用户名: 密码: 验证码:
晶体中过渡金属离子基态与低激发态零场分裂和g因子性质的理论研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从晶体场理论出发,采用完全对角化方法,对三角对称和四角对称下d3离子和d2/8离子掺杂体系的基态和激发态自旋哈密顿参量进行了系统的研究。本文的主要结果和创新点有:
     (1)通过对晶场势的分析,说明了晶场参量的概念,并对为计算晶场参量而采用的三种模型进行了比较分析。在晶体场理论的发展过程中,出现了几种不同的晶场符号表示,给后来的研究者对晶场符号的使用造成了混乱。本文对不同晶场符号的物理意义进行了说明,分析了晶场符号之间的关系,澄清了文献中对晶场符号使用的混乱。利用群表示理论推导得到了dN离子在三角对称和四角对称下的光谱精细结构。利用自旋哈密顿理论推导得到了基态和激发态零场分裂和g因子的计算公式。
     (2)在中间场耦合图像下建立了过渡金属掺杂离子完全能量矩阵。在磁相互作用中考虑了除自旋与轨道相互作用之外的自旋与自旋相互作用、自旋与另一轨道相互作用以及轨道与轨道相互作用等微小磁相互作用。推导得到了基态和低激发态自旋哈密顿参量的计算公式,并利用VB语言编制了相应的计算程序。
     (3)利用本文建立的理论和编制的程序,研究了d3离子激发态对基态自旋哈密顿参量的影响。在三角对称和四角对称下,下列结果是成立的:基态是4F态,除自旋四重态外,自旋二重态对基态的零场分裂也有重要贡献。而对g因子来说,二重态对其基本没有贡献;SS机制和SOO机制对基态零场分裂参量的贡献主要由四重态决定,二重态的贡献很小;SO-SS-SOO联合机制对基态零场分裂参量的贡献主要由四重态决定,二重态也有相当的贡献;SS机制对g因子几乎没有影响,而SOO机制对g因子有一定影响,但这一影响也是由四重态决定,与二重态无关。
     (4)研究了三角对称下d2/8离子激发态对基态自旋哈密顿参量的影响。为了考察自旋单态和自旋三重态对基态自旋哈密顿参量的贡献,分别在三种情况下计算了三角对称下d2/8离子基态自旋哈密顿参量。结果说明,SO机制对基态自旋哈密顿参量的贡献是主要的,这其中三重态的贡献是主要的,而单态的贡献相对较小。SS机制和SOO机制以及SO-SS-SOO联合机制对基态零场分裂参量的贡献主要由三重态决定,单态的贡献很小。SS机制对g因子几乎没有影响,而SOO机制对g因子有一定影响,但这一影响也是由三重态决定,与单态无关。但是联合作用机制对g因子的贡献中,单态的贡献是不可忽略的。OO作用对g因子的贡献也是只由三重态决定,与单态无关。
     (5)建立了激发态零场分裂理论,研究了三角对称下d3离子激发态零场分裂的性质,指出了文献中的印刷错误。对4T2和4T1a态定义了其零场分裂计算公式,对2T1a和2T2a定义了两个零场分裂表达式。计算结果表明,4T2和4T1a项的零场分裂主要来源于三角晶场作用。在磁相互作用的贡献中,低激发态零场分裂主要来源于旋轨耦合作用,微小磁相互作用对低激发态零场分裂的贡献较小。δ1(2T1a。)和δ1(2T2a)这两个能级间隔来自于磁相互作用,δ2(2T1a)和δ2(2T2a)这两个能级间隔主要来源于三角晶场作用。
     (6)对四角对称下d3离子4T2和4T1a态零场分裂微扰公式的收敛性进行了分析。结果表明,在较强晶场的情形下,微扰公式的收敛性较好。
     (7)研究了三角对称下d3离子2E态g因子的性质,从理论上解释了Al2O3:Mn4+体系和Al2O3:Cr3+体系的2E态g因子。研究发现磁相互作用间存在联合机制,并对各种机制贡献的相对大小进行了研究。微小磁相互作用对基态零场分裂的贡献是不可忽略的,但对2E态零场分裂是很小的。对g因子来说,来自SS、SOO和OO相互作用对基态和E′(2E)态的g因子贡献也是可观的,但对E″(2E)态g因子的贡献是很小的。解释了ZnAl2O4:Cr3+体系2E态g因子的实验值,并对照文献中对ZnGa2O4:Cr3+体系2E态g因子的计算,指出文献中存在有印刷错误。对MgAl2O4:Cr3+体系2E态g因子进行了理论预测,这些结果有待于相应的实验做进一步的验证。
     (8)作为本文理论的应用,研究了Al2O3:V2+体系、Al2O3:Cu3+体系、CsMgX3:V2+(X=Cl、Br、I)体系和LiNbO3:Ni2+体系的微观局域结构,理论计算结果和实验值的符合说明我们采用的模型是合理的。
By using complete diagonalization method (CDM), the spin-Hamiltonian (SH) parameters of ground state and excited states for d3 ions and d2/8 ions at trigonal and tetragonal symmetry are studied, based on crystal field theory. The main contents and innovations are as follows:
     Firstly, by analyzing the crystal field potential, the concepts of crystal field parameters are illustrated. The three models adopted to calculate CF parameters are compared and analyzed. In the development of CF theory, various CF notations are used, this result in confusion to researchers. In this thesis, the physical meanings of various CF notations are illustrated, the relations between various CF notations are analyzed, and the confusions are clarified. The spectra fine structure of dN ions at trigonal and tetragonal symmetry are deduced by group theory.
     Secondly, in the intermediate crystal field coupling scheme, the complete energy matrices for transition metal (TM) ions are constructed. In addition to general spin-orbit (SO) interactions, the slight magnetic interactions including spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) interactions are taken into account. Formulas of SH parameters of ground state and excited states are deduced, and the corresponding computer program are developed.
     Thirdly, by using the theory and the program developed in this thesis, the contribution to SH parameters of ground state from excited states of d3 ions are investigated. For trigonal and tetragonal symmetry, these results are obtained:(a) The ground state is 4F, contributions from spin doublets are appreciable. For g factors, there are almost no contributions from spin doublets, (b) The contributions from SS and SOO mechanisms mainly depend on spin quartets, and the contributions from spin doublets are appreciable. (c) The contribution to g factors from SS mechanism almost is zero, but the contribution to g factors from SOO mechanism is appreciable, and this contribution depends on spin quartets only.
     Fourthly, the influence to SH parameters of ground state of d2/8 ions from excited states at trigonal symmetry are studied. It is shown that, the contribution from SO mechanism is dominant, in which, the contributions from spin triplets are mainly. The contributions to ZFS of ground state from SS, SOO and SO-SS-SOO combined mechanisms are mainly due to spin triplets. The contribution to g factors from SS mechanism almost is zero, but the contribution to g factors from SOO mechanism is appreciable, and this contribution depends on spin triplets only. Contributions to g factors from 00 mechanism are depending on spin triplets only.
     Fifthly, the theory of ZFS of excited states have been established. The ZFS of low-lying states for d3 ions at trigonal symmetry have been studied, the misprint in reference are pointed out. The formulas of ZFS of 4T2,4T1a,2T1a and 2T2a have been defined. It is shown that, the ZFS of 4T2 and 4T1a terms are mainly depend on trigonal CF. The contribution to ZFS of low-lying states from spin-orbit mechanism is dominant, and the contributions from other mechanisms are slight. The energy integrals ofδ1(2T1α)andδ1(2T2α) depend on magnetic interactions, and the energy integrals ofδ2(2T1α) andδ2(2T2α)depend on trigonal CF.
