用户名: 密码: 验证码:
基于形态分量分析和线调频小波路径追踪的机械故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,机械设备日益朝着大型化、高速化、连续化、自动化方向发展。为了保证机械设备的安全运行,设备状态监测与故障诊断技术越来越多的受到人们的重视。信号处理方法作为机械设备状态监测与故障诊断技术的核心,一直是国内外学者研究的重点。当机械设备发生故障时,其振动信号中包含了相应的故障信息,如何从振动信号中提取故障特征信息是机械设备状态监测和故障诊断研究的热点。
     机械设备的振动信号通常是多个振源振动成分的混合体,对振动信号中各成分的有效分离,不仅可揭示各振源的振动形态,而且还可为机械设备故障的快速准确定位提供重要依据。形态分量分析(Morphological Component Analysis,MCA)方法通过构建不同形态的稀疏表示字典,能有效地实现信号中不同形态的信号成分的分离。另一方面,机械设备往往处于变转速下运行,直接对其振动信号进行分析,容易造成“频率模糊”现象。工程实际中通常采用阶次跟踪方法实现信号的平稳化。而在阶次跟踪方法中,如何获取转速信息则是关键。线调频小波路径追踪(Chirplet Path Pursuit,CPP)算法采用分段线性拟合的思想,能有效地估计出信号中的转速信息。论文在国家自然科学基金项目(项目编号:50875078,51275161)的资助下,研究用MCA方法和CPP算法从机械故障振动信号分离故障成分和提取故障特征。
     论文主要研究工作和创新性成果有
     (1)针对传统的包络解调方法不适合提取齿轮箱故障振动信号中多分量信号的调制信息的问题,提出了基于MCA的包络解调方法。该方法先用MCA方法将齿轮箱故障振动信号分解成谐振分量、冲击分量及噪声分量,再通过对谐振分量的解调分析诊断齿轮局部故障,同时,可通过对冲击分量的解调分析诊断轴承局部故障。利用该方法对齿轮箱滚动轴承局部故障振动信号进行分析,结果表明,该方法可有效提取信号中的调制信息,凸显故障特征;对包含齿轮和轴承局部故障的齿轮箱复合故障振动信号的分析表明,该方法可有效分离齿轮与轴承的局部故障特征。
     (2)针对变转速下的齿轮故障调制信息具有时变特性,不能直接利用循环平稳解调分析从齿轮故障振动信号中提取调制信息的问题,提出了基于CPP算法的阶比循环平稳解调方法。该方法先用CPP算法从齿轮箱振动信号中估计转速信号,再根据估计出的转速信号对原始振动信号进行等角度重采样,最后对重采样信号进行循环平稳解调分析,提取齿轮箱振动信号中的调制信息。CPP算法在转速估计方面具有精度高和抗噪能力强的优点,而循环平稳解调则可以有效提取淹没在噪声中的周期性故障特征,因此该方法结合了二者的优点,适合于变转速齿轮故障振动信号中调制信息的提取。算法仿真和试验分析验证了该方法提取变转速下齿轮局部故障调制信息的有效性。
     (3)针对变转速下齿轮箱复合故障调制信息提取的问题,提出了基于CPP的能量算子解调方法。该方法先采用CPP方法从齿轮箱振动信号中估计转速信号,以实现齿轮箱振动信号的等角度重采样;再利用能量算子解调对重采样信号进行解调分析,并根据解调谱中的调制信息来诊断变转速齿轮箱复合故障。通过算法仿真和应用实例对包含齿轮局部故障和轴承局部故障的变转速齿轮箱复合故障进行了分析,结果表明,该方法在无转速计的情况下能有效提取变转速齿轮箱中复合故障的故障特征。
     (4)针对变转速齿轮箱中复合故障的故障特征分离的问题,提出了基于MCA与CPP的变速齿轮箱复合故障诊断方法。该方法利用MCA方法对齿轮箱复合故障振动信号进行分析,实现信号中各故障成分的分离;同时,采用CPP算法从齿轮箱振动信号中估计转速;再根据该转速信号对分离出的各故障成分进行包络阶次分析;最后,根据各故障成分的包络阶次谱进行故障诊断。对包含齿轮和轴承局部故障的变速齿轮箱复合故障的特征提取进行了算法仿真和应用实例分析,结果表明,该方法可在无转速计的情况下有效分离变速齿轮箱中复合故障的故障特征。
     (5)针对齿轮早期故障时调制信息小,且正常的齿轮因几何形状和装配误差也会产生调制现象,从而出现误诊的问题,提出了基于瞬时频率和瞬时幅值的变转速齿轮故障诊断方法,该方法根据瞬时幅值和瞬时频率诊断变转速下的齿轮故障。利用该方法对变转速下的齿轮振动信号进行了分析,结果表明,该方法可有效地识别变转速下齿轮的健康状态。
     MCA方法根据信号中各组成成分的形态差异,构建不同形态的稀疏表示字典,可有效分离信号中各组成成分。而CPP方法能从原始振动信号估计出转速信号,具有精度高和抗噪能力强的特点。本文结合MCA方法和CPP方法,将其应用于机械故障诊断中。算法仿真和应用实例表明,将MCA方法、CPP方法与循环平稳解调、能量算子解调等解调方法相结合应用于机械故障振动信号的分析,能有效地提取振动信号中的故障特征,具有良好的工程应用前景。
With the progress of science and technology, modern mechanical equipments aredeveloping toward large-scale, high-speed, continuum and automatization. Hence, toensure the normal operation of mechanical equipments, the condition monitoring andfault diagnosis technology receives more and more recognition. As the core ofcondition monitoring and fault diagnosis technology, signal processing method hasalways been the research focus for domestic and overseas scholars. When a localfailure occurs in a mechanical equipment, the fault information will be contained inits vibration signal. Therefore, how to extract the fault feature information from thevibration signal has become a hotspot in the area of machinery condition monitoringand fault diagnosis.
