用户名: 密码: 验证码:
稀土元素的理化特性与光合作用的关系及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国从上个世纪70年代就开始大规模推广稀土微肥农用,作用效果明显。相关实验室研究也证实适宜浓度的稀土元素处理能够刺激植物生长发育,增强光合能力,提高作物产量和改善品质。但是,目前有关稀土元素的植物生理效应研究还不够深入,特别是对稀土元素促进光合作用这一地球上最重要的化学反应的相应效应和机理缺乏系统研究。对稀土元素理化特性对光合作用所产生的化学生物效应也未得到阐明。鉴于此,我们选取镧(La)、铈(Ce)、钕(Nd)这三个稀土微肥中的主要组成元素,围绕光合作用能量传递转换过程,即光能依次向电能,活跃化学能,稳定化学能转换这一过程,系统研究了稀土元素提高菠菜(光合作用常用模式植物)光合作用效应的机制。并通过比较三种不同稀土元素的光合效应差异,旨在阐明稀土元素独特的4f层电子和变价特征以及与植物必需大量元素钙的相似性对光合作用的影响。本文不但为研究光合作用提供了新思路,且可为高效稀土农用寻求理论根据。
     实验发现:
     1)稀土元素可促进菠菜的光化学能力,促进菠菜光能的吸收、转运、分配、光电转换等各环节效率。La~(3+)、Ce~(3+)、Nd~(3+)处理后,叶绿体膜特征吸收峰峰值增大,叶绿素a的Soret带蓝移,且Soret带与Q带峰强比增强,显示叶绿体内的色素捕光能力增加,特别是短波长的光更易吸收;荧光光谱也表明叶绿体捕光能力增加,且可促使叶绿素b和胡萝卜素吸收的光能迅速高效地传递到PSⅡ作用中心色素叶绿素a;使用双通道叶绿素荧光仪发现稀土元素同时促进两个光系统的光化学活性与电子传递效率,特别是光系统Ⅱ活性得到显著增加;同时还改善了光系统的光保护能力,增加其对光能的耐受能力;稀土元素还增加了叶绿体的全链电子传递活性、PSⅡ与PSⅠ的DCIP光化学还原活性和氧气释放速率,进一步说明稀土元素不但能增加光能吸收,且能将光能有效分配,促进激发能向PSⅡ大量分配。其中具有1个4f层电子和变价特征(+4)的Ce~(3+)处理效果最为明显,其次为不具有变价特征,但有3个4f层电子的Nd~(3+),既不具有4f层电子结构又不具有变价特征的La~(3+)处理增加幅度最小。提示稀土提高光合作用与其4f层电子结构和变价特征有密切关系。h
     2)稀土元素处理通过对LHCⅡ的调控显著增加PSⅡ的活力。适当浓度的La~(3+)、Ce~(3+)、Nd~(3+)处理可使LHCⅡ去磷酸化,使光合机构向状态Ⅰ转换,从而相对增加PSⅡ的光吸收截面及光吸收,提高PSⅡ放氧活性。以拟南芥为实验材料,发现稀土元素处理对LHCⅡ的另一条调控机制:LhcⅡb得到大量表达,提示稀土处理可显著增加LHCⅡ在类囊体膜上的分布,促进了PSⅡ对光能的吸收,并促使LHCⅡ三聚体化,导致基粒堆积状况的调整,从而改变了PSⅠ和PSⅡ的电子流动次数,使得激发能由PSⅠ向PSⅡ分配。三种稀土元素处理效果仍为Ce~(3+)>Nd~(3+)>La~(3+)。
     3)稀土元素处理增加光合碳同化能力。La~(3+)、Ce~(3+)、Nd~(3+)处理后Rubisco羧化活力增强,干物质增加明显。这是因为稀土元素在体内诱导出Rubisco-Rubisco活化酶的超复合体:在稀土处理的菠菜体内纯化Rubisco时获得一大分子量蛋白,其光谱学性质,巯基含量及二级结构均与纯Rubisco不同,SDS-PAGE电泳分析发现除Rubisco的大小亚基(55kD,14.4kD)之外,还具有Rubisco活化酶的45和41 kD的两个亚基。非变性PAGE电泳分析证明除具有Rubisco的一条带(560kD)以外,还有一条分子量在1200 kD左右的蛋白带,即Rubisco全酶与16个Rubisco活化酶亚基组成的超复合体。使用Rubisco和Rubisco活化酶抗体经蛋白印迹实验证实了Rubisco-Rubisco活化酶超复合体的形成。Rubisco-Rubisco活化酶超复合体被认为是Rubisco在体内实行活性所必需的中间产物,但一直没得到证实。我们的发现首次为这一模型提供了实验证据。
     4)实验发现稀土元素处理诱导Rubisco-Rubisco活化酶超复合体产生的机制可能有两条。一是通过RT-PCR,Northern Blotting和Real-time PCR技术证明稀土元素能明显促进Rubisco大小亚基,特别是Rubisco活化酶亚基mRNA表达,使体内Rubisco活化酶蛋白的表达上调,提高Rubisco活化酶/Rubisco比例,从而增加了Rubisco-Rubisco活化酶超复合体的含量。Ce~(3+)处理后这种增强作用比La~(3+)和Nd~(3+)处理更显著,显然这与Ce~(3+)的4f电子层结构和变价特征有密切关系。二是稀土元素可能提供了Rubisco和Rubisco活化酶之间的“额外”连接,稳定Rubisco-Rubisco活化酶超复合体结构。Ce~(3+)与Rubisco体外实验证明Ce~(3+)与Rubisco直接结合:第一层与8个O原子配位,键长为2.55?;在第二配位层与6个O原子配位,键长为3.69?。这改善了蛋白的结构,最终提高了酶活性。
     5) Ce~(3+)与大量元素Ca~(2+)的化学性质极为接近,但Ce~(3+)的电荷高于Ca~(2+),因而离子势大,对以离子键为主的化合物,则稀土离子的结合稳定性要高于钙离子,因而有人将稀土离子称为“超级钙”。它不但可以占据钙的位置,还将取代已结合的钙离子。实验证明,缺钙菠菜在施加适当浓度的CeCl_3后,缺钙症状得以缓解,干重和鲜重增加,叶绿素含量增加,光合效率和放氧活力增强,Rubisco羧化活力,氮代谢相关酶活性也得到一定恢复。Ce~(3+)处理还能显著提高菠菜正常生长条件下以及缺钙条件下抗氧化系统活力,提高SOD、CAT、APX、GPX等抗氧化酶酶活性,降低超氧自由基、丙二醛含量,保持光合作用正常进行。体外实验发现Ce~(3+)能与脱钙PSⅡ结合,与氨基酸的O原子配位,部分恢复脱钙PSⅡ的放氧活力。这再次证明Ce~(3+)能够部分取代Ca~(2+)的生理作用。
Rare earth fertilizers have been widely used in China for nearly 40 years. It has been demonstrated in many experiments that rare earth elements (REEs) are able to promote the growth and development of plants, enhance photosynthesis and increase the yield of crops. However, the mechanisms underlying the biological effects of REEs on plants still remain elusive. Among all the questions, the effects of REEs on photosynthesis, is the most puzzling one. Specifically, very little is known about the relationships between the physiological effects and the unique characteristics of REEs. Thus, we selected three representative REEs, Lanthanum, Neodymium and Cerium (La~(3+), Ce~(3+) and Nd~(3+)), to study the effects and mechanisms of REEs on photosynthesis. This study focuses on the energy transfer processes of photosynthesis——from light energy to electrical energy then active chemical energy, and stable chemical energy in the end. We also compare the different effects imposed by three REEs treatments to clarify the mechanism how unique characteristics of REEs, such as 4f electron characteristic, alternation valence and the similarity to the Ca~(2+), affect photosynthesis. This study will not only provide insights into photosynthesis mechanism study, but lay a solid ground for the efficient use of REEs in agriculture。
     1) REEs are able to promote the light action of spinach, enhance the light absorption, transfer and distribution efficiency. Treated by La~(3+), Ce~(3+) and Nd~(3+), the characteristic absorbance peaks of the chloroplast are enhanced and blue shifted as well. The ratio of Soret band intensity and Q band intensity is also increased, indicating the ability to catch light of the chloroplast pigments is enhanced, especially in short wavelength. Fluorescence spectra further indicate that the light absorbed by chlorophyll b (chl b) and carotene could efficiently transfer to chlorophyll a (chl a) of photosystemⅡ(PSⅡ). The results of Dual-PAM-100 showed that REEs treatments are able to promote both the photochemical activity and electron transfer ratio of two photosystems. However, PSⅡactivity is increased more efficiently. Based upon the chlorophyll fluorescence, the photo protective abilities of two photosystems are also increased, thus enhance the tolerance of light. The facts that the whole chain electron transport activity, PSⅡ, PSⅠDCPIP photo reduction and oxygen evolution of the chloroplast are all increased by treatments with REEs, further indicate that REEs are able to efficiently distribute the light energy and trigger the excitation energy mostly to PSⅡ. Among these three REEs, the effect of the Ce~(3+) treatment is the best, which is followed by the Nd~(3+), and the La~(3+) treatment is not as effective as other two elements. 4f electron characteristic and alternation valence of REEs might contribute to these observed differences, for Ce~(3+) has 1 4f electron and can change to +4, Nd~(3+) has 3 4f electrons but no alternation valence, whereas La has neither 4f electron nor alternation valence.
     2) REEs are able to promote the PSⅡactivity by regulating LHCⅡ(Light harvesting complexⅡ). A suitable concentration of REEs treatment is able to change the redox state of PQ pool,whereby dephosphorylating LHCⅡand changing the photosystem to stateⅠ, and to certain degree enhancing the photoabsorption cross section and light absorption of PSⅡ. The real-time PCR experiments showed another mechanism of REEs to LHCⅡ. The results showed that REEs are able to enhance expression of LhcⅡb of arabidopsis and significantly increase LHCⅡcontent on the thylakoid membranes, thus inducing the LHCⅡto trimer formation and adjusting the grana distribution of the thylakoid membranes. This changes the electron transfer ratio of two photosystems and triggers the excitation energy mostly to PSⅡ. The effects of the three REEs are as follows : Ce~(3+)>Nd~(3+)>La~(3+)>control.