     Sixthly, the convergence of PTM formulas of 4T2 and 4T1a terms for d3 ions at tetragonal symmetry has been analyzed. The results show that, the convergence of PTM formulas is better in the cases of stronger CF.
     Seventhly, the g factors of 2E state of d3 ions at trigonal symmetry have been investigated. The g factors 2E state of Al2O3:Mn4+ and Al2O3:Cr3+ systems have been explained theoretically. It is found that, there exists combined mechanism. And the relative magnitude of various magnetic mechanisms has been studied. The contributions to ZFS of ground state from slight magnetic interactions are considerable. But the contributions to ZFS of 2E state from slight magnetic interactions are small. For g factors, the contributions to g factors of the ground state and E'(2E) state from SS, SOO and 00 magnetic interactions can not be omitted, but are slight to the g factors of E"(2E) state. The experimental values of g factors of 2E state of ZnGa2O4:Cr3+ systems have been explained. The values of g factors of 2E state for MgAl2O4:Cr3+ system have been predicted theoretically.
     Eighthly, the local structure of Al2O3:V2+, Al2O3:Cu3+, CsMgX3:V2+(X=Cl,Br,I) systems and LiNbO3:Ni2+ systems have been studied by using ligand plane displacement model, center ions displacement model and double displacement model, respectively. The coincidence between the calculated results and the experimental results shows that the models we adopted are reasonable.
引文
[1]Van Vleck J. H., The Theoery of Electric and Magnetic Susceptibilities, Oxford Unin.Press,1932
    [2]Racah G., Theory of complex spectra Ⅰ. Phys. Rev.,1942,61:186-197
    [3]Racah G., Theory of complex spectra Ⅱ. Phys. Rev.,1942,62:438-462
    [4]Racah G., Theory of complex spectra Ⅲ. Phys. Rev.,1942,63:367-382
    [5]Racah G., Theory of complex spectra Ⅳ. Phys. Rev.,1942,76:1352-1365
    [6]Sugano S, Tsujilawa I. Absorption spectra of Cr3+ in Al2O3. J Phys Soc Jap,1958, 13:899-910
    [7]Sugano S, Tanabe Y, et al. Multiplets of transition metal ions in crystal. New York and London:Academic Press,1970
    [8]Ballhausen C. J., Introduction to Ligand Field Theory, McGrawHill, New York, 1962
    [9]Griffith J. S., Theory of Transition Metalions, Cambridge University Press, London,1961
    [10]Rudowicz C. Theoretical spin hamiltonians for 3dn ions with S=2 compared to direct investigation by the method of Varret et al. Solid State Communications, 1974,15:1937-1940
    [11]Rudowicz C., Kowalewski L., Magnetocrystalline anisotropy due to 3dn ions with spin S=2 in magnetic oxides. Physica B+C,1975,80:517-540
    [12]Rudowicz C. Fourth-order spin Hamiltonian terms for Fe2+ in rutile structure antiferromagnet FeF2. Journal of Physics and Chemistry of Solids,1977,38: 1243-1251
    [13]Rudowicz C. Relations between arbitrary symmetry spin-hamiltonian parameters Bkq and bkq in Various Axis Systems. Journal of Magnetic Resonance,1985,63: 95-106
    [14]Rudowicz C. Algebraic symmetry and determination of the "Imaginary" crystal-field parameters from optical spectra of fn-ions. Tetragonal symmetry. Chemical Physics,1985,97:43-50
    [15]Rudowicz C. Algebraic symmetry and determination of the "imaginary" crystal field parameters from optical spectra of fn-ions. Hexagonal and trigonal symmetry. Chemical Physics,1986,102:437-443
    [16]Rudowicz C. On the EPR of 3d4 and 3d6 ions at high magnetic fields. Physica B: Condensed Matter,1989,155:336-339
    [17]Rudowicz C. Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites. Computers & Chemistry,1992,16:207-216
    [18]Rudowicz C. Zhou Y. Y., Yu W. L. Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites. Journal of Physics and Chemistry of Solids,1992,53:1227-1236
    [19]Yeung Y. Y, Rudowicz C., Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites. Journal of Computational Physics,1993,109:150-152
    [20]Rudowicz C., Zhou Y. Y., Computer package for microscopic spin Hamiltonian analysis of the 3d4 and 3d6 (spin S=2) ions at orthorhombic and tetragonal symmetry sites. Computers & Chemistry,1997,21:45-50
    [21]Rudowicz C., Madhu S. B., Monoclinic and orthorhombic standardization of spin-Hamiltonian parameters for rare-earth centers in various crystals. Physica B: Condensed Matter,2000,279:302-318
    [22]Vinokurov V. M., Gaite J. M., Bulka G. R., Khasanova N. M., Nizamutdinov N. M., Galeev A. A., Rudowicz C, Low-Symmetry Spin Hamiltonian and Crystal Field Tensors Analysis:Fe3+ in Natrolite. Journal of Magnetic Resonance,2002, 155:57-63
    [23]Rudowicz C, Sung H. W. F., Comparative analysis of the microscopic spin Hamiltonian expressions used for the non-Kramers Fe2+(3d6) ions with spin S=2 in reduced rubredoxin, desulforedoxin, and related systems. Physica B:Condensed Matter,2003,337:204-220
    [24]Rudowicz C., Qin J., Can the low symmetry crystal (ligand) field parameters be considered compatible and reliable. Journal of Luminescence,2004,110:39-64
    [25]Rudowicz C., Qin J., Trends in the crystal (ligand) field parameters and the associated conserved quantities for trivalent rare-earth ions at S4 symmetry sites in LiYF4. Journal of Alloys and Compounds,2004,385:238-251
    [26]Rudowicz C., Qin J., Reanalysis of crystal field parameter datasets for rare-earth ions at low symmetry sites:Nd3+ in NdGaO3 and Pr3+ in PrGaO3. Journal of Alloys and Compounds,2005,389:256-264
    [27]Rudowicz C., Gnutek P., Comprehensive analysis of crystal field parameter datasets for transition ions at low symmetry sites and extracting structural information—Application to Pr4+ in BaPrO3. Journal of Alloys and Compounds, 2008,456:16-26
    [28]Rudowicz C., Clarification of the confusion concerning the crystal-field quantities vs the zero-field splitting quantities in magnetism studies:Part Ⅱ—Survey of literature dealing with model studies of spin systems. Physica B:Condensed Matter,2008,403:2312-2330
    [29]Rudowicz C., Clarification of terminological confusion concerning the crystal field quantities vs. the effective spin Hamiltonian and zero-field splitting quantities in the papers by Bayrakceken et al. [Spectrochim. Acta Part A 66 (2007) 462 and 1291]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,71:1623-1626
    [30]Macfarlane R. M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [31]Macfarlane R. M., Zero field splitting of t23 cubic terms. J. Chem. Phys.,1967,47: 2066-2073
    [32]Chen J. J., Du M. L., Theoretical investigation of the optical spectrum and gyromagnetic g factor for GaAs:Co2+. Physica B,2001,305:264-269
    [33]Zheng W. C., Wu X. X., Studies of EPR g factors of the isoelectronic 3d3 series Cr3+, Mn4+ and Fe5+ in SrTiO3 crystals. J. Phys. Chem. Solids 2005,66: 1701-1704.
