用户名: 密码: 验证码:
面向复杂地面环境的作业型履带式移动机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的不断完善,移动机器人逐渐从室内结构环境走向室外非结构环境。在煤矿事故和城市废墟搜救、工程探险勘测、反恐防暴、军事侦察、星球探测等复杂环境领域得到广泛应用。国内外在该方向开展了广泛的研究,但如何提高移动机器人在复杂地面环境中的全地形通过性、机动性、抗振抗冲击性、越障性能和越障稳定性,以及系统可靠性,成为机器人成功应用的根本,也是目前该领域的研究热点和前沿问题。本文结合国家863计划项目,针对于恶劣环境的使用需求,对履带式移动机器人履带地面作用机理、移动手臂垂直动力学建模、移动手臂振动分析与抑制、自主越障动力学建模、自主越障动作规划和稳定性分析等方面展开了研究。
     论文首先针对于机器人系列化、标准化和规范化的需求,采用模块化思想研制了履带式移动机器人。介绍了机械系统和电气系统模块化设计,以及针对于特殊环境应用的特殊模块设计。建立了移动手臂运动学模型,利用此模型进行了作业臂尺寸综合和轨迹规划研究。
     履带与地面的相互作用是移动机器人驱动的动因,研究履带与地面的作用机理,建立反映机器人移动过程的动力学模型,是实现机器人快速机动的前提。基于计算地面力学建立了履带地面作用数学模型。将履带分成承重轮和纯履带部分,根据其对地面加载、卸载、再加载的特点分别建立模型,并基于结合点平衡条件建立完整的履带模型。在此基础上通过该模型分析了履带参数对不同路面通过性的影响。并基于地面-履带土槽测试系统,对不同结构参数和行驶参数的履带牵引特性进行了对比实验,得出了不同参数变化对牵引指标的影响规律。为全地形移动机器人行走系统设计、分析和验证奠定了基础。
     移动手臂为刚性较差的悬臂梁,在路面不平度随机激励下产生较大振动,从而降低机器人系统可靠性和手臂抓持稳定性。针对上述问题,首先应用拉格朗日方法建立了移动平台垂向动力学模型,并针对于手臂质量分布不均的特点,采用集中质量单元和Euler-Bernoulli梁单元建立了有限元离散化垂向动力学模型;进而将以上两种模型通过结点约束条件联立建立了整个移动手臂的垂向动力学模型。基于此模型,提出了利用高效的虚拟激励法和精细积分算法分析非平稳随机激励下的移动手臂动态响应的算法。分析了机器人悬架参数对振动吸收的能力,分析了移动手臂结构参数和姿态对抑振的作用。为机器人悬架设计和移动手臂振动控制提供了快速分析方法。
     针对于质心在机器人越障过程中起到的决定性作用,提出了利用质心坐标公式和机器人运动学建立的质心运动学模型,考虑了作业手臂姿态和前摆臂姿态对质心的影响。通过此模型进行自主越障动作规划,得到了机器人在越障过程中质心变化情况,分析了移动手臂姿态对跨越壕沟和垂直障碍的影响。并且利用质心投影法求取了越障稳定裕度。
     针对移动作业手臂动态特性会影响移动机器人越障性能和越障稳定性的现象,提出了一种基于动力学进行越障动作规划的方法。即首先通过牛顿欧拉法建立移动手臂越障动力学模型,并利用其逆动力学求解正动力学问题。在此基础上,利用ZMP(Zero Moment Point)稳定性判据,分析了移动手臂动态运动对跨越障碍的影响。同时基于质心运动学规划得到的越障姿态,求解了最优加速度。利用该方法规划了机器人跨越壕沟和垂直障碍动作,并同没有动作规划、只有运动学规划和动力学规划得到的越障能力进行了比较。
     最后在放射源处理履带式移动机器人上进行了手臂抓取实验、移动手臂振动实验和自主越障和稳定性实验,验证了论文理论研究及设计的正确性和可用性。
With the gradual improvement in the robot technology, application field of the mobile robot become from the indoor structured environment to the outdoor unstructured environment. They are employed in mine disaster and city ruin rescue, engineering exploration, anti-terrorism, batter field and aerospace exploration. In these fields, some special design and analysis method should be used to improve trafficability. So in this paper, the interaction of track-terrain, vibration dynamic model of mobile manipulator, accurate and highly efficient algorithms for mobile manipulator non-stationary random responses, motion planning and stability analysis of climbing up an obstacle are introduced.