     3) REEs are able to promote carbon assimilation. The La~(3+)、Ce~(3+)、Nd~(3+) treatments enhance the carboxylase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and increase the dry matter content of spinach. It is resulted from the formation of the Rubisco- Rubisco activase super complex by REEs treatment. A higher molecular weight protein is found during the purifying procedure of Rubisco in REEs-reated spinach. Its spectral characteristic, sulfhydryl groups and secondary structure are quite different from the pure Rubisco. SDS-PAGE analysis showed that this higher molecular weight protein contains not only 52 kD and 14 kD subunits of Rubisco, but 2 extra isoforms at 41 and 45 kD as well, which was supposed to be the isoforms of Rubisco activase. The native-PAGE result suggested the higher molecular weight protein is the Rubisco- Rubisco activase super complex and the molecular weight is about 1200 kD (a 560 kD Rubisco holoenzyme plus 16 isoforms of Rubisco activase). It was examined with the antibodies of both Rubisco and Rubisco activase in Western-blotting. This is the first evidence to confirm the formation of the Rubisco- Rubisco activase super complex, which is the hypothesis for activating the carboxylase activity of Rubisco in vivo.
     4) The mechanism for REEs to induce the formation of the Rubisco- Rubisco activase super complex may be complicated. RT-PCR, Northern blotting and real-time PCR strongly indicate that the mRNA levels of the Rubisco and Rubisco activase were enhanced by the REEs treatment. However, rbca is highly expressed which may increase both the protein content of Rubisco activase and the ratio of the Rubisco activase to Rubisco. It is still the Ce that has the strongest influence on the gene expression, then follwed by Nd, and La is the least. These results suggested that 4f electron characteristics and alternation valence of REEs have a close relationship with carbon assimilation. The second mechanism to form the super complex is found by EXAFS. Nd is coordinates with Rubisco by 4 Nd-N(O)bond(2.46 (A|°))and 2 Nd-S bond(3.47 (A|°)) in vivo, which suggests REEs ion may provide the extra linkage between Rubisco and Rubisco activase, which stabilize the super complex structure. The in vitro study also showed that that Ce~(3+) could directly bind Rubisco, coordinates with 8 oxygen atoms in first shells and 6 oxygen atoms in second shells, change the spectra characteristic of Rubisco, which enhances the enzyme activity.
     5) Ce~(3+) has similar chemical property to Ca~(2+), but the charge and potential energy in Ce~(3+) are higher than Ca~(2+). So Ce~(3+) could not only occupy a Ca~(2+) position, but also substitute for bound Ca~(2+). Thus Ce ~(3+) are known a“supercalcium”. It was showed that Ce ~(3+) could relieve calcium-deficiency symptoms in spinach. Ce treatment could raise the dry weight and fresh weight of calcium deficient spinach, increase the chlorophyll content and photosynthetic rate, and the oxygen release rate and enhance the activities of Rubisco and the nitrogen metabolism related enzymes system. Ce treatment could also enhance the activities of the antioxidation system both in the normal and calcium-deficiency condition. Specifically, the activities of superoxide dismutase (SOD), catalase(CAT) and peroxidase(POD) are enhanced and the membrane permeability, while reactive oxygen species (ROS) and malond ialdehyde(MDA) are reduced, which would maintain photosynthesis. The in vitro study showed that Ce could bind the Ca-depleted PSⅡparticle, coordinate with oxygen atoms and partially recover the activity of Ca-depleted PSⅡ. It also suggests that Ce~(3+) could replace Ca~(2+).
引文
1.徐光宪,稀土(第二版),冶金工业出版社,2005,2-73
    2.林河成,我国钕铁硼永磁材料的高速发展,金属材料研究,1999,(2):15-22
    3.林河成,我国稀土合金的生产应用和市场,矿冶,1998,(1):52-57
    4.倪嘉缵,洪广言主编,中国科学院稀土研究五十年,科学出版社,2005,2-291
    5.纪云晶,崔明珍,稀土农用毒性评价及抑癌作用机理的研究,卫生毒理学志,1997,11(4):238
    6.胡意,郭菲,稀土在医药领域的研究进展,实验与检验医学,2009,27(1):75-78
    7.王宗惠,苏英,庞新民,稀土防癌实验及对NK细胞活力影响的观察,卫生毒理学杂志,1994,8(3):200
    8.栗建林,纪云晶,区桂萼,稀土作业工人肿瘤流行病学调查,卫生毒理学杂志,1997,11(3):158
    9.李振甲,陈泮藻,高平,时间分辨荧光分析技术与应用,科学出版社,1996,19
    10.双安尔,王建伟,照明,稀土农用材料在玉米上产上的应用,新疆农业科技,2008,179(3):24
    11.万强,李东郁,稀土对提高农产品产量改善品质和降低农药残留的效果研究,湖南农业科学,1998,(1):12-14
    12.张淑媛,张秀英,杨家朴,稀土元素处理对玉米幼苗生长的影响,中国稀土学会稀土农用机理、养殖学术交流会,1989
    13.闫德仁,张连弟,刘永军,稀土对油松种子萌发和内含物转化的影响,稀土,1996,17(1):67-69
    14.汤锡珂,贾志旺,吴兆明,LaCl3对五米硝酸还原酶活性的影响,全国稀土在农林牧和养殖业中应用研究论文(摘要)集,1993,28-32
    15.吴兆明,镧和吲哚丙酸对月季扦插生根的影响,园艺学报,1988,15(1):69-71
    16.张勇,欧顺清,陈西凯,稀土对甘蔗叶片中几种酶活性的影响及其与生长发育的关系,西南农业大学学报,1991,13(4):416-420
    17.潘廷国,王元贞,柯玉琴,江鹤琴,喷施稀土对甘蔗植株ATP酶和根际土壤酶活性的影响,作物学报,1993,19(2):133-138
    18.侯彩霞,沈博礼,刘戈,申世坤,镧和铈对小麦幼苗过氧化物酶和淀粉酶活性及其同工酶的影响,稀土,1997,18(2):64-66
    19.江玲,王章荣,周燮,镧对马尾松苗的根系生长和IAA含量的影响,植物学报,1998,40(3):251-255
    20.方能虎,中国科学技术大学博士学位论文,1998,61,70
    21. Hong F.S.,Study on the Mechanism of Cerium Nitrate Effects on Germination of Aged Rice Seed,Biol Trace Element Res,2002,87(1-3):191-200
    22. Hong F.S.,Wang L.,Liu C.,Study of lanthanum on seeds germination and growth of rice. Biol Trace Element Res,2003,94(3):273-286
    23.陈为钧,顾月华,赵贵文,稀土浸种对种子萌发及种苗生长的生物效应,稀土,1999,20(1):55-57
    24.汪东风,中国科学技术大学博士学位论文,1999,44,80
    25.沈博礼,张丽静,稀土元素镧对小麦幼苗体内内源激素含量的影响,植物生理学通讯,1994,30(5):351-352
    26.沈博礼,稀土对小麦(Triticum aestivum)体内光合和呼吸速率及磷酸化功能的影响新疆大学学报,1995,12(2):92-96
    27.李焕秀,Battey N.,TIBA,LaCl3,Verapamil和TFP对菜豆下胚轴生长素诱导的导管分化植物生理学报,1996,22(1):33-39
    28.刘汉图,戚志仁,稀土对小麦种子萌发的影响,稀有金属(稀土农用专辑),1985(1):61-66
    29.陈靠山,周燮,Nd3+对GA3诱导小麦α—淀粉酶活性的促进使用,热带亚热带植物学报,1993,1(1):58-63
    30.陈靠山,张举仁,彭正华,周燮,NdCl3对油菜离体子叶生长和iPA水平的影响,中国稀土学报,1996,14(4):379-381
    31.安建平,陈靠山,周燮,氯化钕对渗透胁迫引起的膜损伤和ABA含量的影响,中国稀土学报,1994,12(4):348-350
    32.王则民,稀土植物生长类固体配合物的研究进展,稀土,1995,16(5):50-54
    33.王则民,傅楚瑾,稀土吲哚-3-乙酸和吲哚-3-丁酸配合物的合成,表征及成键特性研究,高等学校化学学报,1990,11(4):345-349
    34.王辉,许言和,植物激素稀土配合物的合成及对小麦胚芽鞘生长影响的研究,稀土,1996,17(3):67-69
    35.江子伟,高小霞,铕(Ⅲ)-α-萘乙酸极谱催化前波的研究,高等学校化学学报,1991,12(8):1032-1035
    36. Cohen D.,Ginzburg B. Z.,Metal-Chelating Properties of Plant-Growth Substances,Nature,1958,181:686-687
    37. Shi P.,Huang Z.W.,Chen G.C.,Influnce of Lanthanum on the accumulationof trace elements in chloroplasts of cucumber seedling leaves,Biol Trace Elem Res,2006,109:181-188
    38.吴兆明,汤锡珂,贾志旺,王保奎,稀土元素对农业增产作用的研究,中国稀土学报,1984,2(2):75-76
    39. Taylor A.R.D.,Fine structure and cytochemical properties of tobacco leaf protoplasts and comparison with the source tissue,Protoplasma,1978,96:113-126.