     In general, the measured vibration signal is usually a mixture with manyvibration components generated by different vibration sources. It is significant toseparate each component from vibration signal effectively, which can not only rev ealeach source’s vibration mode, but also provide the basis for fast and accurate faultlocating. As a newly proposed signal processing method, the morphologicalcomponent analysis (MCA) method can effectively separate each signal componentwith distinct morphology from a vibration signal by constructing different sparsedictionaries with different forms. On the other hand, the mechanical equipment oftenoperates under changing rotating speed. In such a case, the frequency blurring oftenhappens when the vibration signal is directly analyzed by FFT-based spectrumanalysis. For this reason, the order tracking method is often applied to transformnon-stationary signal into stationary signal in engineering applications, and the key oforder tracking method is how to acquire an exact rotating speed. The chirplet pathpursuit (CPP) algorithm is another newly presented signal processing method. Byadopting the thought of piecewise linear approximation, the CPP algorithm canestimate a precise rotating speed signal from vibration signals. Supported by NationalNatural Science Foundation (No.50875078,51275161), this dissertation takes deepresearches on separating fault component and extracting fault characteristics frommechanical vibration signals by joint application of MCA method and CPP algorithm.
     The main researches and innovative achievements of this dissertation are asfollows:
     (1) Due to the limitation of traditional envelop demodulating method, which isnot suitable to extract modulation information from multi-component signals, a newenvelop demodulating method based on MCA is proposed. The vibration signal of agearbox can be decomposed into harmonic component, impulse component and noisecomponent by using MCA, and then the gear local failure can be dia gnosed in termsof the demodulation analysis of harmonic component, simultaneously, according tothe demodulation result of impulse component, the bearing local failure can also bediagnosed. The results, obtained by the analysis of vibration signals of a gearbox withfaulted bearings, show that the proposed method can effectively extract the faultdemodulation information and highlight the fault characteristic as well. The outcomes,acquired by the analysis of vibration signals of a gearbox with compound faultsconsisted of gear local failure and bearing local failure, indicate that the proposedmethod can separate the fault characteristics of gear and bearing effectively.
     (2) The fault modulation information of a local failure gear has the character oftime-varying, thus, it cannot be directly extracted from the vibration signal by usingcyclostationary demodulating. Aimed at this problem, an order cyclostationarydemodulating approach based on CPP is proposed. Firstly, the rotating speed isestimated from the gearbox vibration signal by using CPP. And then, according to theestimated rotating speed, the angular domain resampling signal is got by even anglesampling the original signal. Finally, the modulation information of gearbox vibrationsignal can be extracted by using cyclostationary demodulating analysis to the angulardomain resampling signal. The CPP algorithm has the advantages of high accuracyand good anti-noise ability, moreover, the cyclostationary demodulating can extractthe cycle fault feature from noisy signal, hence, the proposed approach inherit themerit of both, and is suitable for extracting fault feature from vibration signal of faultgear with variable rotating speed. Simulation and application examples indicate thatthe proposed approach is an effectively way to extract the gear fault characteristicfrom vibration signal of a changing rotating speed gearbox.
     (3) Aiming at the problem of extracting modulation information from vibrationsignal of a gearbox with compound faults under changing rotate speed, an energyoperator demodulating approach based on CPP is proposed. Firstly, the rotating speedis estimated using CPP algorithm so as to resample the gearbox vibration signal ineven angle. Then, the energy operator demodulating is employed to analyze theangular domain resampling signal. Finally, the compound faults diagnosis of achanging-speed gearbox is implemented in terms of the modulation information in the demodulating spectrum. The vibration signals of a changing-speed gearbox withcompound faults consisted of gear local failure and bearing local failure are analyzedby both simulation and example applications, and the analysis results demonstrate thatthe proposed method can effectively extract fault characteristic from achanging-speed gearbox with compound faults under the condition of lack oftachometer.