     The mobile robot system is designed by the module partition method which makes the robot serialization and standardized. Some special designs are used for the unstructured environment, such as suspension system, anti-explosive and radiation protection and waterproof. And then the kinematics model of mobile manipulator is built. Using this model, the geometry parameters identified method and trajectory planning method of mobile manipulator are obtained.
     The effect of the terrain physical parameter on the trafficability in the soft terrain is presented. The interaction model of robot track and terrain are built based on terramechanics. At first the track system is divided into three partitions, namely front road wheel, middle track and the rear road wheel. In the different partition, the terrain state under the track is in the different process of loading, unloading and reloading. So the models in the different partitions are different. And then the three parts are connected on the common point by the force balance, and the whole model of the track system is obtained. Using this model the effect of the track parameters on the trafficability is analyzed, and the maximum drawpull which the terrain can afford is obtained. At last the experiments plat is introduced, and some experiments are design to validate the vibration dynamic model and the analysis results. These results are valuable for the design of the all terrain mobile robot.
     The random vibration due to road roughness has some effect on mobile manipulator. The reliability and the stability are reduced. First vibration dynamic model of the mobile plat is built by the Lagrange model, and the dynamic model of the manipulator is built with finite element method (FEA). And then the two models are rebuilt into whole model of the mobile manipulator by the force balance on the common point. Using the accurate and highly efficient pseudo-excitation method (PEM), precise time-integration and the vibration dynamic model, the transient power spectral density (PSD) of vehicle in nonstationary random vibration exicitation is obtained. For different parameters of the suspension and different posture of manipulator, the performance of the vibration absorbing is analyzed. These results can guide design the suspension of the mobile manipulator.
     Because the center of gravity (CG) plays an important role in the process of climbing up an obstacle, the CG kinematics model is built. Especially the effect of the manipulator postures is included. Using this model, the CG change situation is obtained in the process of climbing an obstacle, and the maximum height of the obstacle which can be climbed up is obtained, and the stability angle margin is obtained too. At last the relationship between the posture of the manipulator and the height of the obstacle which can be climbed is obtained.
     The dynamic performance of the mobile manipulator affects the obstacle-climbing performance. So the dynamic model of the mobile manipulator is built by the Newton-Euler method. Using the dynamic model and zero moment point (ZMP), dynamic effect of the mobile manipulator on the robot stepping over a ditch and climbing up an obstacle are presented. The optimal accelerations of the mobile manipulator and the robot are obtained by the dynamic model. At last the compare of obstacle performance of the robot in the case of no any motion planning, kinematics motion planning and dynamic motion planning is obtained.
     Finally, several experiments are designed for the trafficability analysis of the mobile manipulator. The grasping test of mobile manipulator, the vibration test in the rough terrain and the autonomous motion planning of climbing up an obstacle are designed. These test results validate the analysis results.
引文
1 J. Casper, R. R. Murphy. Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on System, Man, and Cybernetics. 2003, 33(3): 367-385
    2 C.R. Weisbin, et al. Miniature robots for space and military missions. Robotics & Automation Magazine. 1999,6(3):9-18
    3 A. Morris, D. Ferguson, Z. Omohundro, et al. Recent developments in subterranean robotics . Journal of Field Robotics. 2006, 23(1): 35-57
    4 H. Shibly, K. Iagnemmab, S. Dubowsky. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers. Journal of Terramechanics. 2005, 42: 1-13
    5徐贺.可重构多机动模式移动机器人及其关键技术研究.哈尔滨工业大学. 2006