    40. Nagahashi G,Thomas W W.,The Casparian Strip as a Barrier to the Movement of Lanthanum in Corn Roots,Science,1974,183:670-671
    41.焦根林,汤锡珂,氯化镧对玉米根组织膜透性的影响,中国稀土学报,1992,10(3):256-258
    42.高小彦,郭一松,研究镧在水稻幼苗组织中分布的冰冻转换法,植物生理学通讯,1998,34(4):270-273
    43. Hanzely.,Harmet. L.,Effect of lanthanum on cell wall elongation in Avena coleoptile segments: physiological and ultrastructural studies,Pflanzenphysoil,1982,107:223-230
    44.周世恭,小麦不同部位组织中镧和其它元素分布的X-射线能谱分析植物学报,1995,37(11):889-894
    45.周世恭,刘敏,镧在小麦不同部位组织细胞中X射能谱分析植物学报,1998,40(2):180-183
    46. Robards A.W.,Robb M.E.,The entry of ions and molecules into roots: an investigation using electron-opaque tracers,Planta,1974,12(1):1-12
    47.李齐,沈应柏,Ce在I—69杨根中的吸收,分布及其对其它元素吸收的影响,中国稀土学报,1995,13(4):355-360
    48. Babula P.,Adam V.,Opartrilova R.,Zehnalek,Havel L.,Kizek R.,Uncommon heavy metals metalloids and their plant toxicity: a review,Envion Chem Lett,2008,6:189-213
    49.胡勤海,叶畅,叶兆杰,稀土元素镧对金鱼藻生长生理及细胞叶绿体结构的影响环境科学学报,1997,17(1):82-86
    50. Pooviah B.W. , Leopold A.C. , Effects of Inorganic Salts on Tissue Permeability,Plant Physiol,1976,58:182-185
    51. Ellis J.K.,Morrison J. F.,A problem encountered in a study of the effects of lanthanide ions on enzyme-catalyzed reactions,Anal Biochem,1975, 68(2):429-435
    52. Morrison J.F. , Cleand W.W. , Lanthanide-adenosine 5'-triphosphate complexes: determination of their dissociation constants and mechanism of action as inhibitors of yeast hexokinase,Biochemistry,1983,22(24):5507-5513
    53. Leonard R.T.,Nagahashi G.,Thomson W.W.,Effect of Lanthanum on Ion Absorption in Corn Roots,Plant Physiol,1975,55(3):542-546
    54.王秋泉,赖莺,杨利民,刘建利,黄本立,菠菜叶绿素中稀土元素的含量和结构的质谱分析,中国化学会第七届分析化学年会暨原子光谱学术会议论文集,2000:1171-1172
    55. Shtangeeva I.,Ayrault S.,Effects of Eu and Ca on yield and mineral nutrition of wheat (Triticum aestivum) seedlings,Environ Exp Bot,2007,59:49-58
    56. Britto D. T.,Szczerba M. W.,Kronzucker H. J.,A new,non-perturbing,sampling procedure in tracer exchange measurements,J Exp Bot,2006,57(6):1309 - 1314
    57. Diatloff E.,Smith F. W.,Asher C. J.,Effects of Lanthanum and Cerium on the Growth and Mineral Nutrition of Corn and Mungbean,Ann Bot,2008,101(7):971 -982
    58.曹心德,中国科学技术大学博士学位论文,1998,93
    59.郝玉兰,郭莹慧,稀土元素对胡麻种子发芽率,根系生长及活力的影响,稀土,1993,14(2):39-42
    60.郭伯生,竺伟民,熊炳昆等编著,农业中的稀土,中国农业科技出版社,1988,58,60
    61.倪嘉缵编著,稀土生物无机化学(第二版),科学出版社,2002,2-80
    62.董倍,吴兆明,许亮,稀土元素对农业增产作用的研究:黄瓜根系对稀土吸收及对根系伤流的影响,中国稀土学报,1992,10(4):371-375
    63.竺伟民,张自立,La、Ce、Pr、Nd对小麦、棉花生长和营养代谢的效应,安徽农学院学报,1986(增刊):1-5
    64.宁加贲,肖苏林,稀土元素应用于黄花菜的效果,稀土,1989,13(5):52-55
    65.赖忠盛,文启凯,赵卫华,稀土元素对番茄产量与品质影响的初步研究,稀土,1989,13(3):59-62
    66.汤锡珂,稀土在农业中的应用,植物杂志,1992,19(4):33-35
    67.常江,章力于,镧钙对水稻磷,钾吸收速率的影响,安徽农业大学学报,1994,21(4):494-497
    68.张秀英,张淑媛,段存礼,稀土对玉米苗期形态结构影响的研究,中国稀土学会稀土农用机理、养殖学术交流会,1989
    69.张继榛,竺伟民,章力于,稀土与营养元素之间关系的研究论文集,安徽农学院,1988,28
    70.董倍,吴兆明,许亮,镧对植物伤流液中氨基酸的成分及含量的影响,植物学通报,1992,9(3):44-46
    71. Aquino L.,Pinto M.C.,Nardi L.,Morgana M.,Tommasi F.,Effect of some light rare earth elements on seed germination,seedling growth and antioxidant metabolism in Triticum durun,Chemosphere,2009,75(7):900-905
    72. Jin X.,Chu Z.,Yan F.,Zeng Q.,Effects of lanthanum(Ⅲ) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda,Limnologica-Ecology and Management of Inland Waters,2009,39(1):88-93
    73. Pooviah B.W.,Leopold A.C.,Deferral of Leaf Senescence with Calcium,Amer Soc Hort Sci,1973,52:236-239
    74. Peterson T. A.,Swansone. S.,Hull R. J.,Use of Lanthanum to Trace Apoplastic Solute Transport in Intact Plants,J Exp Bot ,1986,37:807-822
    75.常江,镧对稻麦根组织细胞膜透性和营养元素吸收积累的影响植物生理学通讯,1991,27(1):17-21
    76.焦根林,汤锡珂,吴兆明,氯化镧对玉米根切段钾离子外渗影响的动力学研究,植物学报,1993,35(4):286-290
    77.焦根林,汤锡珂,吴兆明.全国稀土在农林和养殖业中应用研究论文(摘要)集,1993,32
    78.董倍,吴兆明,汤锡珂,氯化镧对缺钙黄瓜根系生理的影响,中国稀土学报,1993,11(1):65-68
    79. Zeng F.L.,Tian H.E.,Wang Z.P.,An Y.,Gao F.Y.,Zhang L.G.,Li F.M.,Shan L.,Effect of rare earth element europium on amaranthin synthesis in Amarathus caudatus seedlings,Biol Trace Elem Res,2003,93:271-282
    80. Lettvin J.Y.,Pickard W.F.,Mcculoch W.S.,Pitts W.A.,Theory of passive ion flux through axon menbranes,Nature,1964,202:1338-1339
    81. Weiss G. B.,Cellular Pharmacology of Lanthanum,Ann Rev Pharmacol,1974,14:343-354
    82.钟淑琳,闵蔚宗,茶叶中分离出一种稀土-脂多糖,科学通报,1994,39(9):863
    83.王玉琦,许雷,孙景信,陈红民,许雷,曹国印,分子活化分析研究铁芒萁叶中稀土结合多糖,中国科学(B辑),1997,27(6):517-521
    84.王玉琦,江平,郭繁清,张智勇,孙景信,许雷,曹国印,天然植物体中与稀土元素结合的DNA,中国科学(B辑),1999,29(4):373-378
    85.刘元方,宿明明,胡建信,放射性示踪法研究结合法稀土的四膜虫膜蛋白,同位素,1989,2(4):193-199
    86.郑银铼,徐步进,沈敏渭,浙江省同位素示踪技术在农业上应用论文集,1987,57
    87.郭繁清,许雷,天然植物铁芒萁叶中稀土结合蛋白的初步研究,核化学与放射化学,1996,18(3):133-139
    88.陈为钧,中国科学技术大学博士学位论文,1999,54,66,74,85
    89. He Y. W.,Loh C. S.,Cerium and lanthanum promote floral initiation and re-productive growth of Arabidopsis thaliana,Plant Sci,2000,159:117-124
    90.魏幼璋,周晓波,稀土元素钕提高油菜产量机理初析,植物营养与肥料学报,1999,5(2):186-188
    91.宋凌云,胡文月,赵继贞,邵宏翔,张昀,稀土元素对满江红鱼腥藻的生理影响,北京大学学报(自然科学版),2000,36(5):783-788
    92.李靖梅,梁婵娟,周青,稀土铈对大豆幼苗光合作用影响,中国油料作物学报,2007,29(1):90-92
    93.谢寅峰,林侯,蔡贤雷,周坚,丁雨龙,镧对鹅毛竹开花后光合特性的影响,北京林业大学学报,2009,30(5):7-12
    94.解惠光,郑铁军,于中和,稀土元素在甜菜上的作用效果,中国稀土学报,1988,6(2):72-75
    95. Zhu Z. X.,Zhao J.,Su X. Z.,Effect of CeCl3 on chlorophyll formation and chloroplast of structure of cucumber leaves to Fe and temperature,Chin J Botany,1991,3(2):122-129
    96.宁加贲,稀土对作物增效因子的研究,稀土,1994,15(1):63-65
    97.黄品湖,郭秀珠,雷海清,稀土肥料在葡萄上的应用效果,浙江农业科学,2006,5:508-509
    98.杨祁峰,稀土肥料对马铃薯增产效果的对比实验,中国马铃薯,2005,19(6): 354-357
    99.贺爱国,胡改善,张秀菊,稀土光合作用促进剂对辣椒植株性状及产量的影响,湖南农业科学,2006,5:68-69
    100.陈颖,谢寅峰,陈裕菊,杨秀莲,稀土对马褂木苗生长及生理指标的影响,南京林业大学学报(自然科学版),2003,27(1):37-40
    101.赵英琪,王乃江,赵智渊,稀土铈对大扁杏光合作用和抗旱性影响的研究,西北植物学报,1999,19(5):54-58
    102.樊粗亭,李爱芳,含稀土的混合氨基酸微肥及有机钾肥对烤烟产质效应研究,河南化工,2000,12:11-13
    103.廖铁军,黄云,苏彬彦,邹宗杰,稀土对作物的生物效应研究,稀土,1994,15(5):26-29
    104.刘洪章,郝瑞,喷施稀土对黑穗醋栗生理学特性的影响,吉林农业大学学报,1996,18(1):1-6
    105.白世红,徐元春,董金伟,周琨,苗期叶喷硝酸稀土溶液对山桃叶绿素含量的影响,山东林业科技,2004,4:13-16
    106. Chu Z. X.,Effect of cerium chloride on formation of chlorophyll of plant,Chin J Rare Metals,1988,11(7):17-20
    107.谭彦帮,陈素纯,模拟低温阴雨气候条件下硝酸稀土对早稻幼苗抗冷性的影响,稀土,1998,19(3):41-44
    108. Peng Q.,Zhou Q.,Influence of lanthanum on chloroplast ultrastructure of Soybean leaves under ultraviolet-B stress,J Rare Earths,2009,27(2):304-307
    109.郭伯生,竺伟民,熊炳昆,农业中的稀土,中国农业科技出版社,1988,1-90
    110.郭春绒,潘登魁,PrCl3对油松种子萌发及幼苗生长的生理生化效应,稀土,1997,18(1):58-60
    111.彭倩,周青,叶亚新,La对UV-B辐射胁迫对大豆叶片细胞叶绿体超微结构的影响,中国农业气象,2008,29(1):33-36
    112. Fang N. H.,He Y. Z.,Zhao G. W.,Advance in study of physiological effect of rare earth elements on plants,Chin Rare Eearth,1998,19(5):66-70
    113. Dwight E.,Effect of rare earth ions on photosynthesis of (Euglena gracillis) Mgcologing,1972,64:551-557
    114.沈志强,康琳,金承志,轻稀土离子可以被纤细裸藻277摄入细胞内部,科学通报,1999,44(15):1590-1596
    115.李赛君,张完白,高松,变湿磁园二色谱研究叶绿体与镧的复合物,北京大学学报(自然科学版),1996,32(2):182-187
    116.李赛君,高松,翁诗甫,叶绿素镧的谱学研究,自然科学进展,1997,7(5): 577-583
    117.高小霞,稀土农用和电分析化学,北京大学出版社,1997,1-65
    118.洪法水,魏正贵,赵贵文,金属叶绿素a配位结构的研究,生物化学与生物物理进展,2001,28(3):381-386
    119.魏正贵,洪法水,赵贵文,镨叶绿素a分子双层夹心结构的确定,高等学校化学学报,2000,21(3):331-334
    120.魏正贵,洪法水,赵贵文,叶绿素稀土配位结构的EXAFS研究-镧叶绿素a双层夹心分子结构的确认,化学学报,2000,58(5):559-562
    121. Wei Z. G.,Hong F. S.,Zhao G. W.,Synthesis and characterization of RE-chlorophyll-a complexes(RE=La,Cu,Eu and Y),J Rare Earths,2000,18(4): 249-253
    122.洪法水,魏正贵,赵贵文,天然植物铁芒萁体内稀土元素的分布及其叶绿素镧的结构表征,植物学报,1999,41(8):851-854
    123.赵贵文,洪法水,魏正贵,天然蕨类植物铁芒萁叶绿素a中轻稀土元素赋存状态的EXAFS研究,自然科学进展,1999,9(12):1133-1135
    124.洪法水,魏正贵,赵贵文,稀土在天然植物铁芒萁体内结合形式的光谱学研究,高等学校化学学报,2001,22(11):1790-1794
    125. Hong F. S.,Wei Z. G..,Zhao G. W.,Extended X-Ray Absorption Fine Structure Study of the Bound Form of Lanthanide in Chlorophyll-A from Dicranopterisdichotoma,Biol Trace Element Res,2001,82:289-295
    126. Hong F. S.,Wei Z. G.,Zhao G. W.,Mechanism of lanthanum effect on the chlorophyll of spinach,Sci China Ser C,2002,45(2):166-176