    [34]Yu W. L., Crystal field effect on the g-factors of 6S-state ions, Phys. Status Solidi B,1990,158:K13-K15
    [35]Yu W. L. Zhao M. G, Spin-Hamiltonian parameters of 6S-state ions. Phys. Rev. B, 1988,37:9254-9267
    [36]Wang F., Wu X. X., Zheng W. C., Investigations of the g factors for the trigonal [Ti(H2O)6]3+ clusters in frozen solution from two microscopic spin Hamiltonian methods. J. Phys. Chem. Solids,2007,68:131-134
    [37]Huang M., High-Order Perturbation Formula for the EPR Trigonal Symmetric gi Value of the d8 Ion. Phys. Stat. Sol. B,1988,145:K21-K25
    [38]Li F. Z., Li Z. M., The eighth-order perturbation formula of the zero-field splitting for 3d5 ions in the D3d site and its application to CaCO3:Mn2+, Phys. Stat. Sol. B, 1990,161:K29-K34
    [39]Petrosyan A. K., Mirzakhanyan A. A., Zero-field splitting and g values of d8 ions in trigonal crystal field. Phys. Stat. Sol. B,1986,133:315-319
    [40]Zheng W. C., Wu S. Y., Studies of the zero-field splitting and g factors for V3+ in CuAlS2 crystal. J. Phys. Chem. Solids,1999,60:599-601
    [41]Yu W. L., Zhao M. G.,Zero-field splitting and the d-d transitions of Mn2+ on Ca(Ⅱ) sites in Ca5(PO4)3F, Phys. Stat. Sol. B,1987,140:203-212
    [42]Chen J. J., Zhao M. G, High-Order Perturbation Formulae of the Spin Hamiltonian Parameters for the Ground State 3A2(F) of d8 Ions in Rhombic Symmetry. Phys. Stat. Sol. B,1987,143:647-653
    [43]Chen J. J., Du M. L., An investigation of the zero-field splitting and optical spectra in AgX:Ni2+(X=Cl, Br). Physica B,1995,215:260-262
    [44]Zheng W. C., Theoretical calculations of the spin-lattice coupling coefficients G11 and G44 for MgO:Ni2+ crystals. Phys. Rev. B,1989,40:7292-7294
    [45]Wu S. Y, Zheng W. C., Theoretical investigations of the zero-field splittings and g factors for the Cr3+ ion at the rhombic defect site in the AgCl crystal. J. Phys.: Condens. Matter,1988,10:7545-7551
    [46]Yang G. X., An investigation of the local structure of the tetragonal Cr3+ centers in CsCl using EPR. Physica B,1997,239:257-260
    [47]Zheng W. C. He L. Wu X. X., Investigations of zero-field splitting and defect structure for the tetragonal Fe3+k-O1 center in KTaO3 crystal. J. Phys. Chem. Solids,2006,67:1444-1446
    [48]Wu S. Y. Zheng W. C., High-order perturbation formulas of the zero-field splitting for 3d5 ion in tetragonal symmetry. Physica B,2001,296:351-355
    [49]He X. P., Du M. L., An EPR study of the structure of the Cr3+-vacancy center in MgO, Phys. Stat. Sol. B,1987,144:K51-K55
    [50]Yu W. L., An investigation of the zero-field splitting of Fe3+ ions at the tetragonal FeF5O site in Fe3+:KMgF3 crystals, J. Phys.:Condens. Matter,1994,6:5105-5112
    [51]Zheng W. C. The methods of determining the spin-lattice coupling coefficients G11 and G44 from the formulae for zero-field splitting. J. Phys.:Condens. Matter,1989, 1:5667-5670
    [52]Zheng W. C., A study of the temperature dependence of zero-field splitting for CdCl:Mn2+. J. Phys. C:Solid State Phys.,1987,20:L697-L701.
    [53]Zheng W. C., Theoretical explanation of the spin-lattice coupling coefficients G11 and G44 for d3 (V2+, Cr3+) ions in MgO crystals. J. Phys.:Condens. Matter 1989,1: 8093-8098.
    [54]Zheng W. C., The method of calculating the spin-lattice coupling coefficients Fij in cubic symmetry from the formulae for the g-factor. J. Phys.:Condens. Matter, 1990,2:2179-2186.
    [55]Zheng W. C., Determination of the internal stress distribution parameters α and β for Fe3+-doped yttrium aluminium garnet crystals from the electron paramagnetic resonance linewidth and spin-lattice coupling coefficients. J. Phys.: Condens. Matter,1991,3:177-182.
    [56]Zheng W. C, Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy. J. Phys.:Condens. Matter,1995, 7:8351-8356.
    [57]Zheng W. C., Wu S. Y., Investigations of the temperature dependence of the electron paramagnetic resonance g-factor for the MgO:Cr3+ crystal. J. Phys.: Condens. Matter 1996,8:4539-4544.
    [58]Zheng W. C., Wu S. Y, Theoretical investigations of the temperature dependence of zero-field splitting for Fe3+ in Al2O3 crystals. J. Phys.:Condens. Matter,1997,9: 5081-5088.
    [59]Zheng W. C., Wu S. Y, Defect models of the low and high temperature centers of Cr3+ in α-LiIO3:Cr3+ crystals. J. Phys.:Condens. Matter 1999,11:3127-3132
    [60]Zheng W. C. Spin-lattice coupling coefficients G1 and G44 for 6S-state ions in Td symmetry. Phys. Rev. B,1990,42:826-832
    [61]Zheng W. C., Spin-lattice coupling coefficients and the method of identifying the dominant mechanism for 6S state splitting. Phys. Rev. B,1990,41:793-794
    [62]Zheng W. C. Theoretical explanation of zero-field splitting and its pressure, stress, and temperature dependence in NiSiF6.6H2O. Phys. Rev. B,1987,36:8774-8776
    [63]Feng W. L., Zheng W. C., Wu X. X., Liu H. G. Theoretical studies of the spin-Hamiltonian parameters and the effects of the temperature and pressure on the zero-field splitting for Ni2+:Zn(BF4)2·6H2O crystal. Physica B,2007,387: 52-55
    [64]Zheng W. C., Local structure of the axial Fe3+ center in the K+ site of a KTaO3 crystal. Phys. Rev. B,1992,45:3156-3157
    [65]Zheng W. C., Wang F., He L., Mei Y., Spin Hamiltonian parameters and defect structure for the X-ray-induced NbLi4+ center in LiNbO3 crystal. Journal of Alloys and Compounds,2008,453:32-35
    [66]Chen J. J., Du M. L., Chen K. S., Two Spin-Orbit Coupling Parameter Model of the Gyromagnetic Factor for d8 Clusters in Tetragonal Symmetry. Phys. Stat. Sol. B,1992,170:211-217
    [67]Chen J. J., Du M. L., Theoretical Investigation of the Optical Spectrum and the Gyromagnetic g Factor of CdS:V3+. Z. Naturforsch.2002,57a:745-748
    [68]Chen J. J., Du M. L., Theoretical study of the gyromagnetic factor of MI:V2+ (M=Cd,Pb). Physics Letters A,1995,207:289-292
    [69]Zheng W. C., Wu S. Y., Zi J., Theoretical studies of the g-shift for Cr4+ ions in GaN crystal from crystal-field and charge-transfer mechanisms. J. Phys.:Condens. Matter,2001,13:7459-7464
    [70]Zheng W. C., Wu X. X., Wang F., Studies of the spin-Hamiltonian parameters and defect structure for the tetragonal Fe5+ center in SrTiO3 crystals using a two mechanism model. J. Phys.:Condens. Matter,2007,19:456214
    [71]Zhao M. G., Xu J. A., Bai G. R., Xie H. S., d-orbital theory of ruby. Phys. Rev. B,1983,27:1516-1522