    6 J. Carlson, D. R. Murphy. How UGVs physically fail in the field. IEEE Transactions on Robotics. 2005, 21(3): 423-437
    7 D.M. Helmick, et al. Multi-sensor, high speed autonomous stair climbing. Proceeding of International Conference on Intelligent Robots and System. 2002: 733-742
    8 D. Deguire, A. Mangolds. Lemmings: a family of scalable portable robots. Proceedings of SPIE. SPIE, 1999, 3693: 242-251
    9 D. Ciccimaro, W. Baker, I. Hamilton, et al. MPRS (URBOT) commercialization. Proceedings of the SPIE . SPIE, 2003, 5083: 204-218
    10 S. Munkeby, D. Jones, G. Bugg, et al. Application for the MATILDA robotic platform . Proceedings of SPIE . SPIE, 2002, 4715: 206 -213
    11 Jun-yao Gao, Guangming Xiong, Zhengfei Xu. Design and control of light mobile robotics system. 2006 IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006:1297-1301
    12 Jingguo Liu, et al. Transformation technique research of the improved link-type shape shifting modular robot. 2006 IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006: 295-300
    13 G. Bekker. Introduction to terrain-vehicle systems. Ann Arbor: University of Michigan Press. 1969
    14 J. Y. Wong. Theory of ground vehicles. Wiley, New York, Second Edition.1989
    15庄继德.车辆地面力学.机械工业出版社. 2002
    16 K. Iagnemma, S. Kang, H. shibly, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. Transactions on Robotics. 2004, 20(5): 921-927
    17 L. Ojeda, J. Borenstein, G. Witus, et al. Terrain characterization and classification with a mobile robot. Journal of Field Robotics. 2006
    18 A. Ellery. Environment-robot interaction-the basis for mobility in planetary micro-rovers. Robotics and Autonomous Systems. 2005, 51: 29-39
    19 R. Bauer, W. Leung, T. Barfoot. Experimental and simulation results of wheel-soil interaction for planetary rovers. Proceeding of the International Conference on Intelligent Robots and Systems. 2005: 1427-1433
    20 H. Shibly, K. Iagnemma, S. Dubowsky. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers. Journal of Terramechanics. 2005, 42: 1-13
    21 C. H. Liu, J. Y. Wong. Numerical Simulations of tier-soil interaction based on critical state soil mechanics. Journal of Terramechanics. 1996, 33(5): 209-221
    22 H. H. Bui, T. Kobayashi, R. Fukagawa. Simulation of soil excavations on the lunar surface. European Conference of the International Society for Terrain-Vehicle Systems Budapest, 2006
    23邹猛,李建桥,贾阳等.月壤静力学特性的离散元模拟.吉林大学学报. 2008, 38(2): 383-387
    24邹猛.月面探测车辆驱动轮牵引性能研究.吉林大学. 2008
    25 L. R. Ray, D. C. Brande, J. H. Lever. Estimation of net traction for differential-steered wheeled robots. Journal of Terramechanics. 2008, 3: 1~13
    26 Lin Li, C. Sandu. On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles. Journal of Terramechanics. 2007, 44: 221-238
    27 J. A.Okello, M. Watany, D. A. Crolla. A theoretical and experimental investigation of rubber track performance models. Journal of Agriculture Engineering.1998, 69: 15~24
    28 D. J. van Wyk, J. Spoelstra, J. H. de Klerk. Mathematical modelling of the interaction between a tracked vehicle and the terrain. Applying Mathematics Modelling.1996, 20: 838~846
    29 J.Y. Wong, Wei Huang. Wheel vs track- a fundamental evaluation from the traction perspective. Journal of Terramechanics. 2006, 43: 27-42
    30 G. Gerhart, S. Laughery, R. Goetz. Off-road vehicle location using bekker’s model. Proceedings of the SPIE. 2000, 4024: 127-136
    31 J. G. Hetherington. Tracked vehicles operations on sand-investigations at model scale. Journal of Terramechanics. 2005, 42: 65-70
    32 D.T. Tran, J. O’Brien, T. Muro. An optimal method for the design of a robotic tracked vehicle to operate over fresh concrete under steering motion. Journal of Terramechanics. 2002, 39: 1-22
    33 J. H. Lever, D. Denton, G. E. Phetteplace, et al. Mobility of a lightweight tracked robot over deep snow. Journal of Terramechanics. 2006, 43: 527-551
    34 A. T. Le. Modelling and control of tracked vehicles. Department of Mechanical and Mechatronic Engineering. The University of Sydney, 1999
    35 Z. B. Song, Y. H. Zweiri, L. D. Seneviratne. Non-linear observer for slip estimation of skid-steering vehicles. Proceeding of International Conference on Robotics and Automation. 2006: 1499-1504
    36 R. R. Murphy. S. Stover. Field studies of safety security rescue technology through training and response activities. Processing of SPIE. 2006.