    127. Hong F. S.,Wang L.,Meng X. X.,Wei Z. G.,Zhao G. W.,The effect of cerium on the chlorophyll formation of spinach,Biol Trace Element Res,2002,89,263-277
    128.刘大永,万兆良,稀土对小麦营养效应的研究,稀土,1993,14(1): 60-61
    129. Chu Z. X. , Mou M. H. , Influences of Ce on the formation of chlorophyll-protein complexes in chloroplasts of cucumber leaves,Acta Botonica Sinica,1994,36(10): 785-789
    130. Zhang A. Q.,Wang L. X,Wu X. Y.,Effect of rare earth elements on photosynthesis,growth and hydrogen evolution of Spirulina platensis,J Rare Earths,1988,6(4):55-58
    131. Hong F. S.,Wang X. F.,Liu C.,Su G. X.,Song W. P.,Wu K.,Tao Y.,Zhao G. W.,Effects of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach,Sci China Ser B,2003,6(1):42-49
    132. Hong F. S.,Wang L.,Tao Y.,Mechanism of LaCl3 on increasing photosystem Ⅱactivity of spinach,Chin J Chem,2005,23:617-621
    133. Zeng F. L.,An Y.,Ren L.,Deng R.W.,Zhang M. F.,Effects of lanthanum and calcium on photoelectron transport activity and the related protein complexes in chloroplast of cucumber leaves,Biol Trace Element Res,2000,77:83-92
    134. Bakou A.,Buser C.,Dandulakis G.,Brudvig G.,Calcium binding site of photosystemⅡas probed by lanthanides,Biochim Biophys Acta,1992,1099(2):131-136
    135. Cinco R.M.,Robblee J. H.,Rompel A.,Proximity of calcium to the manganese cluster of the photosynthetic oxygen-evolving complex determined fromstrontium EXAFS,J Synchrotron Rad,1999(6):419-420
    136.王立丰,李良璧,白克智,匡廷云,高浓度LaCl3抑制黄瓜光系统Ⅱ(PSⅡ)活性,中国稀土学报,2005,23(6):770-774
    137.晏文武,杨利民,王秋泉,镧在菠菜叶绿体中的分布及其对光合作用的影响,科学通报,2005,50(12):1195-1200
    138.陈为钧,魏正贵,陶冶,顾月华,赵贵文,镧对烟草叶绿体光化学反应的影响,作物学报,2001,27(4):506-511
    139.陈为钧,胡天斗,陶冶,菠菜中镧局域结构的EXAFS研究,北京同步辐射装置年报,2000,(1):99-102
    140.郭春绒,潘登奎,LaCl3和PrCl3对菠菜光合放氧和叶绿体ATP酶活性影响的研究,河北农业科学,1996,(1):21-23
    141.潘登魁,王玉国,张金桐,LaCl3和PrCl3对菠菜离体叶绿体光合磷酸化作用的影响,中国稀土学报,2003,21(1):76-79
    142.潘登奎,杨家朴,成根杰,La3+离子对冬小麦叶绿体Hill反应活性影响的研究,山西农业大学学报,1994,14(2):179-181
    143.沈博礼,戴新宾,稀土对小麦叶绿体光化学反应的效应,稀土,1994,15(2): 71-72
    144.沈博礼,稀土对小麦体内光合和呼吸速率及磷酸化功能的影响,新疆大学学报(自然科学版),1995,12(1):92-95
    145. Liu C.,Hong F. S.,Wang L.,The Effect of Nd3+ on photosynthesis of spinach,J Rare Earths,2004,22(2):306-310
    146. Yang F.,Ma Z.,Liu C.,Wu C.,Zhou J.,Effects of Ce3+ on chloroplast senescence of spinach under Light,J Rare Earths,2005,2(4):480-485
    147. Liu C.,Pan B. H.,Cao W. Q.,Lu Y.,Huang H.,Chen L.,Liu X. Q.,Wu X.,Hong F. S.,Influences of calcium deficiency and cerium on growth of spinach plants,Biol Trace Element Res,2008,121(3):266-275
    148. Huang H.,Liu X.,Qu C.,Liu C.,Chen L.,Hong F. S.,Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach,Biometals,2008,21(5):553-61
    149. Liu C.,Cao WQ,Yun L,Cerium under calcium deficiency-influence on theantioxidative defense system in spinach plants,Plant and Soil,2009,323(1-2):285-294
    150. Robert J.,Spreitzer.,Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase,Photosynth Res,1999,60:29-42
    151. Parry M. A.,Andralojc P. J.,Mitchell R. A. C.,Manipulation of Rubisco:the amount,activity,function and regulation,J Exp Bot,2003,54(386):1321-1333
    152.沈博礼,侯彩霞,戴新宾,稀土对小麦体内光合碳代谢中关键酶RuBPCase-OXase PEPCase和光呼吸的影响,新疆大学学报(自然科学版),1998,15(1):53-56
    153.陈为钧,顾月华,王圣兵,赵贵文,镧对烟草RuBPcase活性影响的研究,中国稀土学报,2000,18(3):258-261
    154.顾月华,陈为钧,陶冶,赵贵文,胡天斗,稀土离子对烟草RuBPcase的激活作用及EXFAS研究,生物物理学报,1999,15(3):451-455
    155. Portis A. R. Jr. , Salvucci M. E. , Orren W. L. , Activation of ribulosebisphosphate carboxylase.oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase,Plant Physiol,1986,82:967-971
    156. Portis A. R. Jr.,The regulation of Rubisco by Rubisco activase,J Expt Bot,1995,46:1285-1291
    157. Jimenez E. S. D.,Medrano L.,Martinez-Barajas E.,Rubisco activae,a possible new member of the molecular chaperonefamily,Bichemistry,1995,34:2826-2831
    158. Robinson S. P.,Streusand V. J.,Chatifield J. M.,Purification and assay of Rubisco activase from leaves,Plant Physiol,1998,88:1008-1014
    159. Lan Y.,Mott K. A.,Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase ( Rubisco ) activase using the spectrophotometric assay of Rubisco activity,Plant Physiol,1991,95:604-609
    160. Yokota A.,Tsujimoto N.,Characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase carrying ribulose 1,5-bisphosphate at its regulatory sites and the mechanism of interaction of this form of the enzyme with ribulose-1 ,5-bisphosphatecarboxylase/ oxygenase activase,Eur J Biochem,1992,204:901-909
    161. Sánchez de Jiménez E.,Medrano L.,Martínez-Barajas E.,Rubisco activase,a possible new member of the molecular chaperone family,Biochemistry,1995,34: 2826-2831
    162. Zhang Z. L.,Komatsu S.,Molecular cloning and characterization of cDNAs encoding two isoforms of ribulose-1,5- bisphosphate carboxylase/oxygenase activase in rice (Oryza sativa L.),J Biochem,2000,128:383-389
    163. Wang Z.Y.,Snyder G. W.,Esau B. D.,Portis A. R. Jr.,Ogren W. L.,Species - dependent variation in the interaction of substrate- bound ribulose - 1,5 - bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase,Plant Physiol,1992,100: 1858-1862
    164. Ott C. M.,Smith B. D.,Portis A. R. Jr.,Spreitzer R. J.,Activase region on chloroplast ribulose-1 , 5-bisphosphate carboxylase/oxygenase : nonconservative substitution in the large subunit alters species specificity of protein interaction,J Biol Chem,2000,275(6):41-44
    165.李卫芳,王忠,韩鹰,小麦Rubisco活化酶的纯化及其活性特征,中国农业科学,2002,35(8):929-933
    166. Portis A. R. Jr.,Rubisco activase:Rubisco’s catalytic chaperone,Photosynth Res,2003,75(1):11-27
    167. Hong F. S.,Liu C.,Zheng L.,Wang X. F.,Wu K.,Song W. P.,Lv S. P.,Tao Y.,Zhao G. W.,Formation of complexes of Rubisco-Rubisco activase form La3+,Ce3+ treatment spinach,Sci China Ser B,2005,48(1):67-74
    168. Liu C.,Hong F. S.,Wu K.,Ma H. B.,Zhang X. G.,Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem Biophys Res Co,2006,342(1):36-43
    1.倪嘉缵编著,稀土生物无机化学(第二版),科学出版社,2002,8-343
    2. Chu Z. X.,Effect of cerium chloride on formation of chlorophyll of plant,Chin J Rare Metals,1988,11(7):17-20
    3.廖铁军,黄云,苏彬彦,稀土对菠菜产量品质和生理学效应的影响,稀土,1994,15(5):26-29
    4. Hong F. S.,Wei Z. G.,Zhao G. W.,Mechanism of lanthanum effect on thechlorophyll of spinach,Sci China Ser C,2002,45(20):166-176
    5. Hong F. S.,Wang X. F.,Liu C.,Su G. X.,Song W. P.,Wu K.,Tao Y.,Zhao G. W.,Effect of Ce3+on Spectral Characteristic of D1/D2/Cytb559 Complex from Spinach,Sci China Ser B,2003,46(1):42-49
    6. Liu C.,Hong F. S.,Wang L.,Zheng L.,The Effect of Nd3+ on photosynthesis of spinach,J Rare Earths,2004,22(2):306-310
    7. Hong F. S.,Wei Z. G.,Zhao G. W.,Tao Y.,Hu T. D.,Xie Y. N.,Liu T.,Extended x-ray absorption fine structure study of the bound form of lanthanide in chlorophyll-a from dicranopteris dichotoma,Biol Trace Element Res,2001,82(1-3):239-245
    8. Hong F. S.,Wang L.,Meng X. X.,Wei Z. G.,Zhao G. W.,The effect of cerium on the chlorophyll formation of spinach,Biol Trace Element Res,2002,89:263-277
    9.洪法水,魏正贵,赵贵文,金属叶绿素a配位结构的研究,生物化学与生物物理进展,2001,28(3):381-386
    10.洪法水,魏正贵,赵贵文,天然植物铁芒萁体内稀土元素的分布及其叶绿素镧的结构表征,植物学报,1999,41(8):851-854
    11.赵贵文,洪法水,魏正贵,天然蕨类植物铁芒萁叶绿素a中轻稀土元素赋存状态的EXAFS研究,自然科学进展,1999,9(12):1133-1135
    12.洪法水,魏正贵,赵贵文,稀土在天然植物铁芒萁体内结合形式的光谱学研究,高等学校化学学报,2001,22(11):1790-1794
    13.李赛君,张完白,高松,变湿磁园二色谱研究叶绿体与镧的复合物,北京大学学报(自然科学版),1996,32(2):182-187
    14.李赛君,高松,翁诗甫,叶绿素镧的谱学研究,自然科学进展,1997,7(5):577-583
    15.高小霞,稀土农用和电分析化学,北京大学出版社,1997,1-98
    16.洪法水,方能虎,魏正贵,赵贵,铈元素对水稻老化种子发芽影响的研究,作物学报,2000,26(6):933-941
    17. Hong F.S.,Wei,Z.G.,Zhao G.W.,Effect of lanthanum on aged seed germination of rice,Biol Trace Element Res,2000,75:205-213
    18. Hong F.S.,Wei,Z.G.,Zhao G.W.,Study on mechanism of lanthanum nitrate effected on the vigor of aged rice seed,J Rare Earths,2000,18(3):220-222
    19. Hong F.S.,Study on the mechanism of cerium nitrate effects on germination of aged rice seed,Biol Trace Element Res,2002,87(1-3):191-200