    [72]Zhao M. G., d-orbital theory for Mn2+ complex ions. J. Phys. C,1982,15: 5959
    [73]Zhao M. G., Du M. L., Two centers transitions in FeCO2.Phys. Rev. B, 1983,28:6481-6484
    [74]Zhou Y. Y., Yin C. H., Ground state splitting of antiferromagnetic FeCO3, Phys. Rev. B,1993,47:5451-5454
    [75]Ma D. P., Ma X. D., Chen J. R., Pressure-induced shifts of energy levels of alpha-Al2O3:V3+ and a complete ligand-field calculation. Phys. Rev. B,1997,56: 1780-1786
    [76]Die D., Kuang X. Y, Wang H., Study of EPR spectra for octahedral Fe3+ center in lutetium aluminum garnet, Chem. Phys. Lett.,2006,418:71-74
    [77]Hao Y., Yang Z. Y., Magnetic interactions and microscopic spin Hamiltonian approaches for 3d3 ions at trigonal symmetry sites, J. Magn. Magn. Mater.2006, 299:445-458
    [78]Wei Q., Spin Hamiltonian parameters and structural disorder analysis for Cr3+ ion in YGG crystals, Solid State Communications,2006,138:427-429
    [79]Ma D. P., Zhang J. P., Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+, Phys. Rev. B,2003,68: 054111
    [80]Feng W. L., Wu X. X., Zheng W. C., Theoretical studies of the optical and EPR spectra for V3+ in Y2O3 crystal, J. Lumin.,2008,126:1471-1473
    [81]Chen J. J., Du M.L. An investigation of the optical spectra and EPR parameters of vanadium in III-V semiconductors (GaAs, GaP, InP). Physica B,2000,291: 270-274
    [82]Du M. L., Tae H. Y. Energy levels of the d8 electron and d2 hole system. Phys. Rev. B,1999,59:4881-4887
    [83]Rudowicz C., Yeung Y. Y., Yang Z. Y., Qin J., Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field—perturbation theory methods versus complete diagonalization methods, J. Phys.:Condens. Matter, 2002,14:5619-5636
    [84]杨子元,立方对称晶场中6S(3d5)态离子的磁相互作用及其自旋哈密顿参量的微观起源,物理学报,2008,57:4512-4520
    [85]Yang Z. Y, Spin-spin and spin-other-orbit effects of optical spectra and the spin-Hamiltonian parameters for Cr3+ ions in MgO crystals, J. Lumin.,2007,126: 753-758
    [86]Feng W. L., Wu X. X., Zheng W. C., Theoretical studies of the optical and EPR spectra for V3+ in Y2O3 crystal, J. Lumin.,2008,126:1471-1473
    [87]Zhou K. W., Zhao S. B., Wu P. F., EPR parameter and spectral fine structure of Ni in LiNbO3. Phys. Stat. Sol. B,1990,162:193-198
    [88]Feng W. L., Theoretical studies of the spin-Hamiltonian parameters for the orthorhombic Pr4+ centers in Sr2CeO4 crystals, Parama-J. Phys.,2008,70:705-709
    [89]Yang Z. Y, Rudowicz C, Yeung Y. Y, Spin Hamiltonian and structural disorder analysis for two high temperature Cr3+ defect centers in alpha-LiIO3 crystals-low symmetry effects, J. Phys. Chem. Solids,2003,64:887-896
    [90]Rudowicz C., Yeung Y. Y., Yang Z. Y., Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field—perturbation theory methods versus complete diagonalization methods, J. Phys.:Condens. Matter, 2002,14:5619-5636
    [91]Rudowicz C., Yang Z. Y., Yeung Y. Y., Crystal field and microscopic spin Hamiltonians approach including spin-spin and spin-other-orbit interactions for
    d2 and d8 ions at low symmetry C3 symmetry sites:V3+ in Al2O3, J. Phys. Chem. Solids 2003,64:1419-1428
    [92]Yu W. L.. Microscopic interpretation of the zero-field splitting parameters of transition-metal ions in crystal I:an effective Hamiltonian theory. Journal of Sichuan University.2002,25:606-614
    [93]Malli G. Spin-other-orbit interaction in many-electron atoms. J. Chem. Phys.,1968, 48:1088
    [94]Horie H. Spin-spin and spin-other-orbit interaction. Prog Theor Phys,1953,10: 296-308
    [95]Trees R. E., Spin-spin interaction. Phys. Rev.,1951,82:683-688
    [96]Thorne J. R. G., Zeng Q. G., Denning R. G., Evidence for a spin-correlated crystal field tow phonton spectroscopy of theulium Ⅲ in elphasolite Cs2NaYC16:TM. J. Phys.:Condens. Matter 2004,13:7403-7419
    [97]Yang Z. Y., Hao Y., Rudowicz C., et al., Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for Ni2+ (3d8) ions in trigonal crystal fields, J. Phys.: Condens. Matter 2004,16:3481-3494
    [98]Blume M, Watson R E. Theory of spin-orbit coupling in atoms Ⅱ Comparison of theory with experiment. Proc Roy Soc (London),1963, A271:565-578
    [99]Blume M, Watson R E., Theory of spin-orbit coupling constant Ⅰ. derivation of the spin-orbit coupling constant. Proc. Roy. Soc. (London) A,1962,270:127-143
    [100]Siu G. G., Contributions to the ground state splitting of S-state ions Ⅱ:A theoretical framework for the 3d5 6S ground state splitting of Mn2+. J. Phys. C: Solid State Phys.1988,21:3927-3938
    [101]Malli G. Evaluation of orbit-orbit interaction in many-electron atom, J. Chem. Phys.1967,47:2217-2219
    [102]B.R.Judd H.M.Crosswhite H. Crosswhite. Intra-atomic magnetic interactions for f electrons. Phys.Rev.1967,169:130-138
    [103]魏群,杨子元.Cr3+:MgAl2O4晶体EPR参量及其电子精细光谱的研究.波谱学杂志,2004,21:25-32
    [104]Fairbank W. M., Klauminzer G. K., Tetragonal-Field Splittings of Levels in MgO: Cr3+. Phys. Rev. B,1973,7:500-510
    [105]Imbusch G F., Chinn S. R., Geschwind S., Optical Detection of Spin-Lattice Relaxation and hfs in the Excited E (2E) State of V2+ and Mn4+ in Al2O3. Phys. Rev., 1967,161:295-309
    [106]Wood D. L., Absorption, Fluorescence, and Zeeman Effect in Emerald. J. Chem. Phys.,1965,42:3404-3410
    [107]Chase L. L., Electron Spin Resonance of the Excited 2E(3d3) Level of Cr3+ and V2+ in MgO. Phys. Rev.,1968,168:341-348
    [108]Crozier M. H., Optical Zeeman effect in the R1 and R2 lines of Mn4+ in Al2O3. Phys. Lett.,1965,18:219-220
    [109]Sugano S., Tanabe Y., Absorption Spectra of Cr3+ in Al2O3 Part A. Theoretical Studies of the Absorption Bands and Lines, J. Phys. Soc. Jpn.1958,13:880-899
    [110]Wood D. L., Burke W. E., Van Uitert L. G., Zeeman Effect of Cr3+ in ZnAl2O4. J. Chem. Phys.,1969,51:1966-1966
    [1]赵敏光,余万伦,晶体场理论,成都:四川教育出版社,1988
    [2]Die D., Kuang X. Y., Guo J. J., EPR parameters and local lattice structure study of trigonal Fe3+ center in CsMgCl3 crystal, Chemical Physics,2006,326:371-374
    [3]Zheng W. C., Investigation of the local geometry of Ni2+ ions in an Al2O3 crystal from EPR data. Physica B,1993,192:322-324
    [4]Lu T. C., Wu S. Y., Lin L. B., Defects in the reduced rutile single crystal. Physica B, 2001,304:147-151
    [5]Yu W. L., Zhao M. G, Determination of the crystalline structure of Mn2+CaZnF4 by EPR and optical spectra of Mn2+. J. Phys. C:Solid State Phys.,1984,18: L525-L527.