     (4) Aiming at the problem of separating fault characteristics from a changingrotating speed gearbox with compound faults, a compound faults diagnosis methodbased on MCA and CPP is proposed. Firstly, each component with fault information isseparated from the gearbox vibration signal by using MCA; simultaneously, therotating speed is estimated from the gearbox vibration signal by using CPP. Secondly,according to the estimated rotating speed, each component is analyzed by envelopeorder spectrum. Lastly, the compound faults diagnosis are carried out according to theenvelop order spectrum of each component. The results, obtained by the analysis ofsimulation and application examples to the changing-speed gearbox with compoundfaults consisted of gear local failure and bearing local failure, prove that the proposedmethod can effectively separate fault characteristic from a changing rotating speedgearbox with compound faults.
     (5) In the early stage of gear failure, the fault modulation information isrelatively weak, moreover, due to the geometric shape and assembly errors, thevibration signal of a normal gear can also generate amplitude modulation andfrequency modulation (AM-FM) phenomenon, consequently, the misdiagnosis mayhappens. In view of this problem, a fault diagnosis method for changing-speed gearbased on instantaneous frequency and instantaneous amplitude is proposed, and it isapplied to diagnose the local failure gear with variable rotating speed in terms ofinstantaneous frequency and instantaneous amplitude. The results, acquired by theanalysis of the gear vibration signal under variable rotating speed, exhibit that thehealth condition of a changing rotating speed gear can be effectively identified by theproposed approach.
     According to the morphological difference of each component in the vibrationsignal, the MCA approach can effectively separate each component from the vibrationsignal by building different sparse dictionaries with different forms. While the CPPmethod can estimate rotating speed signal from the original vibration signal, and hasthe characters of high accuracy and good anti-noise ability. Therefore, thisdissertation combines the MCA and CPP approach and employs them to diagnose mechanical faults. Simulation and application examples indicate that the combinationmethods, which are obtained by combinating MCA and CPP with the demodulatingmethods such as cyclostationary demodulating and energy operator demodulating, canextract the fault feature from the mechanical fault vibration signals effectively, andconsequently have a good engineering application prospect.
引文
[1]钟秉林,黄仁.机械故障诊断学.北京:机械工业出版社,2006.
    [2]吴昭同,杨世锡,汪慰军,等.旋转机械故障特征提取与模式分类新方法.北京:科学出版社,2012.
    [3]张来斌,王朝晖,张喜廷,等.机械设备故障诊断技术及方法.北京:石油工业出版社,2000.
    [4]闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验.北京:科学出版社,2004.
    [5]李岳.机械动力传动系统核基故障识别与状态预测技术研究:[博士学位论文].长沙:国防科学技术大学,2007.
    [6] Sohve J S. Trouble-shooting to stop vibration of centrifugal. Petro/chem.Engeneer,1968,(11):22-33.
    [7]高金吉.高速涡轮机械振动故障机理及诊断方法的研究:[博士学位论文].北京:清华大学,1993.
    [8] Kim Y B, Noah S T. Quasi periodic response and stability analysis for a nonlinearjeffcott rotor. Journal of Sound and Vibration,1996,190(2):239-253.
    [9] Tandon N, Choudhury A. An analytical model for the prediction of the vibrationresponse of rolling element bearing due to a localized defect. Journal of Soundand Vibration,1997,205(3):275-292.
    [10] Kiral Z, Karagülle H. Vibration analysis of rolling element bearing with variousdefects under the action of an unbalanced force. Mechanical Systems and SignalProcessing,2006,20(8):1967-1991.
    [11]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术.北京:机械工业出版社,2005.
    [12]张培林,李兵,徐超,等.齿轮箱故障诊断的油液、振动信息融合方法.北京:机械工业出版社,2011.
    [13]杨叔子,史铁林,丁洪.机械设备诊断的理论、技术与方法.振动工程学报,1992,5(3):193-201.
    [14]胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用.振动与冲击,2006,25(4):38-40,45.
    [15] Duan C D, He Z J, Jiang H K. New method for weak fault feature extraction basedon second generation wavelet transform and its application. Chinese Journal ofMechanical Engineering,2005,17(4):543-547.
    [16] Li Z N, Wu Z T, He Y Y, et al. Hidden Markov model-based fault diagnosticsmethod in speed-up and speed-down process for rotating machinery. MechanicalSystems and Signal Processing,2005,19(2):329–339.
    [17]罗洁思,于德介,彭富强.齿轮箱故障振动信号的阶比多尺度形态学解调.机械工程学报,2010,46(11):114-120.