    20. Liu C.,Hong F.S.,Effects of Rare Earth Elements on Vigor Enhancement of Aged Spinach Seeds,J Rare Earths,2004,22(4):547-552
    21. Arnon D. I.,Copper enzymes in isolated chloroplasts:polyphenol oxidase in Beta vulgaris,Plant Physiol,1949,24:1-15
    22.中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南,科学出版社,1999,p139-140,154-155,156,157-158
    23.王维光,李立人,菠菜二磷酸核酮糖(RuBP)羧化酶简化提纯研究,植物生理学报,1980,40(3):256-262
    24. Allen J.F.,Bennett J.,Steinback K.E.,Arntzen C.J.,Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems,Nature,1981,291:25–29
    25. Zhang S.,Scheller H.V.,Light-harvesting Complex II Binds to Several Small Subunits of Photosystem I,J Biol Chem,2004,279(5):3180-3187
    1.匡廷云主编,光合作用原初光能转换过程的原理与调控,江苏科学技术出版社,2003,1-20
    2. Hong F. S.,Wang X. F.,Liu C.,Su G. X.,Song W. P.,Wu K.,Tao Y.,Zhao G. W.,Effect of Ce3+on Spectral Characteristic of D1/D2/Cytb559 Complex fromSpinach,Sci China Ser B,2003,46(1):42-49
    3.晏文武,杨利民,王秋泉,镧在菠菜叶绿体中的分布及其对光合作用的影响,科学通报,2005,50(12):1195-1200
    4.王立丰,李良璧,白克智,匡廷云,高浓度LaCl3抑制黄瓜光系统Ⅱ(PSⅡ)活性,中国稀土学报,2005,23(6):770-774
    5. Buchanan B. B.,Gruissem W.,Johones R. L.,Biochemistry and Molecular Biology of Plants,Science Press,American Society of Plant Physiology,2002,68-628
    6. Schreiber U.,Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method : an overview. In Chlorophyll a fluorescence : a signature of photosynthesis,Edited by George C. P.,Govindjee,Springer Press,2004,280-312
    7. Kuwabara T.,Murata N.,Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystemⅡparticles of spinach chloroplasts,Plant Cell Physiol,1982,23:533-539
    8. Arnon D. I.,Copper enzymes in isolated chloroplasts,Polyphenol oxidase in Betaνμlgaris,Plant Physiol,1949,24:1-15
    9. Aravind P.,Prasad M. N. V.,Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L. , a freshwater macrophyte,Plant Sci,2004,166:1321-1327
    10. Tang X. S.,Satoh K.,The oxygen-evolving photosystemⅡcore complex,FEBS Lett,1985,179:60-64
    11. Neelima A. , Pardhasaradhi P. , Mohanty P. , Inhibition of chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield,Plant cell Physiol,1991,32(7):943-951
    12. Laemmli U. K.,Cleavage of structural proteins during the assembly of the head of the bacteriophage T4,Nature,1970,277:680–685
    13. Aravind P.,Prasad M. N. V.,Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L. , a freshwater macrophyte,Plant Sci,2004,166:1321-1327
    14. Papiz Z. M.,Prince S. M.,Howard T,Cogdell R. J.,Isaacs NW.,The structureand thermal motion of the B800—850 LH2 complex from Rhodopseudomonas acidophila at 2.0? resolution and 100 K:New structural features and functionally relevant motions,J Mol Bio1,2003,326:l 523-l538
    15. Lin A.P.,Wang G.C.,Yang F.,Pan G. H.,Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales,Rhodophyta) during dehydration and re-hydration,Planta,2009,229:803-810
    16. Matthew P. J.,Alexander V. R.,Photoprotective Energy Dissipation in Higher Plants Involves Alteration of the Excited State Energy of the Emitting Chlorophyll(s) in the Light Harvesting Antenna II (LHCII),J Biol Chem,2009,284:23592 - 23601
    17. Jakob T. D.,Sami K.,Matthew P. J.,Laszlo K.,Anett Z. K.,Egbert J. B.,Alexander V. R.,Peter H.,Stefan J.,The Photosystem II Light-Harvesting Protein Lhcb3 Affects the Macrostructure of Photosystem II and the Rate of State Transitions in Arabidopsis,Plant Cell,2009,21:3245 - 3256
    18. Liu C.,Hong F. S.,Wang L.,Zheng L.,The Effect of Nd3+ on photosynthesis of spinach,J Rare Earths,2004,22(2):306-310
    19. Liu X. Q.,Su M. Y.,Li u C.,Si W. H.,Zhang L.,Hong F. S.,Effects of cerium on energy transfer and oxygen evolution in spinach photosystemⅡ,J Rare Earths,2007:624– 630
    20. Hong F. S.,Effect of Eu3+ on phtosystemⅡspectral characteristics from spinach,Biol Trace Element Res,2004,100:186-196
    21. Hong F. S. , Wang L. , Tao Y. , Mechanism of LaCl3 on increasing photosystemⅡactivity of spinach,Chin J Chem,2005,23:617-621
    22. Murata N.,Control of excitation transfer in photosynthesisⅡ,Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts,Biochim Biophys Acta,1969,189:171-181
    23. Murata N.,Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts,Biochim Biophys Acta,1971,226:422-432
    24. Murata N.,Tashiro H.,Takamiya A.,Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts,Biochim Biophys Acta,1979,197:250-256
    25. Zhang Q. D.,Lou S. Q.,Li T. Z.,Ma G. Z.,Zhang G. Z.,Kuang T. Y.,Structure and function of chloroplast membraneⅡ; Effects of K+ and Mg2+ on absorption spectra of chloroplast membrane of two types and function of photosynthesisⅡ,Acta Botanica Sinica,1979,21(3):250-257(in Chinese)
    26. Myers J. and Graham J. R.,Enhancement in Chlorella,Plant Physiol,1963,38:105-116
    27. Rurainski H. J. and Mader G.,Regualtion of the Hill reaction by cation and its abolishment by uncouplers,Biochim Biophys Acta,1977,461:489-499
    28. Li Y. S.,Salts and chloroplast fluorescence,Biochim Biophys Acta,1975,376:180-188
    29. Malkin S.,Siderer.,The effect of salt concentration on the fluorescence parameters of isolated chloroplasts,Biochim Biophys Acta,1974,368:422-431
    30. Alexey S.,Bj?rn I.,Iga S.,Charles A.,Felix K.,Rochaix J. D.,Vener A. V.,Michel G. C. , The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis,PNAS,2010,107:4782- 4787
    31. Inger C.,Rintam?ki E.,Aro E. M.,Andersson B.,Thylakoid Protein Phosphorylation and the Thiol Redox State,Biochemistry,1999,38 (10):3197–3204
    32. Tikkanen M.,Grieco M.,Kangasj?rvi S.,Aro E. M.,Thylakoid Protein Phosphorylation in Higher Plant Chloroplasts Optimizes Electron Transfer under Fluctuating Light,Plant Physiology,2010,152:723 - 735
    33. Liu X. Q.,Huang H.,Liu C.,Zhou M.,Hong F. S.,Physic-chemical Property of Rare Earths- Effects on the Energy Regulation of PhotosystemⅡin Arabidopsis thaliana,Biol Trace Element Res,2009,130:141-151
    1.洪法水,魏正贵,陶冶,天然植物铁芒萁体内稀土元素的分布及叶绿素镧的结构表征,植物学报,1999,41(8):851-855
    2. Hong F. S.,Wei Z. G.,Zhao G. W.,Mechanism of lanthanum effect on the chlorophyll of spinach,Sci china Ser C,2002,45(2):166-175
    3. Hong F. S.,Wang X. F.,Liu C.,Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach,Sci china Ser B,2003,46(1):42-50
    4. Hong F S,Wang L.,Meng X.X.,The effect of cerium(Ⅲ) on the chlorophyll formation in spinach,Biol Trace Element Res,2002,89:263-275
    5.洪法水,魏正贵,赵贵文,稀土在天然植物铁芒萁体内结合形式的光谱学研究,高等学校化学学报,2001,22(11):1790-1794
    6. Hong F.S.,Wei Z. G.,Zhao G. W.,Extended X-Ray Absorption Fine Structure Study of the Bound Form of Lanthanide in Chlorophyll-A from Dicranopteris Dichotoma,Biol Trace Element Res,2001,82:289-295
    7. Zeng F L,An Y,Ren L,Effect of lanthanum and calcium on photoelctron transport activity and the related protein complexes in chloroplast of cucumber leaves,Biol Trace Element Res,2000,77:83-91
    8. Chen W. J.,Gu Y. H.,Zhao G. W.,Effects of rare earth ions on activity of RuBPase in tobacco,Plant Sci,2000,152:145-151
    9.陈为钧,顾月华,王圣兵,赵贵文,镧对烟草RuBPcase活性影响研,中国稀土学报,2000,18(3):258-261
    10. Robert J. Spreitzer.,Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase,Photosyn Res,1999,60:29-42
    11. Parry M. A.,Andralojc P. J.,Mitchell R. A. C.,Madgwick P. J.,Keys A.J.,Manipulation of Rubisco:the amount,activity,function and regulation,J Expt Bot,2003,54(386):1321-1333
    12. Portis A.R. Jr.,Salvucci M. E.,Orren W. L.,Activation of ribulosebisphosphate carboxylase.oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase,Plant Physiol,1986,82:967-971
    13. Portis A.R.Jr.,The regulation of Rubisco by Rubisco activase,J Exp Bot,1995,46:1285-1291
    14. Jimenez E. S. D.,Medrano L.,Martinez-Barajas E.,Rubisco activae,a possible new member of the molecular chaperonefamily,Bichemistry,1995,34:2826-2831
    15.唐如航,李立人,Rubisco活化酶的研究进展,生命科学,1998,10(4):159-166
    16.韩鹰,陈刚,王忠,Rubisco活化酶的研究进展,植物学通报,2000,17(4):306-311