    [6]Newman D. J., Ng B., The Superposition Model of Crystal Field. Rep. Prog. Phys. 1989,52:699-763.
    [7]Newman D. J., Theory of lanthanide crystal fields. Adv. Phys.1971,20:197-256
    [8]Yeung Y. Y., Newman D. J., Superposition model for the Cr3+4A2 ground state. Phys. Rev. B,1986,34:2258-2265
    [9]Yu W. L., Zhao M. G, Spin-Hamiltonian parameters of 6S-state ions. Phys. Rev. B, 1988,37:9254-9267
    [10]Yu W. L., Zhang X. M., Yang L. X., Zeng B. Q., Spectroscopic properties of Cr3+ ions at the defect site in cubic fluorperovskite crystals. Phys. Rev. B,1994,50: 6856-6864
    [11]Zheng W. C., Wu X. X., Fang W., Studies of the spin-Hamiltonian parameters and defect structure for the tetragonal Fe5+ center in SrTiO3 crystals using a two-mechanism model. J. Phys.:Condens. Matter 2007,19:456214-456220
    [12]Griffith J. S., The Theory of Transition Metal Ions. Cambridge University Press, London.1961
    [13]Ballhausen C. J., Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962
    [14]Zhao M. G., Xu J. A., Bai G. R., d-orbital theory and high pressure effects upon the EPR spectrum of ruby. Phys. Rev. B,1983,27; 1516-1522
    [15]Zhao M. G., Bai G. R., Jin. H. C., d-orbital theory for Mn2+ complex ions. J. Phys.,1982, C15:5959-5964
    [16]Dunn T. M., McClure D. S., Pearson R. G, Some aspects of crystal field theory. Harper & Row Publishers, New York,1965
    [17]Pryce M. H. L., Runciman W. A., Discussions of the Faraday Society 1958,26:L34
    [18]Macfarlane R. M., Analysis of the Spectrum of d3 Ions in Trigonal Crystal Fields. J. Chem. Phys.,1963,39:3118-3126
    [19]Rudowicz C. Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonian and relations between parameters used in EPR, A critical review. Magn. Reson. Rev.1987,13:1-89
    [20]Newman D. J., Ng B., The superposition model of crystal field. Rep. Prog. Phys., 1989,52:699-763
    [21]Morrison C. A., Crystal Fields for Transition-Metal Ions in Laser Host Materials, Springer-Verlag, Berlin,1992
    [22]Yeung Y. Y., Rudowicz C., Ligand field analysis of the 3dn ions at orthorhombic or higher symmetry sites. Comput.& Chem.1992,16:207-216
    [23]Yeung Y. Y., Ligand positions and crystal field parameters for Cr3+ at tetragonal sites ion MgO. J. Phys.:Condens. Matter,1990,2:2461-2464
    [24]Febbraro S., Zero-field splitting of 3d5 (S=5/2) ions in axial symmetry:correlation with the Racah and ligand-field parameters. J. Phys. C:Solid State Phys.,1987,20: 5367-5380
    [25]Febbraro S., A ligand-field approach to the zero-field splitting of 3d5(S=5/2) ions: Fe3+ and Mn2+ paramagnetic centres in garnets and other oxides. J. Phys. C:Solid State Phys.1988,21:2577-2593
    [26]Sharma R. R., Das T. P., Zero-Field Splitting of S-State Ions. I. Point-Multipole Model. Phys. Rev.1966,149:257-269
    [27]Yu W. L., An investigation of the zero-field splitting of Fe3+ ions at the tetragonal FeF5O site in Fe3+:KMgF3 crystals, J. Phys.:Condens. Matter,1994,6:5105-5112
    [28]Yang Z Y, Wei Q, On the relations between the crystal field parameter notations in the "Wybourne" notation and the conventional ones for 3dN ions in axial symmetry crystal field. Physica B,2005,370:137-145
    [29]Rudowicz C., Sung H.W.F. Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?. Physica B,2001,300:1-26
    [30]Rudowicz C., Yeung Y. Y., Yang Z. Y., et al., Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field—perturbation theory methods versus complete diagonalization methods, J. Phys.:Condens. Matter,2002, 14:5619-5636
    [31]Macfarlane R M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [32]Fairbank W. M., Klauminzer G. K., Tetragonal-Field Splittings of Levels in MgO: Cr3+. Phys. Rev. B 1973,7:500-510
    [1]Macfarlane R. M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [2]Macfarlane R. M., Zero field splitting of t23 cubic terms. J. Chem. Phys.,1967,47: 2066-2073
    [3]Petrosyan A. K., Mirzakhanyan A. A., Zero-field splitting and g values of d8 ions in trigonal crystal field. Phys. Stat. Sol. B,1986,133:315-319
    [4]Huang M. High-Order Perturbation Formula for the EPR Trigonal Symmetric gi Value of the d8 Ion. Phys. Stat. Sol. B,1988,145:K21-K25
    [5]Chen J. J., Zhao M. G, High-Order Perturbation Formulae of the Spin Hamiltonian Parameters for the Ground State A2(F) of d8 Ions in Rhombic Symmetry. Phys. Stat. Sol. B,1987,143:647-653
    [6]Chen J. J., Du M. L., An investigation of the zero-field splitting and optical spectra in AgX:Ni2+(X=Cl, Br). Physica B,1995,215:260-262
    [7]Zheng W. C., Wu X X, Wang F, Studies of the spin-Hamiltonian parameters and defect structure for the tetragonal Fe5+ center in SrTiO3 crystals using a two-mechanism model. J. Phys.:Condens. Matter,2007,19:456214
    [8]Wu S. Y., Zheng W. C., High-order perturbation formulas of the zero-field splitting for 3d5 ion in tetragonal symmetry. Physica B,2001,296:351-355
    [9]He X. P., Du M. L., An EPR Study of the Structure of the Cr3+-Vacancy Centre in MgO. Phys. Stat. Sol. B,1987,144:K51-K55
    [10]Zdansky K., Strain-Induced Zero-Field Splitting of d3 and d8 Ions in Cubic Crystals. Phys. Rev.,1967,159:201-208
    [11]Hao Y., Yang Z. Y., Magnetic interactions and microscopic spin Hamiltonian approaches for 3d3 ions at trigonal symmetry sites, J. Magn. Magn. Mater.2006, 299:445-458
    [12]Condon E. U., Odabasi H., Atomic structure, Cambridge University Press, London New York,1980.