    [18]陈长征,胡立新,周勃,等.设备振动分析与故障诊断技术.北京:科学出版社,2007.
    [19] Lin J, Qu L S. Feature extraction based on Morlet wavelet and its application formechanical fault diagnosis. Journal of Sound and Vibration,2000,234(1):135-148.
    [20] Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis usingwavelet packets. NDT&E International,2002,35(3):197-205.
    [21] Hong H, Liang M. Fault severity assessment for rolling element bearings usingthe Lempel-Ziv complexity and continuous wavelet transform. Journal of Soundand Vibration,2009,320(1-2):452-468.
    [22] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection methodand its application on rolling element bearing prognostics. Journal of Sound andVibration,2006,289(4-5):1066-1090.
    [23] Chen D, Wang W J. Classification of wavelet map patterns using multi-layerneural networks of gear fault detection. Mechanical Systems and SignalProcessing,2002,16(4):695-704.
    [24] Lou X S, Kenneth K A, Loparo A. Bearing fault diagnosis based on wavelettransform and fuzzy inference. Mechanical Systems and Signal Processing,2004,18(5):1077-1095
    [25] Wang X, Chen P, Tansel I N, et al. Transformations in machining. Part1.enhancement of wavelet transformation neural network(WT-NN) combinationwith a preprocessor. Machine Tools&Manufacture,2006,46(1):36-42.
    [26]陈涛,屈梁生,耿中行.小波分析及其在机械诊断中的应用.机械工程学报,1997,33(3):76-79.
    [27] Fan X F, Zou M J. Gearbox fault detection using Hilbert and wavelet packettransform. Mechanical Systems and Signal Processing.2006,20(4):966-982.
    [28]史东峰,鲍明,屈梁生.小波包络分析在滚动轴承诊断中的应用.中国机械工程,2000,11(12):1382-1385.
    [29] Cheng J S, Yu D J, Yang Y. Application of an impulse response wavelet to faultdiagnosis of rolling bearings. Mechanical Systems and Signal Processing,2007,21(2):920-929.
    [30] Peng Z K, Chu F L, He Y Y. Vibration signal analysis and feature extraction basedon reassigned wavelet scalogram. Journal of Sound and Vibration,2002,253(5):1087-1100.
    [31]赵纪元,何正嘉,孟庆丰,等.小波包-自回归谱分析及在振动诊断中的应用.振动工程学报,1995,8(3):198-203.
    [32] Paya B A, Esat I I, Badi M N M. Artificial neural network based fault diagnosticsof rotating machinery using wavelet transforms as a preprocessor. MechanicalSystems and Signal Processing,1997,11(5):751-765.
    [33] Purushotham V, Narayanan S, Prasad S A N. Multi-fault diagnosis of rollingbearing elements using wavelet analysis and hidden Markov model based faultrecognition. NDT&E International,2005,38(8):654-664.
    [34]董绍江,汤宝平,张炎.基于非广延小波特征尺度熵和支持向量机的轴承状态识别.振动与冲击,2012,31(15):50-54.
    [35] Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of ball bearings usingcontinuous wavelet transform. Applied Soft Computing,2011,11(2):2300-2312.
    [36] Sweldens W. The Lifting Scheme: A custom-design construction of biorthogonalwavelets. Applied and Computational Harmonic Analysis,1996,3(2):186-200.
    [37] Sweldens W. The lifting scheme: a construction of second generation wavelets.SIAM Journal of Mathematical Analysis,1997,29(2):511-546.
    [38] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps.Journal of Fourier Analysis and Application,1998,4(3):247-269.
    [39]秦翰林,周慧鑫,刘上乾.基于二代小波变换的红外图像非线性增强算法.光学学报,2009,29(2):353-356.
    [40]蓝伟,刘玉树,杜志岐.二代小波变换及其在图像融合中的应用.计算机应用,2005,25(12):2832-2833.
    [41]高伟,祖悦,王伟,等.基于二代小波的光纤陀螺实时降噪方法研究.仪器仪表学报,2012,33(4):774-780.
    [42]盖广洪,屈梁生,李崇晟.二代小波消噪在数字信号处理器中的实时实现.西安交通大学学报,2004,38(3):278-281.
    [43]段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用.振动与冲击,2007,26(2):10-13,32.
    [44] Jiang H K, He Z J, Duan C D, et al. Gearbox fault diagnosis using adaptiveredundant lifting scheme. Mechanical Systems and Signal Processing,2006,20(2):1992-2006.
    [45]高立新,殷海晨,张建宇,等.第二代小波分析在轴承故障诊断中的应用.北京工业大学学报,2009,35(5):577-581.
    [46]马建仓,刘小龙,陈静.二代小波降噪与盲分离结合应用于航空发动机振动信号分析.机械科学与技术,2010,29(1):7-11.