    17.李卫芳,王忠,韩鹰,顾蕴洁,小麦Rubisco活化酶的纯化及其活性特性,中国农业科学,2002,35(8):929-933
    18.王维光,李立人,菠菜二磷酸核酮糖(RuBP)羧化酶简化提纯研究,植物生理学报,1980,40(3):256-262
    19. Kumar A.,Li C.,Portis A.R.,Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures,Photosyn Res,2009,100:143-153
    20.Portis A.R. Jr,Salvucci M.E.,Ogren W.L.,Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activas,Plant Physiol,1986,82:967–971
    21. Sugiyama T.,Nakayama N.,Ogawa M.,Akazawa T.,Oda T.,Structure and function of Chloroplast Proteins:Effect ofρ-Chloromercuribenzoate treatment on the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of Spinach leaf fraction protein,Arch Biochem Biophys,1968,125:98-106
    22. Robinson S.P.,Streusand V.J.,Chatfield J.M.,Portis A.R. Jr.,Purification and assay of Rubisco activase from leaves,Plant Physiol,1988,88:1008–1014
    23. Lowry O.H.,Rosebrough N.J.,Farr A.L.,Randall R.J.,Protein measurement with the folin phenol reagent,J Biol Chem,1951,193:265-275
    24. Bradford M.M.,A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding,Anal Biochem,1976,72:248–254
    25. Lan Y.,Mott K.A.,Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase ( Rubisco ) activase using the spectrophotometric assay of Rubisco activity,Plant Physiol,1951,95:604-609
    26. Laemmli U.K.,Cleavage of structural proteins during the assembly of the head of the bacteriophage T4,Nature,1970,277:680-685
    27. Habeeb A.F.S.A.,Reaction of protein sufhydryl groups with Ellman’s reagent,Methods Enzymol,1972,227:457-464
    28. Perczel A.,Park K.,Fasman,G.D.,Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm:A practical guide,Anal Biochem,1992,203:83-89
    29. Sivakumar P. , Sharmila P. , Pardha Saradhi P. , Proline Alleviates Salt-Stress-Induced Enhancement in Ribulose-1,5-Bisphosphate Oxygenase Activity,Biochem Biophys Res Co,2000,279:512-515
    30. Jordan D.B.,Ogren W.L.,Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase,Nature,1981,291:513-515
    31. Steven J.Crafts-Brander,Frank J. van de Loo,Michael E. Salvucci,The two of ribulose-1,5-bisphosphate carboxylase-oxygenase activase differ in sensitivity to elevated temperature,Plant Physiol,1997,114:439-444
    32.Harlow E. and Lane D.,eds.,Using Antibodies:A Labortary Manual,Cold Spring Laboratory Press,1999,1-200
    33.何忠效主编,生物化学实验技术,化学工业出版社,2004,89
    34. Paulsent J. M. , Lane M. D. , Spinach ribulose diphosphate carboxylase-Purification and properties of the enzyme,Biochemistry,1966,5(7):2350-2357
    35.缪有刚,李立人,水稻Rubisco的纯化及其与烟草Rubisco性质的比较,植物生理学报,1991,17(2):183-191
    36. Salvucci M. E.,Klein R. R.,Site-Directed mutagenase of reaction lysyl residue(Lys-247) of Rubisco activase,Arch Biochem Biophys,1994,314:178-185
    37.唐如航,贾军伟,李立人,烟草Rubisco活化酶的纯化及其特性,植物生理学报,1997,23(1):89-94
    38. Portis A.R. Jr.,The Rubisco activase-Rubisco system:an ATPase-dependent association that regulates photosynthesis. In:McManus MT,Laing WL and Allen AC,eds,Protein– Protein Interactions in Plant Biology,2001,Sheffield Academic Press,30-52
    39. Portis A.R. Jr.,Rubisco activase– Rubisco’s catalytic chaperone,Photosynth Res,2003,75:11–27
    40. Takabe T.,Akazawa T.,The role of sulfhydrl groups in the ribulose-1,5-bisphosphate carboxylase and oxygenase reaction,Arch Biochem Biophy,1975,169:686-694
    41. Chollet R.,Anderson L.L.,Conformational changes associated with the reversible cold inactivation of ribulose-1,5-bisphosphate carboxylase/ oxygenase,Biochem Biophys Acta,1977,482:228-240
    42. Tomimatsu Y.,Donovan J. W.,Effect of pH,Mg2+,CO2 and mercurials on the circular dichroism,thermal stability and light scattering of ribulose 1,5-bisphosphate carboxylases from alfalfa,spinach and tobacco,Plant Physiol,1981,68:808-813
    43. Hong F. S.,Liu C.,Zheng L.,Wang X. F.,Wu K.,Song W. P.,Lv S. P.,Tao Y.,Zhao G. W.,Formation of complexes of Rubisco-Rubisco activase form La3+,Ce3+ treatment spinach,Sci China Ser B,2005,48(1):67-74
    44. Duff A.P.,Andrews T.J.,Curmi P.M.G.,The transition between the open and closed states of Rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J Mol Biol,2000,298:903-916
    45. Liu C.M.,Young A.L.,Windhof A.S.,Bracher A.,Sandra S.,Rao B.V.,Rao K.V.,Berninghausen O.,Mielke T.,Hartl F.U.,Beckmann R.,Hartl M.H.,Coulpedchaperone action in folding and assembly of hexadecameric Rubisco,Nature,2010,463:197-204
    
    1. Hong F.S.,Liu C.,Zheng L.,Wang X.F.,Wu K.,Song W.P.,Lv S.P.,Tao Y. and Zhao G. W.,Formation of Complexes of Rubisco-Rubisco activase from La3+,Ce3+ treatment spinach,Sci China Ser. B,2005,48:67-74
    2. Liu C.,Hong F.S.,Wu K.,Ma H.B.,Zhang X.G.,Hong C.J.,Wu C.,Gao F.Q.,Yang F.,Zheng L.,Wang X.F.,Liu T.,Xie Y.N.,Xu J.H. Li Z.R.,Effect of Nd3+ ion on carboxylation activity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase of spinach,Biochem Biophys Res Co,2006,279:512–515
    3. Spreitzer R. J.,Salvucci M. E. RUBISCO: structure,regulatory interactions,and possibilities for a better enzyme,Annu Rev Plant Biol,2002,53:449–485
    4. Ellis R.J.,The most abundant protein in the world,Trends Biochem Sci,1979,4:241–44
    5. Hudson G.S.,Evans J.R.,von Caemmerer S,Arvidsson Y.B.C,Andrews T.J.,Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants,Plant Physiol,1992,98:294–302
    6. von Caemmerer S,Millgate A.,Farquhar G.D.,Furbank R.T.,Reduction of ribulose-1,5-bisphosphate carboxylase/ oxygenase by antisense RNA in the C4 plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination,Plant Physiol,1997,113:469–477
    7. Mann C.C.,Genetic engineers aim to soup up crop photosynthesis. Science,1999,283:314–16
    8. Spreitzer R.J.,Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase,Photosynth Res,1999,60:29–42
    9. Tabita F.R.,Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase:a different perspective,Photosynth Res,1999,60:1–28
    10. Sánchez de Jiménez E.,Medrano L.,Martínez-Barajas E.,Rubisco activase,a possible new member of the molecular chaperone family,Biochemistry,1995,34: 2826–2831
    11. Portis A. R. Jr.,Rubisco activase– Rubisco’s catalytic chaperone,Photosynth Res,2003,75:11–27
    12. Chen W. J.,Gu Y. H.,Zhao G. W.,Effects of rare earth ions on activity of RuBPase in tobacco,Plant Sci,2000,152:145-151
    13.陈为钧,顾月华,王圣兵,赵贵文,镧对烟草RuBPcase活性影响研究,中国稀土学报,2000,18(3):258-261
    14. Sugiyama T.,Nakayama N.,Ogawa M.,Akazawa T.,Oda T.,Structure and function of Chloroplast Proteins:ⅱ.Effect ofρ-Chloromercuribenzoate treatment on the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of Spinach leaf fraction protein,Arch Biochem Biophys,1968,125:98-106
    15. Bradford M. M.,A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding,Anal Biochem,1976,72:248-254
    16. Lan Y.,Mott K.A.,Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase ( Rubisco ) activase using the spectrophotometric assay of Rubisco activity,Plant Physiol,1991,95:604-609
    17. Whitmore L. and Wallace B. A.,DICHROWEB,an online server for protein secondary structure analyses from circular dichroism spectroscopic data,Nucleic Acids Res,2004,32:668-673
    18. Ankudinov,A.,Ravel B.,Rehr J. J. Conradson S. D.,Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,Phys Rev B,1998,58:67-75
    19. Lakowicz J.R.,Principles of Fluorescence Spectroscopy,Plenum Press,1983,258
    20. Lorimer G.H.,Miziorko H.M.,Carbamate formation in the 2 amine group of a lysyl residue as the basis for the activation of ribulose-1,5-bisphosphate carboxylase by CO2 and Mg2+,Biochemistry,1980,19(6):5321-5328
    21. Andersson I.,Knight S.,Schneider G.,Crystal structure of the active site of ribulose-1,5-bisphosphate Carboxylase,Nature,1989,337(19):229-234
    22. Andersson I.,Large structures at high resolution:The 1.6? crystal structure of spinach ribulose-1 , 5-bisphosphate carboxylase/ oxygenase complexed with carboxyarabinitol bisphosphate,J Mol Biol,1996,259(1):160-174