    37 J. Lin, Z. Z. Huang, P. H. Huang. Two-time scale fuzzy logic controller with vibration stabilizer for robot manipulators with oscillatory bases. Proceedings of the American Control Conference. 2007: 748~753
    38 J. Y. Lew, Suk-Min Moon. A simple active damping control for compliant base manipulators. IEEE/ASME Transactions on Mechatronics. 2001, 6(3): 305~310
    39 Chong Chen, Yican Yin. Fuzzy logic control of a moving flexible manipulator. International Conference on Control Applications. 1999: 315~320
    40 Kyung-Jo Park. Flexible robot manipulator path design to reduce the endpoint residual vibration under torque constraints. Journal of Sound and Vibration. 2004, 275: 1051-1068
    41 M. H. Korayem, H. Ghariblu. Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints. Robotics Autonomous System. 2003, (44): 151~159
    42 M.H. Korayem, H. Ghariblu. Analysis of wheeled mobile flexible manipulator dynamic motions with maximum load carrying capabilities. Robotics and Autonomous System. 2004, 48: 63-76
    43 G. Hitaka, T. Murakami, K. Ohnishi. An approach to vibration control by stereo vision system in mobile manipulator. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2001:601~605
    44 B. Nilsson, J. Nygards, U. Larsson, et al. Control of flexible mobile manipulators: positioning and vibration reduction using an eye-in-hand rang camera. Control Engineering Practice. 1999, 7: 741-751
    45 V. A. Sujan, S. Dubowsky. An optimal information method for mobile manipulator dynamic parameter identification. IEEE/ASME Transactions on Mechantronics. 2003, 2(2): 215~225
    46 Yangmin Li, Yugang Liu, Xiaoping Liu, et al. Parameter identification and vibration control in modular manipulators. IEEE/ASME Transactions on Mechatronics. 2004, 9(4): 700-705
    47 M. Hatano, M. Minami, T. Ohsumi, H. Obara. Modeling of mobile manipulators on irregular terrain and evaluation of disturbance torques. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2001:1297~1302
    48莫海军,谢存禧,胡青春.爆炸物在不平路面激励下的振动分析.华南理工大学学报(自然科学版). 2007, 35(3): 56~60
    49汪性武.柔性机械臂的振动控制.南京航空航天大学硕士学位论文. 2004
    50 Jiahao Lin, Weiping Shen, F. W. Williams. Accurate high-speed computation of non-stationary random structural response. Engineering Structures. 1997, 19(7): 586-593
    51 Jiahao Lin, Yan Zhao, Yahui Zhang. Accurate and highly efficient algorithms for structural stationary/non-stationary random responses. Computer Methods in Applied Mechanics and Engineering. 2001, 191: 103-111
    52赵又群,何小明,郭孔辉.汽车由路面激发的演变随机响应预测.机械工程学报. 2004,40(1): 179~182
    53张亮亮,唐驾时,李立斌.虚拟激励算法下的汽车悬架振动分析.振动与冲击. 2006, 25(6): 167-169
    54张志超,赵岩,林家浩.车桥耦合系统非平稳随机振动分析.振动工程学报. 2007, 20(5): 439-446
    55 Xingguang Duan, Qiang Huang, N. Rahman, et al. Kinematics modeling of a small mobile robot with multi-locomotion models. Proceeding of International Conference on Intelligent Robots and System. 2006: 5582-5587
    56信建国,李小凡,王忠等.履带腿式非结构环境移动机器人特性分析.机器人. 2004, 26(1): 35-39
    57 ARAI Masayuki, Toshio Takayama. Shigeo Hirose. Development of souryu-3 connected crawler vehicle for inspection of narrow and winding space. 2004 IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE, 2004: 52-58
    58 W. Lee, Sungchul Kang, et al. Rough terrain negotiable mobile platform with passively adaptive double-tracked and its application to rescue missions. Proceeding of International Conference on Robotics and Automation. 2005:1591-1596
    59乔凤斌,杨汝清.六轮移动机器人爬楼梯能力分析.机器人. 2004, 26(4): 301-304
    60徐正飞,杨汝清,王韬.关节式移动机器人的越障运动.中国机械工程. 2003, 14(12): 1052-1055
    61刘金国,王越超,李斌等.变形机器人倾翻稳定性仿真分析.系统仿真学报. 2006, 18(2):409-515