    [47] Li Z, He Z J, Zi Y Y, et al. Bearing condition monitoring based on shock pulsemethod and improved redundant lifting scheme. Mathematics and Computers inSimulation,2008,79(3):318-338.
    [48]胡晓依.基于非高斯、非平稳信号处理的机械故障特征提取方法研究:[博士学位论文].北京:北京交通大学,2009.
    [49] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and theHilbert spectrum for non linear non-stationary time series analysis. Proc. R. Soc.Lond. A,1998,454(1971):903-995.
    [50] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbertspectrum. Annual Review of Fluid Mechanics,1999,31:417-457.
    [51] Huang N E. Review of empirical mode decomposition. Proc. of SPIE,2001,4391:71-79.
    [52] Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismicdata: Theory and applications. Journal of Geophysical Research: Solid Earth,2000,105(B4):7845-7856
    [53] Loh C H. Application of the empirical mode decomposition-Hilbert spectrummethod to identify near-fault ground-motion characteristics and structuralresponses. Bulletin of the Seismological Society of America,2001,91(5):1339-1357.
    [54] Darryll P, Salvino L. Structural health monitoring using empirical modedecomposition and the Hilbert phase. Journal of Sound and Vibration,2006,294(1-2):97-124.
    [55] Salvino L W. Empirical mode analysis of structural response and damping.Proceedings of Society of Photo-Optical Instrumentation Engineers(SPIE),2000,4062:503-509.
    [56] Dong Y F, Li Y M, Lai M. Structural damage detection using empirical-modedecomposition and vector autoregressive moving average model. Soil Dynamicsand Earthquake Engineering,2010,30(3):133-145.
    [57] Kim D, Paek S H, Oh H S. A Hilbert-Huang transform approach for predictingcyber-attacks. Journal of the Korean Statistical Society,2008,37(3):277-283.
    [58] Shiau Y H, Wu M C. Detecting characteristics of information masked by alaser-triggered microwave system via Hilbert-Huang transform. OpticsCommunications,2010,283(9):1909-1916.
    [59] Liang H, Lin Z, McCallum R W. Artifact reduction in electrogastrogram based onempirical mode decomposition method. Medical&Biological Engineering&Computing,2000,38(1):35-41.
    [60] Echeverria J C, Crowe J A, Woolfson M S, et al. Application of empirical modedecomposition to heart rate variability analysis. Medical&BiologicalEngineering&Computing,2001,39(4):471-479.
    [61] Xie H B, Wang Z Z. Mean frequency derived via Hilbert-Huang transform withapplication to fatigue EMG signal analysis. Computer Methods and Programs inBiomedicine,2006,82(2):114-120.
    [62] Gravier B M, Napal N J, Pelstring J A, et al. An assessment of the application ofthe Hilbert spectrum to the fatigue analysis of marine risers. Proceedings of theInternational Offshore and Polar Engineering Conference,2001,2:268-275.
    [63]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社,2006.
    [64]钟佑明,秦树人. HHT的理论依据探讨——Hilbert变换的局域乘积定理.振动与冲击,2006,25(2):12-15,19.
    [65]盖强,马孝江,张海勇.等.一种消除局域波法中边界效应的新方法.大连理工大学学报,2002,42(1):115-117.
    [66] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise as sisteddata analysis method. Advances in Adaptive Data Analysis,2009,1(1):1–41.
    [67] Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum tothe fault diagnosis of roller bearings. Mechanical systems and signal processing,2005,19(2):259-270.
    [68] Yang W X, Tavner P J. Empirical mode decomposition: an adaptive approach forinterpreting shaft vibratory signals of large rotating machinery. Journal of Soundand Vibration,2009,321(3-5):1144-1170.
    [69] Wu F J, Qu L S. Diagnosis of subharmonic faults of large rotating machinerybased on EMD. Mechanical Systems and Signal Processing,2009,23(2):467-475.
    [70] Peng Z K, Tse P W, Chu F L. An improved Hilbert-Huang transform and itsapplication in vibration signal analysis. Journal of Sound and Vibration,2005,286(1-2):187-205.
    [71] Cheng J S, Yu D J, Yang Y. A fault diagnosis approach for roller bearings based onEMD method and AR model. Mechanical Systems and Signal Processing,2006,20(2):350-362.
    [72] Yang Y, Yu D J, Cheng J S. A fault diagnosis approach for roller bearing based onIMF envelope spectrum and SVM. Measurement,2007,40(9-10):943-950.
    [73] Shen Z J, Chen X F, Zhang X L, et al. A novel intelligent gear fault diagnosismodel based on EMD and multi-class TSVM. Measurement,2012,45(1):30-40.
    [74] Huang N E. Introduction to the Hilbert-Huang transform and its relatedmathematical problems. Interdisciplinary Mathematical Sciences,2005,5:1-26.