    23. Lundqvist T.,Schneide G.,Crystal structure of activated ribulose-bisphosphate Carboxylase Complexed with its substrate,ribulose-1,5,-bisphosphate,J Biol Chem,1991,266(19):12604-12611
    24. Ni J. Z.,Rare Earth Bioinorganic Chemistry,Science Press,2002, 13-37
    25. Robison P.D.,Martin M.N.,Tabita F.R.,Differential effects of metal ions on Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase and stoichiometric incorporation of HCO3- into a cobalt(III)-enzyme complex,Biochemistry,1979,18(21):4453–4458
    26. Wallace B.A. , Janes R.W. , Synchrotron radiation circular dichroism spectroscopy of proteins:secondary structure,fold recognition and structural genomics,Anal Tech,2001,5:567–571
    27. Sutherland J.C.,Desmond E.J. and Takacs P.Z.,Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm,Nucl Instrum Methods,1980,172:195-199
    28. Snyder P.A.,Rowe E.M.,The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements,Nucl Instrum Methods,1980,172:345-349
    29. Sutherland J.C.,Circular dichroism using synchrotron radiation,In Circular Dichroism and the Conformational Analysis of Biomolecules. Edited by Fasman GD. Plenum Press,1996,599-633
    30. France L.L.,Kieleczawa J.,Dunn J.J.,Hind G.,Sutherland J.C.,Structural analysis of an outer surface protein from the lyme disease spirochete,Borreliaburgdorferi,using circular dichroism and fluorescence spectroscopy,Biochim Biophys Acta,1992,1120:59-68
    31. Sutherland J.C.,Emrick A.,France. L.L.,Monteleone D.C.,Trunk J.,Circular dichroism user facility at the National Synchrotron Light Source—estimation of protein secondary structure,Biotechnique,1992,13:588-590.
    32. Clarke D.T.,Bowler M.A.,Fell B.D.,Flaherty J.V.,Grant A.F.,Jones G.R.,Martin-Fernandez M.L.,Shaw D.A.,Todd B.,Wallace B.A.,Towns-Andrews.,A high aperature beamline for vacuum ultraviolet circular dichroism on the SRS,Synchrotron Radiat News,2000,13:21-27
    33. Wallace B.A.,Conformational changes by synchrotron radiation circular dichroism spectroscopy,Nat Struct Biol,2000,7:708-709
    34. Miao Y.G.,Li L.R.,Purification of Rubisco from rice and its properties compared with those of tobacco,Acta Phytophysiologia Sinica(in Chinese),1991,17:183-191
    35. Tomimatsu Y.,Donovan J.W.,Effect of pH,Mg2+,CO2 and mercurials on the circular dichroism,thermal stability and light scattering of ribulose-1,5-bisphosphate carboxylases from alfalfa,spinach and tobacco,Plant Physiol,1981,68:808-813
    36. Leonard R.T.,Nagahashi G.,Thomson W.W.,Effect of lanthanum on ion absorption in corn roots,Plant Physiol,1975,55:542-546
    37. Das T.,Sharma A.,Talukde G.,Effect of lanthanum in cellular systems,Biol Trace Element Res,1988,18:201–228
    38. Brown P.H.,Rathjen A.H.,Graham R.D.,Tribe D. E.,Rare earth elements in biological systems. In:K.A. Gschneidner Jr,L. Eyring eds,Handbook on the Physics and Chemistry of Rare Earths,vol. 13,Elsevier,1990,423–452
    39. Moysset L.,Gomez L.A.,Simon E.,Effects of lanthanum on rhythmic and nyctinastic leaflet movements in Albizzia lophantha,J Exp Bot,1994,45:85-93
    40. He Y.W. and Loh C. S.,Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana,Plant Sci,2000,159:117–124
    41. Hong F.S.,Wang L.,Meng X.X.,The effect of cerium(Ⅲ) on the chlorophyll formation in spinach,Biol Trace Element Res,2002,89:263-275
    42. Hong F. S.,Wei Z. G.,Zhao G. W.,Mechanism of lanthanum effect on the chlorophyll of spinach,Science in china Series C,2002,45(2):166-175
    43. Hong F. S.,Wang X. F.,Liu C.,Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach,Science in china,Series B,2003,46(1):42-50
    1. Robinson S.P.,Streusand V.J.,Chatfield J.M,Portis A.R. Jr,Purification and assay of Rubisco activase from leaves,Plant Physiol,1988,88:1008–1014
    2. Sambrook E.F.,Fritsch T.,eds. Molecular Cloning,Cold Spring Laboratory Press,1989,2-234
    3. Livak K.J.,Schmittgen T.D.,Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)),Method.Methods,2001,25:402-408
    4. Ke L.D.,Chen Z.,A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards,Mol Cell Probes,2000,14(2):127-135
    5. Liu W. H.,David A.,Saint Validation of a quantitative method for real time PCR kinetics,Biochem Biophys Res Co,2002,294:347–353
    6. Crafts-Brandner S.J. , Salvucci M.E. , Rubisco activase constrains the photosynthetic of leaves at high temperature and CO2,Proc Natl Acad Sci USA,2000,97(24):l3430-13435
    7. Robert L. H. , Portis A.R.Jr. , The life of ribulose-1 , 5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries,Arch Biochem Biophys,2003,414:150–158
    8. Han Y.,Chen G.,Wang Z.,The progress of studies on Rubisco activase,Chinese Bulletin of botany (in Chinese),2000,17(4):306-311
    9. Zhang N.,Portis A.R.Jr.,Mechanism of light regulation of Rubisco:a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f,Plant Bio1,1999,96:9438-9443
    10. Zhang N.,Kallis R.P.,Portis A.R.Jr.,Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activaseisoform,Proc Natl Acad Sci USA,2002,99:3330-3334
    11. Yin Z.T.,Meng F.F.,Song H.N.,Wang X.L.,Xu X.M.,Yu D.Y.,Expression quantitative trait loci analysis of two genes encoding Rubisco activase in Soybean,Plant Physiol,2010,152:1625 - 1637
    12. Yamori W.,Caemmerer von S.,Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state:Insights from transgenic tobacco with reduced amounts of Rubisco activase,Plant Physiol,2009,151:2073 - 2082
    13.肖凤娟,常虹,刘德龙,白娟,稀土离子与钙调素相互作用的研究进展,稀土,2003,24(6):64-68
    1.武维华主编,植物生理学,科学出版社,2003,93
    2.董倍,吴兆明,汤锡珂,氯化镧对缺钙黄瓜根系生理的影响,中国稀土学报,1993,11(1):65-68
    3. Liu X.Q.,Su M. Y.,Liu C.,Zhang Y.,Si W. H.,Hong F. S.,Effects of 4f electron characteristic and alternation valence of rare earths on photosynthesis:regulating distribution of energy and activities of spinach chloroplast,J Rare Earths,2007,25: 495-501
    4. Liu X.Q.,Su M. Y.,Liu C.,Zhang L.,Si W. H.,Hong F. S.,Effects of CeCl3 on energy transfer and oxygen evolution within spinach photosystemⅡ,J Rare Earths,2007,25(5):624-631
    5. Arnon D. I.,Copper enzymes in isolated chloroplasts:polyphenol oxidase in Beta vulgaris,Plant Physiol,1949,24:1-15
    6.中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南,科学出版社,1999,139-140,154-158
    7.张志良,瞿伟菁主编,植物生理学实验指导(第三版),高等教育出版社,2003,43-44,158-159
    8. Lowry O. H.,Rosebrough N. J.,Farr A. L.,Randall R.J.,Protein measurement with the folin phenol reagent,J. Biol Chem,1951,193:265-275
    9. Allen J. F.,Holmes N. G.,Electron transport and redox titration. In: Hipkins M.F.,Baker N.R. eds,Photosynthesis,energy transduction:a practical approach,IRL Press,1986,103-141
    10. Ames B.N. , Assay of inorganic phosphate , Pi total phosphate and phosphatases. In:Colowick and Kaplan (ed),Methods in Enzymology,1966,8:115
    11. Allnutt F. C. T.,Ewy R. G.,Renganathan M.,Pan R. S.,Dilley R.A.,Nigericin and hexylamine effects on localized proton gradients in thylakoid,Biochem Biophys Acta,1991,1059:28-36
    12. Lan Y.,Mott K. A.,Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase ( Rubisco ) activase using the spectrophotometric assay of Rubisco activity,Plant Physiol,1991,95:604-609
    13. Aravind P.,Prasad M. N. V.,Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L. , a freshwater macrophyte,Plant Sci,2004,166:1321-1327
    14. Tang X. S.,Satoh K.,The oxygen-evolving photosystemⅡcore complex,FEBS Lett,1985,179:60-64
    15. Neelima A.,Pardhasaradhi P.,Mohanty P.,Inhibition of chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield,Plant cell Physiol,1991,32(7):943-951
    16. Hong F. S.,Dong Z. J.,Ma C. C., Effects of Ca2+,PEG on enzymes activities of wheat seedlings under drought stress,Acta of Agronomica Sinica,1996,22:101-106
    17. Lu S.Y,Li Y. C,Guo Z. F.,Li B. S.,Li M. Q.,Enhancement of drought resistance of rice seedling by calcium,Chin J Rice Sci,1999,13(3):161-164.