    [13]Judd B. R., Operator techniques in atomic spectroscopy. McGraw-Hill Book Co. New York,1963.
    [14]Konig E., Schnakig R., Zero-field splitting of 6S(d5)ions tetrahonal and rhombic symmetry. Phys.Stat. Sol. B,1976,77:657-666
    [15]Yu W. L., Zhang X. M., Yang L. X., Zeng B. Q, Spectroscopic properties of Cr3+ ions at the defect site in cubic fluorperovskite crystals. Phys Rev B,1994,50: 6856-6864
    [16]Rotenberg M., Bivens R., Metrropolis N., The 3-j and 6-j symbols, Technology Press, Cambridge, Mass,1959.
    [17]赵敏光,余万伦,晶体场理论,成都:四川教育出版社,1988
    [18]杨子元,三角晶场中4A2(3d3)态离子全组态EPR理论研究.化学物理学报,2000,13:190-196
    [19]Schlafer H. L., Gliemann G., Basic principles of ligand field theory. London, Wiley-interscience,1959
    [20]Yang Z. Y, Yu W. L., An investigation for the EPR parameters and the
    substitutional site of Cr3+ impurities in LiNbO3:Cr3+ crystal. Chin. J. Chem. Phys., 1998,11:422-426
    [21]Trees R. E., Spin-spin interaction. Phys. Rev.,1951,82:683-688
    [22]Newman D.J., Ng B. (Eds.), Crystal Field Handbook, Cambridge University Press, Cambridge,2000
    [23]Yu W. L., Microscopic interpretation of the zero-field splitting parameters of transition-metal ions in crystal I:an effective Hamiltonian theory. Journal of Sichuan University.2002,25:606-614
    [24]Malli G., Spin-other-orbit interaction in many-electron atoms. J. Chem. Phys.,1968, 48:1088-1091
    [25]Horie H., Spin-spin and spin-other-orbit interaction. Prog Theor Phys,1953,10: 296-308
    [26]Judd B.R., Crosswhite H.M., Crosswhite H., Intra-atomic magnetic interactions for f electrons. Phys. Rev.1967,169:130-138
    [27]Wybourne B. G, Spectroscopic properties of rare earth, Wiley, New York,1965.
    [28]Malli G, Evaluation of orbit-orbit interaction in many-electron atom, J. Chem. Phys. 1967,47:2217-2219
    [29]Barnes J. A., Carroll B. L., Fores L. M., Matrix elements of atomic interaction operators for dn configurations. Atomic Data,1970
    [30]Marvin H. H., Mutual Magnetic Interactions of Electrons. Phys. Rev.,1947, 71:102-110
    [31]Rudowicz C., Yang Z. Y., Yeung Y. Y., et al., Crystal field and microscopic spin Hamiltonians approach including spin-spin and spin-other-orbit interactions for d2 and d8 ions at low symmetry C3 symmetry sites:V3+ in Al2O3, J. Phys. Chem. Solids 2003,64:1419-1428
    [32]Barnes J. A., Carroll B. L., Fores L. M., Matrix elements of atomic interaction operators for dn configurations. Atomic Data,1970
    [33]Neilson C. W., Koster G. F., Spectroscopic coefficients for the pn, dn and fn configurations. MIT press, Cambridge, MA,1963
    [1]Macfarlane R. M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [2]Macfarlane R. M., Zero field splitting of t23 cubic terms. J. Chem. Phys.,1967,47: 2066-2073
    [3]Zdansky K., Strain-Induced Zero-Field Splitting of d3 and d8 Ions in Cubic Crystals. Phys. Rev.,1967,159:201-208
    [4]Hao Y., Yang Z. Y., Magnetic interactions and microscopic spin Hamiltonian approaches for 3d3 ions at trigonal symmetry sites, J. Magn. Magn. Mater.2006, 299:445-458
    [5]杨子元,郝跃.四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究.物理学报,2005,54:2883-2892
    [6]杨子元.晶体材料中3d2态离子自旋哈密顿参量的微观起源.物理学报,2004,53:1981-1988
    [7]Yeung Y. Y., Ligand positions and crystal field parameters for Cr3+ at tetragonal sites ion MgO. J. Phys.:Condens. Matter,1990,2:2461-2464
    [8]杨子元,郝跃.四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究.物理学报,2005,54:2883-2892
    [9]魏群,杨子元.Cr3+:MgAl204晶体EPR参量及其电子精细光谱的研究.波谱学杂志,2004,21:25-32
    [10]Yeung Y. Y., Rudowicz C., Ligand field analysis of the 3dn ions at orthorhombic or higher symmetry sites. Comput.& Chem.1992,16:207-216
    [11]杨子元.三角晶场中4A2(3d3)态离子全组态EPR理论研究.化学物理学报,2000,13:190-196
    [1]Macfarlane R. M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [2]Macfarlane R. M., Zero field splitting of t23 cubic terms. J. Chem. Phys.,1967,47: 2066-2073
    [3]Fairbank W. M., Klauminzer G. K., Tetragonal-Field Splittings of Levels in MgO: Cr3+. Phys. Rev. B,1973,7:500-510
    [4]Kahan H. M., Macfarlane R. M., Optical and Microwave Spectra of Cr3+ in the Spinel ZnGa2O4. J. Chem. Phys.,1971,54:5197-5205
    [5]Boom H., Henning J. C. M., Damen J. P. M., Electron spin resonance on chromium doped ZnGa2O4. Solid State Commun.1970,8:717-719
    [6]Henning J. C. M., Boef J. H., Gorkon G. G. P., Electron-Spin-Resonance Spectra of Nearest-Neighbor Cr3+ Pairs in the Spinel ZnGa2O4. Phys. Rev. B,1972,7: 1825-1833
    [7]Henning J. C. M., Damen J. P. M., Exchange Interactions within Nearest-Neighbor Cr3+ Pairs in Chromium-Doped Spinel ZnGa2O4. Phys. Rev. B,1971,3:3852-3854
    [8]Gorkom G. G. P., Henning J. C. M., Stapele R. P., Optical Spectra of Cr3+ Pairs in the Spinel ZnGa2O4. Phys. Rev. B,1973,8:955-973
    [9]Henning J. C. M., Direct determination of weak exchange interactions in Cr3+-doped spinel ZnGa2O4. Phys. Rev. B,1980,21:4983-4995
    [10]Kim J. S., Kim J. S., Park H. L., Optical and structural properties of nanosized ZnGa2O4:Cr3+ phosphor. Solid State Commun.2004,131:735-738
    [11]Ohtake T., Sonoyama N., Sakata T., Electrochemical luminescence of ZnGa2O4 semiconductor electrodes activated with Cr and Co. Chem. Phys. Lett.,2000,318: 517-521
    [12]Hao Y., Yang Z. Y., Magnetic interactions and microscopic spin Hamiltonian approaches for 3d3 ions at trigonal symmetry sites, J. Magn. Magn. Mater.2006, 299:445-458
    [13]Marvin H. H., Mutual Magnetic Interactions of Electrons. Phys. Rev.,1947,71: 102-110
    [14]Rudowicz C., Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonian and relations between parameters used in EPR, A critical review. Magn. Reson. Rev.,1987,13:1-89
    [15]Yang Z. Y., Wei Q., On the relations between the crystal field parameter notations in the "Wybourne" notation and the conventional ones for 3dN ions in axial symmetry crystal field. Physica B,2005,370:137-145
    [16]Konig E., Schnakig R., Zero-field splitting of 6S(d5)ions tetrahonal and rhombic symmetry. Phys. Stat. Sol. B,1976,77:657-666
    [17]Yang Z. Y, Yu W. L., An investigation for the EPR parameters and the substitutional site of Cr3+ impurities in LiNbO3:Cr3+ crystal. Chin. J. Chem. Phys., 1998,11:422-426