    [75] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical modedecomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. A,2003,459:2317-2345.
    [76]褚福磊,彭志科,冯志鹏,等.机械故障诊断中的现代信号处理方法.北京:科学出版社,2009.
    [77] Grochenig K. Acceleration of the frame algorithm. IEEE Transactions on SignalProcessing,1993,41(12):3331-3340.
    [78] Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basisselection. IEEE Transactions on Information Theory,1992,38(2):713-718.
    [79] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEETransactions on Signal Processing,1993,41(12):3397-3415.
    [80] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit.SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [81] Bultan A. A four-parameter atomic decomposition of chirplets. IEEE Transactionson Signal Processing,1999,47(3):731-744.
    [82] Yin Q Y, Qian S E, Feng A G. A fast refinement for adaptive Gaussian chirpletdecomposition. IEEE Transactions on Signal Processing,2002,50(6):1298-1306.
    [83] Liu B, Ling S F, Gribonval R. Bearing failure detection using matching pursuit.NDT&E International,2002,35(4):255-262.
    [84] Yang H Y, Mathew J, Ma L. Fault diagnosis of rolling element bearings usingbasis pursuit. Mechanical Systems and Signal Processing,2005,19(2):341-356.
    [85] Feng Z P, Chu F L. Applcation of atomic decomposition to gear damage detection.Journal of Sound and Vibration,2007,302(1-2):138-151.
    [86]范虹,孟庆丰,张优云,等.基于改进匹配追踪算法的特征提取方法及其应用.机械工程学报,2007,43(7):115-119.
    [87]唐海峰,陈进,董广明.基于匹配追踪的复杂度分析方法在轴承故障诊断中的应用研究.振动工程学报,2010,23(5):541-545.
    [88]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术.振动与冲击,2003,22(2):26-29.
    [89]胡静涛,郭前进.基于线调频小波变换的旋转机械故障诊断.仪器仪表学报,2006,27(6):395-398.
    [90] Jutten C, Herault J. Blind separation of sources, partⅠ: an adaptive algorithmbased on neuromicmetic architecture. Signal Processing,1991,24(1):1-10.
    [91] Honig M, Madhow U, Verd ú S. Blind adaptive multiuser detection. IEEETransaction on Information Theory,1995,41(4):944-960.
    [92] Liu C J, Wechsler H. Independent component analysis of Gabor features for facerecognition. IEEE Transaction on Neural Networks,2003,14(4):919-928.
    [93] Lathauwer L D, Moor B D, Vandewalle J. Fetal electrocardiogram extraction byblind source subspace separation. IEEE Transaction on Biomedical Engineering,2000,47(5):567-572.
    [94] Chien J T, Chen B C. A new independent component analysis for speechrecognition and separation. IEEE Transaction on Audio, Speech, and LanguageProcessing,2006,14(4):1245-1254.
    [95] Lin J, Zhang A M. Fault feature separation using wavelet-ICA filter. NDT&EInternational,2005,38(6):421-427.
    [96]毋文峰,陈小虎,苏勋家.基于经验模式分解的单通道机械信号盲分离.机械工程学报,2011,47(4):12-16.
    [97]李志农,刘卫兵,易小兵.基于局域均值分解的机械故障欠定盲源分离方法研究.机械工程学报,2011,47(7):97-102.
    [98] Gelle G, Colas M, Delaunay G. Blind source separation applied to rotatingmachines monitoring by acoustical and vibration analysis. Mechanical Systemsand Signal Processing,2000,14(3):427-442.
    [99] Rhabi M E, Fenniri H, Gelle G, et al. Blind separation of rotating machinessignals using penalized mutual information criterion and minimal distortionprinciple. Mechanical Systems and Signal Processing,2005,19(6):1282-1292.
    [100] Liu X H, Randal R B. Blind source separation of internal combustion enginepiston slaps from other vibration signals. Mechanical Systems and SignalProcessing,2005,19(6):1196-1208.
    [101] Li Z N, He Y Y, Chu F L, et al. Fault recognition method for speed-up andspeed-down process of rotating machinery based on independent componentanalysis and factorial hidden Markov model. Journal of Sound and Vibration,2006,291(1-2):60-71.
    [102] Widodo A, Yang B S, Han T. Combination of independent component analysis andsupport vector machines for intelligent faults diagnosis of induction motors.Expert Systems with Applications,2007,32(2):299-312.
    [103]李志农,何永勇,褚福磊.盲源分离在机械故障诊断中的应用综述.振动工程学报,2004,17(S):464-466.
    [104] Heyns T, Godsill S J, Villiers J P, et al. Statistical gear health ana lysis which isrobust to fluctuating loads and operating speeds. Mechanical Systems and SignalProcessing,2012,27:651-666.