    18. Chen L. H.,Effects of calcium treatment on physiological properties of cotton seedlings under drought stress,Chinese Bulletin of Botany,1998,15(6):70-72
    19. Buchanan B. B.,Gruissem W.,Johones R. L.,Biochemistry and Molecular Biology of Plants,Science Press,American Society of Plant Physiology,2002:568-628
    20. Spreitzer R.J.,Questions about thecomplexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase,Photosynth Res,1999,60:29–42
    21. Hong F. S.,Wang X. F.,Liu C.,Su G. X.,Wu K.,Tao Y.,Wei Z. G.,Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach,Science in China Series B,2003,46(1):42-50
    22. Hong F. S.,Wang L.,Tao Y.,Mechanism of LaCl3 on increasing photosystemⅡactivity of spinach,Chin J of Chem,2005,23:617-621
    23.陈为钧,顾月华,赵贵文,镧对叶绿体光化学反应的影响,作物学报,2001,27(4):506-511
    24.潘登奎,王玉国,张金桐,LaCl3和PrCl3对菠菜叶绿体光合磷酸化作用的影响,中国稀土学报,2003,21(1):77-81
    25. Hong F.S.,Liu C.,Zheng L.,Wang X.F.,Wu K.,Song W.P.,Lv S.P.,Tao Y.,Zhao G. W.,Formation of Complexes of Rubisco-Rubisco activase from La3+,Ce3+ treatment spinach,Sci in China Ser. B,2005,48:67-74
    26. Liu C.,Hong F.S.,Wu K.,Ma H.B.,Zhang X.G.,Hong C.J.,Wu C.,Gao F.Q.,Yang F.,Zheng L.,Wang X.F.,Liu T.,Xie Y.N.,Xu J.H.,Li Z.R.,Effect of Nd3+ ion on carboxylation activity of Ribulose-1 , 5-Bisphosphate Carboxylase/Oxygenase of spinach,Biochem Biophys Res Co,2006,279:512–515
    1.匡廷云,光合作用原初光能转化过程的原理与调控,江苏科学技术出版社,2003,3-22
    2. Krau? N.,Mechanisms for photosystems I and II,Current Opinion in Chemical Biology,2003,7:540–550
    3. Kirk A., Meulen V., Hobson A.,Yocuma C. F.,Reconstitution of the photosystem II Ca2+ binding site,Biochim Biophys Acta,2004,1655:179–183
    4. Yocuma C. F.,The calcium and chloride requirements of the O2 evolving complex,Coord Chem Rev,2008,252:296–305
    5. Szczepaniak M.,Sugiura M.,Holzwarth R. A.,The role of TyrD in the electron transfer kinetics in Photosystem II,Biochim Biophys Acta,2008,1777:1510–1517
    6.倪嘉缵,稀土生物无机化学(第二版),科学出版社,2002,2-4
    7.郭伯生,竺伟民,熊炳昆,纪云晶,刘铮,吴兆明编著,农业中的稀土,中国农业科技出版社,1988,4-5
    8. Hong F. S.,Wang X. F.,Liu C.,Su G.X.,Song W.P.,Wu K.,Tao Y.,Zhao G.W., Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach,Science in China,Ser. B,2003,46(1):42-50
    9. Liu C.,Hong F. S.,Wu K.,Ma H.B.,Zhang X.G.,Hong C.J.,Wu C.,Gao F. Q.,Yang F.,Zheng L.,Wang X.F.,Liu T.,Xie Y.N.,Xu J.H.,Li Z.R., Effect of Nd3+ ion on carboxylation activity of ribulose-1 , 5-bisphosphate carboxylase/oxygenase of spinach,Biochem Biophys Res Co,2006,342(1):36-43
    10. Liu X.Q.,Su M.Y.,Liu C.,Hong F. S. Effects of CeCl3 on energy transfer and oxygen evolution within spinach photosystemⅡ,J Rare Earths,2007,25(5):624-631
    11. Liu C.,Pan B. F.,Cao W.Q.,Lu Y.,Huang H.,Chen L.,Liu X.Q.,Wu X.,Hong F. S. Influences of calcium deficiency and cerium on growth of spinach plants. Biol Trace Element Res,2008,121:266-275
    12. Kuwabara T.,Murata N.,Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystemⅡparticles of spinach chloroplasts,Plant Cell Physiol,1982,23:533-539
    13. Ono T.,Inoue Y.,Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystemⅡby simple low pH treatment,FEBS Letter,1988,227:147
    14. Arnon,D. I.,Copper enzymes in isolated chloroplasts:polyphenol oxidase in Beta vulgaris,Plant Physiol,1949,24: 1-15
    15.中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南,科学出版社,1999,139-140,154-155,156,157-158
    16. Laemmli U.K.,Cleavage of structural proteins during the assembly of the head of the bacteriophage T4,Nature,1970,277:680-685
    17. Yuta T.i,Takumi N.,Drastic changes in the ligand structure of the oxygen-evolving Mn cluster upon Ca2+ depletion as revealed by FTIR difference spectroscopy,Biochim Biophys Acta,2007,1767:535–540
    1. Buchanan B. B.,Gruissem W.,Johones R. L. Biochemistry and Molecular Biology of Plants,Science Press,American Society of Plant Physiology,2002,568-628
    2.倪嘉缵编著,稀土生物无机化学(第二版),科学出版社,2002,2-4
    3.郭伯生,竺伟民,熊炳昆,纪云晶,刘铮,吴兆明编著,农业中的稀土,中国农业科技出版社,1988,4-5
    4.洪法水,方能虎,赵贵文,硝酸铈促进水稻种子萌发的生理效应,作物学报,2000,26(1):7-12
    5. Hong F.S.,Wei,Z.G.,Zhao G.W.,Effect of lanthanum on aged seed germination of rice,Biol Trace Element Res,2000,75:205-213
    6. Hong F.S.,Wei,Z.G.,Zhao G.W.,Study on mechanism of lanthanum nitrate effected on the vigor of aged rice seed,J. Rare Earths,2000,18(3):220-225
    7. Hong F.S.,Study on the mechanism of cerium nitrate effects on germination of aged rice seed,Biol Trace Element Res,2002,87(1-3):191-200
    8. Hong F.S.,Wang L.g,Liu C.,Study of lanthanum on seeds germination and growth of rice,Biol Trace Element Res,2003,94(3):273-286
    9. Liu C.,Hong F.S.,Zheng L.,Effects of rare earth elements on vigor enhancement of aged spinach seeds,J Rare Earths,2004,22(4):547-552
    10.董倍,吴兆明,汤锡珂,氯化镧对缺钙黄瓜根系生理的影响,中国稀土学报,1993,11(1):65-68
    11. Arnon D. I.,Copper enzymes in isolated chloroplasts:polyphenol oxidase inBeta vulgaris,Plant Physiol,1949,24:1-15
    12. Ginnopolitis C. N.,Rice S. K.,Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling,Plant Physiol,1977,59:315–318
    13. Prasad T. K.,Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings,Plant Physiol,1997,114:1369–1376
    14. Reuveni R.,Shimoni M.,Karchi Z.,Kuc J.,Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to seudoperno spora cubensis,Phytopathology,1992,82:749–753
    15. Hissin P.J.,Hilf R.,A fluorometric method for determination of oxidized and reduced glutathione in tissues,Anal Biochem,1976,74:214–226
    16. Wango A. G.,Luo,G. H.Relationship between superoxide free radicals of plant and hydroxyl-ammonia quantitative reaction(in Chinese),Plant Physiol Co,1990,26(6):55–59
    17. Able A. J.,Guest D. I.,Sutherland M. W.,Use of a new tetrazolium-based assay to study the prodution of superoxide radicals by tobacco cell cultures challenged with avirulent zoopspores of Phytophthora parasitca var nicotianae,Plant Physiol,1998,117:491–499
    18. Heath R.L.,Packer L.,Photoperoxidation in isolated chloroplasts:I. Kinetics and stoichiometry of fatty acid peroxidation,Arch Biochem Biophys,1968,125:189–198
    19.中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学实验指南,科学出版社,1999,308
    20. Chen L. H.,Effects of calcium treatment on physiological prosperities of cotton seedlings under drought stress,Chin Bull Bot,1998,15(6):70-72
    21. John G.,Scandalios J. G.,Oxygen stress and superoxide dismutase,Plant Physiol,1993.101:7–12
    22. Lin Z. F.,Li S. S.,Lin G. Z.,Guo J. Y.,Relation between H2O2 accumulation and membrane lipid peroxidation in aging leaves and chloroplasts(in Chinese),Acta PhytoPhysiol Sin,1988,14(1):16–22
    23. Schmitz-Eiberger M.,Haefs R.,Noga G.,Calcium deficiency - Influence on the antioxidative defense system in tomato plants,J Plant Physiol,2002,159(7):733-742
    24. Chris B.,Robert F.,The role of calcium and activated oxygens as signals for controlling cross-tolerance,Trends in Plant,2000,5(6):241-246
    25. Gary E. G.,Zhang H.,Xu H.,Larry C.H. Park,Jeitner T. M.,Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme,Biochim Biophys Acta,2001,1586:177-189
    26.Wang J. S.,Guo C. R.,Cheng Y. X.,Mechanism of cerium ion clearing superoxide radical,J. Chin. Rare Earth Soc.,1997,15(2):151-154
    27. Wang C. X.,Liu Y. L.,Li F. M.,Wang Z. J.,Liu X. G.,Peng A.,Restrain effect of rare earth nitrate on superoxide ion generation(in Chinese),J Chin Rare Earth Soc,2000,18(3):86-288
    28. Shtangeeva. I.,Ayrault S.,Effects of Eu and Ca on yield and mineral nutrition of wheat (Triticum aestivum) seedlings,Environ Exp Bot,2007,59:49-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700