    [18]Yu W. L., Rudowicz C., Comprehensive approach to the zero-field splitting of 6S-state ions:Mn2+ and Fe3+ in fluoroperovskites. Phys. Rev. B,1992,45: 9736-9748
    [19]Neilson C. W., Koster G. F., Spectroscopic coefficients for the pn, dn and fn configurations. MIT press, Cambridge, MA,1963
    [20]Griffith J. S., The Theory of Transition Metal Ions. Cambridge University Press, London.1961
    [21]Kim J. S., Kim J. S., Park H. L., Optical and structural properties of nanosized ZnGa2O4:Cr3+ phosphor. Solid State Commun.2004,131:735-738
    [22]Patel J. L., Davics J. J., Cavenett B. C., Takeuchi H., Horai K., Electron spin resonance of axially symmetric Cr3+ centres in KMgF3 and KZnF3. J. Phys.:Solid States Phys.1976,9:129-138
    [23]杨子元,魏群.三角对称晶场中4A2(3d3)离子EPR参量的SS和SOO机制.化学物理学报,2004,17:401-406
    [24]Fairbank W. M., Klauminzer G. K., Tetragonal-Field Splittings of Levels in MgO: Cr3+. Phys. Rev. B,1973,7:500-510
    [25]杨子元,郝跃.四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究.物理学报,2005,54:2883-2892
    [26]Imbusch G. F., Chinn S. R., Geschwind S., Optical Detection of Spin-Lattice Relaxation and hfs in the Excited E (2E) State of V2+ and Mn4+ in Al2O3. Phys. Rev., 1967,161:295-309
    [27]Crozier M. H., Optical Zeeman effect in the R1 and R2 lines of Mn4+ in Al2O3. Phys. Lett.,1965,18:219-220
    [28]Geschwind S., Kisliuk P., Klein M. P., Remeika J. P., Wood D. L., Sharp-Line Fluorescence, Electron Paramagnetic Resonance, and Thermoluminescence of Mn4+ in α-Al2O3. Phys. Rev.1962,126:1684-1686
    [29]Imbusch G. F., Geschwind S., Optical detection of paramagnetic resonance in the excited E(2E) state of Mn4+ in Al12O3. Phys. Lett.1965,18:109-110
    [30]Zheng W. C., Investigations of the zero-field splitting and the first excited state splitting and their stress dependences for Al2O3:Mn4+. J. Phys. Chem. Solids,1999, 60:359-361
    [31]Geschwind S., Collins R. J., Schawlow A. L., Optical Detection of Paramagnetic Resonance in an Excited State of Cr3+ in Al2O3. Phys. Rev. Lett.,1959,3:545-548
    [32]Geschwind S., Devlin G. E., Cohen R. L., et al, Orbach Relaxation and Hyperfine Structure in the Excited E (2E) State of Cr3+in Al2O3. Phys. Rev.,1965,137: A1087-A1100
    [33]Muramoto T., Fukuda Y., Hashi T., Measurement of g⊥ of Optically Excited State E (2E) of Cr3+ in Al2O3. J. Phys. Soc. Japan,1969,26:1551-1551
    [34]Wang H., Kuang X. Y., Mao A. J., Effect on the EPR and site symmetry of Cr3+ions doping spinel crystals:A complete energy matrices study. Chem. Phys. Lett.,2007, 436:194-198
    [35]Wood D. L., Burke W. E., Van Uitert L. G., Zeeman Effect of Cr3+ in ZnAl2O4. J. Chem. Phys.,1969,51:1966-1969
    [36]Wood D. L., Imbusch G. F., Macfarlane R M, Kisliuk P, Larkin D. M., Optical Spectrum of Cr3+ Ions in Spinels. J. Chem. Phys.,1968,48:5255-5263
    [1]Macfarlane R. M., Perturbation methods in the calculation of Zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra. Phys. Rev. B, 1970,1:989-1004
    [2]Macfarlane R. M., Zero field splitting of t23 cubic terms. J. Chem. Phys.,1967,47: 2066-2073
    [3]Ma D. P., Ma X. D., Chen J. R., et al, Pressure-induced shifts of energy levels of alpha-Al2O3:V3+ and a complete ligand-field calculation. Phys. Rev. B,1997,56: 1780-1786
    [4]Rudowicz C., Yang Z. Y., Yeung Y. Y., Crystal field and microscopic spin Hamiltonians approach including spin-spin and spin-other-orbit interactions for d2 and d8 ions at low symmetry C3 symmetry sites:V3+ in Al2O3, J. Phys. Chem. Solids 2003,64:1419-1428
    [5]Sugano S., Tanabe Y., Absorption Spectra of Cr3+ in Al2O3 Part A. Theoretical Studies of the Absorption Bands and Lines, J. Phys. Soc. Jpn.1958,13:880-899
    [6]Zheng W. C., Investigations of the zero-field splitting and the first excited state splitting and their stress dependences for Al2O3:Mn4+. J. Phys. Chem. Solids,1999, 60:359-361
    [7]Fairbank W. M., Llauminger G K, Schawlow A L. Excited-state absorption in ruby, emerald, and MgO:Cr3+. Phys. Rev. B,1975,11:60-76
    [8]Lu W., Kuang X. Y, Zhou K. W., EPR theoretical study of local lattice structure in Al2O3:Fe3+ system. J. Phys. Chem. Solids,2004,65:1147-1151
    [9]McClure D. S., Comparison of the Crystal Fields and Optical Spectra of Cr2O3 and Ruby. J. Chem. Phys.,1963,38:2289-2294
    [10]Reber C., Gudel H. U., Near-infrared luminescence spectroscopy of Al2O3:V3+ and YP3O9:V3+. Chem. Phys. Lett.,1989,154:425-431
    [11]Wang H., Kuang X. Y., Mao A. J., Optical spectrum and local lattice structure for ruby. Eur. Phys. J. B,2007,55:1-5
    [12]谢林华,丘岷.MgF2:Mn2+光谱、超精细常数和局部结构的关联.物理学报,2005,54:5845-5848
    [13]董会宁,吴晓轩,邬劭轶.ZnO晶体中Mn2+与Fe3+杂质中心的缺陷结构研究.物理学报,2002,51:616-619
    [14]Yu W. L., Rudowicz C., Comprehensive approach to the zero-field splitting of 6S-state ions:Mn2+ and Fe3+ in fluoroperovskites. Phys. Rev. B,1992,45: 9736-9748
    [15]杨柳,殷春浩,焦扬,张雷,宋宁,茹瑞鹏.掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子.物理学报,2006,55:1991-1996
    [16]Zhou Y. Y., Substitution position of the impurity ion Mn+ in LiNbO3. Phys. Rev. B, 1991,43:11374-11376
    [17]Zhou Y Y, Rudowicz C., Crystal field and EPR analysis for 5D (3d4 and 3d6) ions at tetragonal sites:Applications to Fe2+ ions in minerals and Cr2+ impurities in semiconductors. J. Phys. Chem. Solids,1996,57:1191-1199
    [18]Zhang Z. J., Ma D. P., Pressure-Dependent Base-Wavefunction Admixture and Lifetime of R1 State of La3Lu2Ga3O12:Cr3+. Commun. Theor. Phys.,2006,45: 1147-1152
    [19]张廷蓉,李玲,余万伦.LiNb03:Ni2+晶体中Ni2+离子占位研究[J].四川师范大学学报.1997,20:73-76
    [20]周一阳.自旋三重态对3d4/3d6离子零场分裂参量的影响.物理学报,1995,44:122-127
    [21]李玲,余万伦.Al2O3:Ni2+晶体的自旋哈密顿参量和光谱精细结构.四川师范大学学报.1997,20:57-61
    [22]Yang Z. Y., Hao Y., Rudowicz C., et al., Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for Ni2+ (3d8) ions in trigonal crystal fields, J. Phys.: Condens. Matter 2004,16:3481-3494
    [23]Hao Y., Yang Z. Y., Magnetic interactions and microscopic spin Hamiltonian approaches for 3d3 ions at trigonal symmetry sites, J. Magn. Magn. Mater.2006, 299:445-458
    [24]Yang Z. Y., Rudowicz C., Qin J., The effect of disorder in the local lattice distortions on the EPR and optical spectroscopy parameters for a new Cr3+ defect center in Cr3+:Mg2+:LiNbO3. Physica B,2002,318:188-197
    [25]Newman D J, Ng B. The Superposition Model of Crystal Field. Rep. Prog. Phys. 1989,52:699-763.