    [105] Villa L F, Renones A, Peran J R, et al. Angular resampling for vibration analysisin wind turbines under non-linear speed fluctuation. Mechanical Systems andSignal Processing,2011,25(6):2157-2168.
    [106] Luo J S, Yu D J, Liang M. Application of multi-scale chirplet path pursuit andfractional Fourier transform for gear fault detection in speed-up and speed-downprocesses. Journal of Sound and Vibration,2012,331(22):4971-4986.
    [107] Qian S, Chen D. Joint time-frequency analysis. Englewood Cliffs: Prentice Hall,1996,124-130.
    [108]冯志鹏,朱萍玉,褚福磊.自适应时频分析在机械设备故障诊断中的应用综述.仪器仪表学报,2008,29(4):604-608.
    [109]邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000,28(9):78-84.
    [110]来五星,轩建平,史铁林,等. Wigner-Ville时频分布研究及其在齿轮故障诊断中的应用.振动工程学报,2003,16(2):247-250.
    [111]龚海健,黄伟国,赵凯,等.基于Wigner-Ville分布与小波尺度谱融合的时频特征提取方法.振动与冲击,2011,30(12):35-38.
    [112]雷亚国.基于改进Hilbert-Huang变换的机械故障诊断.机械工程学报,2011,47(5):71-77.
    [113]胡广书.现代信号处理教程.北京:清华大学出版社,2004.
    [114]邹红星,戴穷海,李衍达.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性.中国科学(E辑),2001,31(4):348-354.
    [115] Cheng J S, Zhang K, Yang Y. An order tracking technique for the gear faultdiagnosis using local mean decomposition method. Mechanism and MachineTheory,2012,55(9):67-76.
    [116]刘坚,彭富强,于德介.基于线调频小波路径追踪阶比跟踪算法的齿轮箱故障诊断研究.机械工程学报,2009,45(7):81-86.
    [117] Fyfe K R, Munck E D S. Analysis of computed order tracking. Mechanical Systemand Signal Processing,1997,11(2):187-205.
    [118] Bossley K M, Mckendrick R J. Hybrid computed order tracking. M echanicalSystem and Signal Processing,1999,13(4):627-641.
    [119] Saavedra P N, Rodriguez C G. Accurate assessment of computed order tracking.Shock and Vibration,2006,13(1):13-32.
    [120] Wang K S, Heyns P S. Application of computed order tracking, Vold-Kalmanfiltering and EMD in rotating machine vibration. Mechanical Systems and SignalProcessing,2011,25(1):416-430.
    [121]康海英,栾军英,郑海起,等.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析.机械工程学报,2007,43(8):119-122.
    [122]郭瑜,秦树人,汤宝平,等.基于瞬时频率估计的旋转机械阶比跟踪.机械工程学报,2003,39(3):32-36.
    [123]陈向民,于德介,罗洁思.基于线调频小波路径追踪阶比循环平稳解调的齿轮故障诊断.机械工程学报,2012,48(3):95-101.
    [124]郭瑜,秦树人.旋转机械非稳定信号的伪转速跟踪阶比分析.振动与冲击,2004,23(1):61-64,69.
    [125]赵晓平,侯荣涛.基于Viterbi算法的Gabor阶比跟踪技术.机械工程学报,2009,45(11):247-252.
    [126]刘小峰,柏林.角域AR谱技术在齿轮故障诊断中的应用.振动工程学报,2010,23(1):113-118.
    [127] Starck J L, Moudden Y, Robin J. Morphological component analysis. Proceedingsof SPIE,2005,59(14):1-15.
    [128] Starck J L, Elad M, Donoho D. Redundant multiscale transforms and theirapplication for morphological component separation. Advances in Imaging andElectron Physics,2004,132(82):287-384.
    [129] Elad M, Starck J L, Querre P. Simultaneous cartoon and texture image inpaintingusing morphological component analysis(MCA). Journal on Applied andComputational Harmonic Analysis,2005,19(3):340-358.
    [130] Bobin J, Starck J L, Fadili J. Morphological component analysis: an adaptivethresholding strategy. IEEE Transaction on Image Processing,2007,16(11):2675-2681.
    [131] Yong X Y, Ward R K, Birch G E. Generalized morphological component analysisfor EEG source separation and artifact removal. Proceedings of the4thInternational IEEE EMBS Conference on Neural Engineering Antalya, Turkey,2009,343-347.
    [132]杨杰,郑海起,关贞珍,等.基于形态成分分析的轴承复合故障诊断.轴承,2011,(8):38-42.
    [133]李辉,郑海起,唐力伟.基于改进形态分量分析的齿轮箱轴承多故障诊断研究.振动与冲击,2012,31(12):135-140.
    [134] Candès E J, Charlton P R, Helgason H. Detecting highly oscillatory signals bychirplet path pursuit. Applied and Computational Harmonic Analysis,2008,24(1):14-40.