    62 J. D. Martens, W. S. Newman. Stabilization of a mobile robot climbing stairs. Proceeding of International Conference on Robotics and Automation.1994:. 2501-2507
    63徐正飞,陆际联,杨汝清等.关节式移动机器人越障动态稳定性分析与控制.北京理工大学学报. 2005, 25(4): 311-314
    64李斌,刘金国,谈大龙.可重构模块机器人倾翻稳定性研究.机器人. 2005, 27(3): 241-246
    65冯虎田,欧琦,高晓燕.小型地面移动机器人特殊运行姿态动力学建模与分析.南京理工大学学报. 2006, 30(4): 486-491
    66 M. Mann, Z. Shiller. Dynamic stability of a rocker bogie vehicle: longitudinal motion. The IEEE International Conference on Robotics and Automation. 2005: 861-866
    67 Z. Shiller, M. Mann. Dynamic stability of off-road vehicles. The IEEE International Conference on Intelligent Robots and Systems. 2004: 1849-1853
    68 M. Mann, Z. Shiller. Dynamic stability of off-road vehicles: a geometric. approach. The IEEE International Conference on Robotics and Automation. 2006: 3705-3710
    69 M. Mann, Z. Shiller. Dynamic stability of off-road vehicles: quasi-3D analysis. IEEE International Conference on Robotics and Automation. 2008: 2301-2306
    70 M. B. Popovic, A. Goswami. H. Herr. Ground reference points in legged locomotion: definitions, biological trajectories and control implications. International Journal of Robotics Research. 2005, 24(12): 1013-1032
    71 A. Takhmar, M. Alghooneh, K. Alipour. MHS measure for postural stability monitoring and control of biped robots. The IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2008: 400-405
    72 Qiang Huang, Shigeki Sugano, Kazuo Tanie. Motion planning for a mobile manipulator considering stability and task constraints. The IEEE International Conference on Robotics & Automation. 1998: 2192-2198
    73 J. Kim, W.K. Chung, Y. Youm, et al. Real-time ZMP compensation method using null motion for mobile manipulators. The IEEE International Conference on Robotics and Automation. 2002, 2002: 1967-1972
    74李磊,叶涛,谭民等.移动机器人技术研究现状与未来.机器人. 2005. 24(5): 475-480
    75 M. Micre. Analysis of the robotic-assisted search and rescue response to the world trade center disaster. South Florida: University of South Florida, 2002
    76侯亮,徐燕申,唐任仲,张炜.面向广义模块化设计的产品族规划方法研究.中国机械工程. 2003, 14(7): 596-600
    77宗鸣镝,蔡颖,刘旭东,李湘媛.产品模块化设计中的多角度、分级模块划分方法.北京理工大学学报. 2003, 23(5): 552-556
    78 M. Micre. Analysis of the robotic-assisted search and rescue response to the world trade center disaster. South Florida: University of South Florida, 2002
    79 A. Mohri, S. Furuno, M. Yamamoto. Trajectory planning of mobile manipulator with end-Effector's specified path. IEEE/RSJ International Conference on Intelligent Robots and System.2001: 2264~2269
    80乔凤斌,谢霄鹏,杨汝清.反恐机器人SUPER-01转弯性能分析.上海交通大学学报. 2005, 39(6): 896-899
    81 J. J.Craig.机器人学导论.贠超译.机械工业出版社. 2006
    82王仲民.移动机器人路径规划与轨迹跟踪.兵器工业出版社. 2008
    83 G. Ferretti, R. Girelli. Modelling and simulation of an agricultural tracked vehicle. Journal of Terramechanics. 1999, 36: 139-158
    84 D. J. van Wyk, J. Spoelstra, J. H. de Klerk. Mathematical modelling of the interaction between a tracked vehicle and the terrain. Application Mathematic Modelling. 1996, 20: 838-846
    85 A. Bodin. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain. Journal of Terramechanics. 1999, 36: 167-181
    86 T. D. Thai, T. Muro. Numerical analysis to predict turning characteristics of rigid suspension tracked vehicle. Journal of Terramechanics. 1999, 36: 183-196
    87 J. Yamakawa, K. Watanabe. A special motion analysis model of tracked vehicle with torsion bar suspension. Journal of Terramechanics. 2004, 41: 113-126
    88张克健.车辆地面力学.国防工业出版社. 2002
    89余志生.汽车理论,机械工业出版社. 2003
    90 K. Iagnemma, S. Dubowsky. Terrain estimation for high-speed rough-terrain autonomous vehicle navigation. Proceedings of the SPIE Conference on Unmanned Ground Vehicle Technology IV. 2002:256-266
