Kamsler A, et al. Impaired interleukin-1signaling is associated with deficitsin hippocampal memory processes and neural plasticity[J]. Hippocampus,2003,13(7):826-34.
    98. Katsuki H, Nakai S, Hirai Y, et al. Interleukin-1beta inhibits long-term potentiation in the CA3region of mouse hippocampal slices[J]. Eur J Pharmacol,1990,181(3):323-6.
    99. Bellinger FP, Madamba S, Siggins GR. Interleukin1beta inhibits synaptic strength andlong-term potentiation in the rat CA1hippocampus[J]. Brain Res,1993,628(1-2):227-34.
    100.Cunningham AJ, Murray CA, O'Neill LA, et al. Interleukin-1beta (IL-1beta) and tumournecrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro[J]. NeurosciLett,1996,203(1):17-20.
    101.Song C, Phillips AG, Leonard B. Interleukin1beta enhances conditioned fear memory in rats:possible involvement of glucocorticoids[J]. Eur J Neurosci,2003,18(7):1739-43.
    102.Brennan FX BK, Servatius RJ. Proinflammatory cytokines differentially affect leverpressavoidance acquisition in rats[J]. Behav Brain Res,2004,153(2):351-5.
    103.Yirmiya R, Winocur G, Goshen I. Brain interleukin-1is involved in spatial memory and passiveavoidance conditioning[J]. Neurobiol Learn Mem,2002,78(2):379-89.
    104.Goshen I, Kreisel T, Ounallah-Saad H, et al. A dual role for interleukin-1in hippocampal-dependent memory processes[J]. Psychoneuroendocrinology,2007,32(8-10):1106-15.
    105.Spulber S, Mateos L, Oprica M, et al. Impaired long term memory consolidation in transgenicmice overexpressing the human soluble form of IL-1ra in the brain[J]. J Neuroimmunol,2009,208(1-2):46-53.
    106.Jankowsky JL, Derrick BE, Patterson PH. Cytokine responses to LTP induction in the rathippocampus: a comparison of in vitro and in vivo techniques[J]. Learn Mem,2000,7(6):400-12.
    107.Balschun D, Wetzel W, Del Rey A, et al. Interleukin-6: a cytokine to forget[J]. FASEB J,2004,18(14):1788-90.
    108.Oitzl MS, van Oers H, Sch bitz B, et al. Interleukin-1beta, but not interleukin-6, impairs spatialnavigation learning[J]. Brain Res,1993,613(1):160-3.
    109.Bianchi M, Sacerdote P, Panerai AE. Cytokines and cognitive function in mice[J]. Biol SignalsRecept,1998,7(1):45-54.
    110.Arnold MC, Papanicolaou DA, O'Grady JA, et al. Using an interleukin-6challenge to evaluateneuropsychological performance in chronic fatigue syndrome[J]. Psychol Med,2002,32(6):1075-89.
    111.Shapira-Lichter I, Beilin B, Ofek K, et al. Cytokines and cholinergic signals co-modulatesurgical stress-induced changes in mood and memory[J]. Brain Behav Immun,2008,22(3):388-98.
    112.Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly[J]. ExpGerontol,2004,39(5):687-99.
    113.Godbout JP, Johnson RW. Interleukin-6in the aging brain[J]. J Neuroimmunol,2004,147(1-2):141-4.
    114.Heyser CJ, Masliah E, Samimi A, et al. Progressive decline in avoidance learning paralleled byinflammatory neurodegeneration in transgenic mice expressing interleukin6in the brain[J].Proc Natl Acad Sci U S A,1997,94(4):1500-5.
    115.Braida D, Sacerdote P, Panerai AE, et al. Cognitive function in young and adult IL(interleukin)-6deficient mice[J]. Behav Brain Res,2004,153(2):423-9.
    116.Beattie EC, Stellwagen D, Morishita W, et al. Control of synaptic strength by glial TNFalpha[J].Science,2002,295(5563):2282-5.
    117.Kaneko M, Stellwagen D, Malenka RC, et al. Tumor necrosis factor-alpha mediates onecomponent of competitive, experience-dependent plasticity in developing visual cortex[J].Neuron,2008,58(5):673-80.
    118.Butler MP, O'Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-alpha inhibition oflong-term potentiation (LTP) reveals a p38mitogen-activated protein kinase-dependentmechanism which maps to early-but not late-phase LTP[J]. Neuroscience,2004,124(2):319-26.
    119.Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha[J]. Nature,2006,440(7087):1054-9.
    120.Bjugstad KB, Flitter WD, Garland WA, et al. Arendash GW. Preventive actions of a syntheticantioxidant in a novel animal model of AIDS dementia[J]. Brain Res,1998,795(1-2):349-57.
    121.Matsumoto Y, Watanabe S, Suh YH, et al. Effects of intrahippocampal CT105, a carboxylterminal fragment of beta-amyloid precursor protein, alone/with inflammatory cytokines onworking memory in rats[J]. J Neurochem,2002,82(2):234-9.
    122.Fiore M, Probert L, Kollias G, et al. Neurobehavioral alterations in developing transgenic miceexpressing TNF-alpha in the brain[J]. Brain Behav Immun,1996,10(2):126-38.
    123.Fiore M, Angelucci F, Alleva E, et al. Learning performances, brain NGF distribution and NPYlevels in transgenic mice expressing TNF-alpha[J]. Behav Brain Res,2000,112(1-2):165-75.
    124.Bibb JA, Mayford MR, Tsien JZ, et al. Cognition enhancement strategies[J]. J Neurosci,2010,30(45):14987-92.
    125.Eriksson TM, Delagrange P, Spedding M, et al. Emotional memory impairments in a genetic ratmodel of depression: involvement of5-HT/MEK/Arc signaling in restoration[J]. Mol Psychiatry,2012,17(2):173-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700