    [135] Candès E J, Charlton P R, Helgason H. Gravitational wave detection usingmultisacle chirplets. Classical Quantum Gravity,2008,25(18):1-12.
    [136] Capdessud C, Sidahmed M, Lacoume J L. Cyclostationary processes: Applicationin gear faults early diagnosis. Mechanical System and Signal Processing,2000,14(3):371-385.
    [137] Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlationand envelope analysis in the diagnostics of bearing faults and othercyclostationary machine signals. Mechanical System and Signal Processing,2001,15(5):945-962.
    [138] Antoniadis I, Glossiotis G. Cyclostationary analysis of rolling-element bearingvibration signals. Journal of Sound and Vibration,2001,248(5):829-845.
    [139] Raad A, Antoni J, Sidanmed M. Indicators of cyclostationarity: Theory andapplication to gear fault monitoring. Mechanical System and Signal Proces sing,2008,22(3):574-587.
    [140]李辉,郑海起,杨绍普.齿轮箱起动过程故障诊断.振动、测试与诊断,2009,29(2):167-170.
    [141] Maragos P, Kaiser J F, Quatieri T. On amplitude and frequency demodulationusing energy operators. IEEE Transactions on Signal Processing,41(4):1532-1550.
    [142] Maragos P, Kaiser J F, Quatieri T. Energy separation in signal modulations withapplication to speech analysis. IEEE Transactions on Signal Processing,1993,41(10):3024-3051.
    [143] Potamianos A, Maragos P. A comparison of the energy operator and the Hilberttransform approach to signal and speech demodulation. Signal Processing,1994,37(1):95-120.
    [144] Gao H Y, Bruce A G. Waveshrink and semisoft shrinkage. StaSci Research report,1995,39:5-8.
    [145]李允公,刘杰,张金萍.基于实测冲击响应的转子碰摩故障特征提取方法.机械工程学报,2007,43(4):224-228.
    [146]郑晓溪,丁康,江利旗.希尔伯特变换解调分析在故障诊断中应用的局限性研究.汕头大学学报,1999,14(2):40-46.
    [147]张帆,丁康.广义检波解调分析的三种方法及其局限性研究.振动工程学报,2002,15(2):243-248.
    [148]周福昌,陈进,何俊,等.循环自相关函数的解调特性分析及其在故障诊断中的应用.振动工程学报,2004,17(S):280-283.
    [149]丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用.振动工程学报,2005,18(3):304-308
    [150]崔玲丽,高立新,蔡力钢,等.基于循环平稳解调的齿轮裂纹早期故障诊断研究.振动工程学报,2008,21(3):274-278.
    [151]刘红星,陈涛,屈梁生,等.能量算子解调方法及其在机械信号解调中的应用.机械工程学报,1998,34(5):85-90.
    [152]程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用.机械工程学报,2004,40(8):115-118.
    [153]张含蕾,周洁敏,李刚.基于小波分析的感应电动机复合故障诊断.中国电机工程学报,2006,26(8):159-162.
    [154]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取.机械工程学报,2010,46(1):79-85,91.
    [155]王晓冬,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究.振动工程学报,2010,23(4):438-444.
    [156]崔玲丽,高立新,张建宇,等.基于EMD的复合故障诊断方法.北京科技大学学报,2008,30(9):1055-1060.
    [157]荆建平,孟光.盲源分离在转子复合故障诊断中的应用.振动工程学报,2004,17(S):350-352.
    [158]陈晓理,王仲生,姜洪开,等.基于改进样板去噪源分离的轴承复合故障诊断.中国机械工程,2011,22(17):2080-2084.
    [159] Lei Y G, He Z J, Zi Y Y. Application of a novel hybrid intelligent method tocompound fault diagnosis of locomotive roller bearings. ASME Transactions onJournal of Vibration and Acoustics,2008,130(3):1-6.
    [160] Purushotham V, Narayanana S, Prasad A N. Multi-fault diagnosis of rollingbearing elements using wavelet analysis and hidden Markov model based faultrecognition. Journal of NDT&E International,2005,38(8):654-664.
    [161] Wu F Q, Meng G. Compound rub malfunctions feature extraction based onfull-spectrum cascade analysis and SVM. Mechanical Systems and SignalProcessing,2006,20(8):2007-2021.
    [162] Wang W Y. Early detection of gear tooth cracking using the resonancedemodulation technique.Mechanical Systems and Signal Processing,2001,15(5):887-903.
    [163]李辉,郑海起,杨绍普.齿轮箱起动过程故障诊断.振动、测试与诊断,2009,29(2):167-170.
    [164]冯志鹏,朱萍玉,刘立,等.基追踪在齿轮损伤识别中的应用[J].北京科技大学学报,2008,30(1):84-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700