    91 Jingang Yi, Dezhen Song, Junjie Zhang, et al. Adaptive trajectory tracking control of skid-steered mobile robots. Proceeding of International Conference on Robotics and Automation. 2007: 2605-2610
    92程军伟,高连华,王红岩.基于打滑条件下的履带车辆转向分析.机械工程学报. 2006. 42(5): 192-195
    93 D. Pazderski, K. Kozlowski, M. Lawniczak. Practical stabilization of 4WD skid-steering mobile robot. Fourth International Workshop on Robot Motion and Control. 2004:175-180
    94 Peng Zhang, Zongquan Deng, Ming Hu, Haibo Gao. Mobility performance analysis of lunar rover based on terramechanics. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2008: 120-125
    95王金龙.弹性轮与地面相互作用及仿真研究.吉林大学硕士论文. 2002
    96孙鹏,高峰,李雯,孙刚.深空探测车可变直径车轮牵引通过性分析.北京航空航天大学学报. 2007, 33(12), 1404-1407
    97邓宗全,邱雪松,胡明,于卫真.八轮扭杆摇臂式可展开月球车振动分析.机器人. 2007, 29(6):534-539, 545
    98张立军.车辆非平稳行驶动力学及控制研究.东北大学机械工程与自动化学院. 2006
    99张相庭,王志培,黄本才.结构振动力学.同济大学出版社.1994
    100林家浩,张亚辉.随机振动的虚拟激励法.科学出版社. 2004
    101于骁.环境荷载激励下工程结构振动控制方法及实验研究.大连理工大学工程力学专业. 2007
    102戴新进.复合材料结构随机振动的虚拟激励法及在航空航天领域的应用.大连理工大学工程力学专业. 2007
    103田象滔.基于精细积分的动力学与控制算法及其在车辆中的应用研究.山东理工大学固体力学专业. 2006
    104彭献,刘晓晖,文桂林.基于虚拟激励法的变速行驶车辆振动分析.湖南大学学报(自然科学版). 2007, 34(11): 37-41
    105丁法乾.履带式装甲车辆悬挂系统动力学.国防工业出版社. 2002
    106林家浩,沈为平,宋华茂,孙东科.结构非平稳随机响应的混合型精细时程积分.振动工程学报. 1995, 8(2): 127-135
    107高小科.结构动力方程的精细计算方法及其应用研究.西北工业大学工程力学专业. 2006
    108赵玉立.柔性撞击系统的建模、精细算法及控制研究.西北工业大学一般力学与力学基础专业. 2003
    109段星光,黄强,李科杰.小型轮履腿复合式机器人设计及运动特性分析.机械工程学报. 2005, 41(8): 108~114
    110徐正飞,杨汝清,陆际联,杨华.移动机器人自主越障反应控制行为组合方法.上海交通大学学报. 2006, 3: 451-455
    111 Z. Shiller, M. P. Mann, D. Rubinstein. Dynamic stability of off-road vehicles considering a longitudinal terramechanics model. Proceeding of International Conference on Robotics and Automation. 2007:1170-1175
    112 K. Kozlowski, D. Pazderski. Practical stabilization of a skid-steering mobile robot-a kinematics-based approach. Proceeding of International Conference on Mechatronics. 2006:519-624
    113 S. Furuno, M. Yamamoto, A. Mohri. Trajectory planning of mobile manipulator with stability considerations. IEEE International Conference on Robotics and Automation. 2003: 3403-3408
    114 M. Hatano, H. Obara. Stability evaluation for mobile manipulators using criteria based on reaction. SICE Annual Conference. 2003: 2050-2055
    115 Yugang Liu, Guangjun Liu. Track-stair and vehicle-manipulator interaction analysis for tracked mobile manipulators climbing stairs. The IEEE Conference on Automation Science and Engineering. 2008: 158-162
    116 S. Ali, A. Moosavian, H. Alipour. Tip-over stability of suspended wheeled mobile robots. The IEEE International Conference on Mechatronics and Automation. 2007: 1356-1361
    117 G .Papadopoulos, A. Rey. A new measure of tip over stability margin for mobile manipulators. The IEEE International Conference on Robotics and Automation. 1996: 3111-3116
    118 S. Peters and K. Iagnemma. An analysis of rollover stability measurement for high-speed mobile robots. Proceedings of the 2006 IEEE International Conference on Robotics and Automation. 2006: 3711-3716
    119霍伟.机器人动力学与控制.高等教育出版社. 2005
    120 K. Alipour, S. Ali, A. Moosavian. Postural stability evaluation of spatial wheeled mobile robots with flexible suspension over rough terrains. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2008:241-246
    121 Sugano, Q. Huang, I. Kato. Stability criteria controlling mobile robotics system. Process of the IEEE/RJS International Conference on Intelligent Robotics and Systems. 1993: 832~838
    122 M. Vukobratovic, B. Borovac. Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics. 2004, 1(1): 157-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700