    [26]Newman D. J., Theory of lanthanide crystal fields. Adv. Phys.1971,20:197-256
    [27]Yeung Y. Y., Newman D. J., Superposition model for the Cr3+4A2 ground state. Phys. Rev. B.1986,34:2258-2265
    [28]Glass A. M., Optical Spectra of Cr3 Impurity Ions in Ferroelectric LiNbO3 and LiTaO3. J. Chem. Phys.,1968,50:1501-1510
    [29]Arnold D. J., Smith A. R., Wires R W. Low-Temperature Magnetic Susceptibilities of Al2O3:V3+. Phys. Rev. B,1970,1:2355-2356
    [30]Petrosyan A. K., Mirzakhanyan A. A., Zero-field splitting and g values of d8 ions in trigonal crystal field. Phys. Stat. Sol. B,1986,133:315-319
    [31]Corradi G., Zaritskii I. M., Hofstaetter A., Ti3+ on Nb site:A paramagnetic Jahn-Teller center in vacuum-reduced LiNbO3:Mg:Ti single crystals. Phys. Rev. B, 1998,58:8329-8337
    [32]Thiemann O., Donnerberg H., Wohlecke M., et al, Vibronic structure, energy level, and incorporation mechanism of Ti3+ in LiNbO3 and LiTaO3. Phys. Rev. B,1994, 49:5845-5851
    [33]Kaminska A., Suchocki A., Arizmendi L., Spectroscopy of near-stoichiometric LiNbO3:MgO,Cr crystals under high pressure. Phys. Rev. B,2000,62: 10802-10811
    [34]Chang Y. M., Yeom T. H., Yeung Y. Y, et al, Superposition model and crystal-field analysis of the 4A2 and a2E states of Cr3+ ions at C3 sites in LiNbO3. J. Phys.: Condens. Matter,1994,5:6221-6230
    [35]Salley G. M., Kaplyanskii S. A., Meltzer R. S, et al, Chromium centers in stoichiometric LiNbO3. J. Lumin.,2000,87-89,1133-1135
    [36]Jia W. Y, Liu H. M., Knuston R., Fluorescence spectra of Cr3+ dimers in LiNbO3. Phys. Rev. B,1990,41:10906-10910
    [37]Paul M., Tabuchi M., West A. R., Defect Structure of Ni,Co-Doped LiNbO3 and LiTaO3. Chem. Mater.1997,9:3206-3214
    [38]Xie L. H., Hu P., Huang P., Theoretical interpretation of optical and EPR spectra and the substitutional site of ferroelectric LiNbO3:Ni2+ crystal. J. Phys. Chem. Solids,2005,66:918-921.
    [39]Yang Z. Y., Rudowicz C., Yeung Y. Y., Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B,2004,348:151-159
    [40]Zheng W. C., Cation displacement in the case of charge misfitting substitution for 3d5 ions in corundum-type structure. J. Phys. Chem. Solids 1995,56:61-64
    [41]Zhao M. G, Chiu M., Substitution site of the Fe3+ impurity in crystalline LiNbO3. Phys. Rev. B,1994,49:12556-12558
    [42]Hui W., Kuang X. Y, Die D., et al, EPR investigation of substitution position for Fe3+ in LiNbO3:Fe3+ system. Physica B,2005,367:53-60
    [43]Herreros B., Lifante G., Cusso F., Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides. J. Phys.:Condens. Matter 1998,10:3275-3283
    [44]Abrahams S. C., Reddy J. M., Bernstein J. L., Ferroelectric lithium niobate.3. Single crystal X-ray diffraction study at 24℃. J. Phys. Chem. Solids,1966,27: 997-1012
    [45]Abrahams S. C., Hamilton W. C., Reddy J. M., Ferroelectric lithium niobate.4. Single crystal neutron diffraction study at 24℃. J. Phys. Chem. Solids,1966,27: 1013-1018
    [46]Glass A. M., Optical Spectra of Cr3+ Impurity Ions in Ferroelectric LiNbO3 and LiTaO3. J. Chem. Phys.,1968,50:1501-1510
    [47]Zaldo C., Prieto C., Dexpert H, et al, Study of the lattice sites of Ti and Ni impurities in LiNbO3 single crystals, by means of X-ray absorption spectroscopy. J. Phys.:Condens. Matter 1991,3:4135-4144
    [48]McPherson G. L., McPherson A. M., Atwood J. L., Structures of CsMgBr3, CsCdBr3 and CsMgI3-diamagnetic linear chain lattices. J. Phys. Chem. Solids. 1980,41:495-499
    [49]McPherson G. L., Kistenmacher T. J., Stucky G. D., Single-crystal paramagnetic resonance studies of V(Ⅱ), Mn(Ⅱ), and Ni(Ⅱ) in CsMgCl3 and the crystal structure of CsMgCl3. J. Chem. Phys.,1970,52:815-824
    [50]Wu S. Y, Gao X. Y, Dong H. N., Investigations on the angular distortions around V2+ in CsMgX3 (X=Cl, Br, I) J. Magn. Magn. Mater.2006,301:67-73
    [51]Yang Z. Y., Studies of the zero-field splitting and g-factor for the Defect Model of Cr3+in α-LiIO3 crystals at low temperature. J. Phys. Chem. Solids.,2002,63: 743-747
    [52]Zhao M. G, Xu J. A., Bai G.R., Xie H. S., d-orbital theory and high-pressure effects upon the EPR spectrum of ruby. Phys. Rev. B,1983,27:1516-1522
    [53]McPherson G. L., Koch R. C., Electron spin resonance spectra of V2+, Mn2+, and Ni2+ in single crystals of CsMgBr3 and CsMgI3. J. Chem. Phys.1974,60: 1424-1431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700