用户名: 密码: 验证码:
双基地雷达弹道目标成像与特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达作为弹道导弹防御系统的核心传感器,在弹道导弹防御的预警探测、跟踪、成像、特征提取与识别、制导、拦截以及毁伤评估等各个环节均发挥着不可替代的作用。攻防对抗的竞争日益激烈,突防措施的不断更新,使单基地雷达面临前所未有的挑战。双/多基地雷达因具备反隐身、抗干扰、信息融合等天然优势,而重新受到重视,特别是随着数字通信、高速运算、频率综合技术的进步,双/多基地雷达的优势逐渐得以实现。本文以双/多基地雷达在弹道导弹防御中的应用需求为背景,深入研究了双基地雷达弹道目标成像与特征提取技术,重点开展了弹道目标双基地散射特性分析与动态回波建模,双基地一维成像与特征提取,二维成像与特征提取三方面的工作:
     1.弹道目标双基地散射特性分析与动态回波建模
     采用等效电磁流法求解了高频条件下旋转对称弹头目标的双基地散射特性,证实旋转对称目标双基地散射中心与双基地角平分线上单基地雷达观测的散射中心位置是一致的,采用快速多层多极子电磁计算方法获得了几类弹头模型的宽带双基地散射幅度,验证了上述结论;进一步研究表明旋转对称目标的双基地散射中心随着目标运动、发射站和接收站位置的变化而在目标上滑动;基于滑动型双基地散射中心模型,建立了各个散射中心随目标平动、自旋以及进动的运动模型,为弹道目标散射中心运动规律提供了准确的数学描述;最后结合弹道目标运动模型和电磁计算数据,给出了弹道目标宽带双基地雷达动态回波建模与仿真方法,为弹道目标成像与特征提取提供了数据支撑。
     2.基于双基地一维距离像的特征提取
     建立了高速运动目标宽带双基地雷达回波模型,其形式与单基地雷达回波相同,但物理内涵不同,分析了速度、加速度以及双基地角对双基地一维距离像的影响,采用基于多分量多项式相位信号参数估计方法实现了运动补偿;利用补偿后的一维距离像序列构建了时间-距离分布图,提出了基于时间-距离分布图相关的进动频率和剩余速度估计方法,能获得稳定的估计结果;然后结合弹道目标的对称特性,采用扩展Hough变换方法同时获得了完整的锥形目标结构与微动特征,一定条件下解决了弹道目标微动与结构参数耦合难题。
     利用宽带T/R-R双基地雷达同时观测到目标的单/双基地一维距离像中散射中心的位置,结合目标定位方法,提出了目标长度和姿态角的估计方法,并分析了目标位置、基线长度对估计精度的影响,有效解决了单基地观测一维距离像长度敏感于目标姿态的问题;建立了多基地进动目标观测模型,提出了基于双基地观测的弹道目标进动角和真实长度的联合提取新方法,并讨论了布站对特征提取精度的影响,有效解决了单基地雷达观测信息不完全目标真实长度难以在短时间内获取的问题;提出了基于T/R-R双基地雷达同时观测自旋目标的特征提取方法,两个接收站通过对一维距离像序列的扩展Hough变换处理分别估计参数,然后进行参数关联和融合处理,获得了目标的真实尺寸,解决了单基地雷达观测的旋转半径通常小于真实值的问题。
     3.双基地ISAR成像与特征提取
     针对窄带单基地雷达自旋目标二维成像结果受旋转矢量与雷达视线夹角的调制而小于实际尺寸的问题,提出了基于窄带T/R-R双基地雷达自旋目标联合成像方法,通过联合参数估计将成像结果投影到旋转平面上,获得了反映目标真实尺寸的单/双基地二维像,有利于目标识别。
     建立了基于目标进动的宽带双基地ISAR成像模型,推导了最佳成像时间,通过T/R-R双基地雷达联合观测先估计进动参数,然后选择最佳时间窗内的一维距离像,采用FFT处理可获得清晰的双基地ISAR像;在进动参数未知时,提出先采用时频分析方法获得距离-瞬时多普勒(RID)像序列,利用两个接收站同时观测的单/双基地RID像序列,通过图像配准实现了单/双基地ISAR像的同时横向定标,解决了单基地雷达通过图像配准受进动角大小限制的问题,最后提出了利用定标前后的ISAR序列中特显点的运动规律估计进动角的方法。
Radar is the key sensor of the ballistic missile defense (BMD) system and it playsan important role in detection, tracking, imaging, feature extraction and recognition,guiding, interception and damage assessment of ballistic missiles. The rivalry betweenballistic missile attack and defense becomes more and more drastic. The means ofjamming and decoying become more and more complex, which makes the monostaticradar meet a great challenge. Bi-and multi-static radar systems have the ability to detectstealth target, anti-jamming and information fusion, so they regain more attention.What’s more, new developments in frequency synthesis, digital communications, andhigh-speed computing allow us to utilize these advantages. With the desirability ofapplying the bi-and multi-static radar systems for BMD, This paper studies the bistaticimaging and feature extraction method of ballistic targets. After analyzing the bistaticscattering characteristics of ballistic targets, the dynamic echo modeling in widebandbistatic radar, bistatic one-dimensional profiling and feature extraction, two-dimensionalimaging and feature extraction methods are investigated. The main contents of thisdissertation include:
     1. Bistatic Scattering Characteristics Analysis and Dynamic Echo Modeling ofBallistic Targets.
     With the equivalent electromagnetic current method, the bistatic scatteringcoefficients of rotationally symmetrical warhead model are derived in the highfrequency region and it proves that the bistatic scattering centers of this type target arelocated at the same places as the monostatic scattering centers observed on the bisectorof the bistatic angle. The wideband bistatic scattering coefficients of several types ofwarhead models are obtained via the multilevel fast multipole method electromagneticmethod and the above conclusion is validated. The bistatic scattering centers slip on thetarget when the target, transmitter and receiver is moving, so they are named as slipperybistatic scattering centers. Based on the type of scattering center model, the movingmodel of each scattering center is derived with the target translation, rotation andprecession, which provides an exact mathematic description of the moving rule of eachscattering center. Then, the dynamic echo modeling and simulation method of ballistictargets in wideband bistatic radar is introduced based on the moving model andelectromagnetic calculation data.
     2. Feature Extraction Based on Bistatic High-Range Resolution Profiles(HRRPs)
     The echo of the high speed target in wideband bistatic radar is modeled and it is thesame as the monostatic case formally, while the physical meanings are different. Theeffect on the bistatic HRRP of the velocity, acceleration and bistatic angle is analyzed. Then motion compensation is performed based on the multi-component polynomialphase signal frequency estimation and the time-range distribution image is constructedwith the HRRP sequence. A method of estimating the precession frequency and residualvelocity is proposed based on mutual correlation of the time-range distribution and thestable estimation results can be achieved. Afterwards, the whole structure andprecession features are simultaneously extracted by utilizing the symmetricalcharacteristics of ballistic targets and extended Hough transform (EHT), which providesa solution to the coupling problem of micro-motion and structure parameters undersome conditions.
     In the wideband T/R-R radar system, the T/R and R receivers obtain the lengthsand the locations of the monostatic and bistatic HRRPs separately. Combined with thetarget localization method, the target length and attitude angle are estimated, and thesimulation results are provided for analyzing the effect of the target location andbaseline length on the estimation errors. This is helpful for overcoming the problem thatthe length of the monostatic HRRP is sensitive to the target attitude. Then, the model ofmulti-aspect observation is introduced and a novel algorithm, which is based on themulti-aspect observed HRRP sequences, is proposed to estimate the precession angleand real target length jointly. And the effect of the radars’ distribution on theestimated errors is discussed. For the spinning targets, a method for feature extraction isproposed based on T/R-R bistatic radars. In this method, each receiver estimates someparameters via EHT firstly, then parameter association and fusion processing areperformed, finally the real rotational radius is obtained. This method is helpful forovercoming the problem that the extracted rotational radius via monostatic radar isusually shorter than the real value.
     3. Bistatic Two-dimensional (2-D) ISAR Imaging and Feature Extraction
     The2-D images of spinning targets obtained via the narrowband monostatic radarare always smaller than the real size. So, a novel2-D imaging algorithm is presentedbased on the connections between the mono-and bistatic echoes of the same scattererand the classical Hough transform (HT), allowing both the mono-and bistatic2-Dimages projected on the spinning plane to be obtained simultaneously. Both mono-andbistatic2-D images reflect the real size of the spinning target, so it is helpful targetrecognition.
     The bistatic ISAR imaging model of precession target is introduced and theoptimum imaging time is derived. Afterwards, through selecting the optimum bistaticHRRPs, a clear bistatic ISAR is obtained via the classical fast Fourier transformprocessing on condition that the procession parameter is estimated based on the mono-and bistatic HRRP sequences and EHT. When the precession parameters are unknown,the time-frequency transform method is proposed for producing the mono-and bistatic range instantaneous Doppler (RID) image sequences, then both mono-and bistaticISAR images are scaled via image registration of mono-and bistatic RID images. Thismethod overcomes the problem that the image registration precision is limited by theprecession angle in the monostatic radar. Finally, a novel method is proposed forestimating the procession angle by utilizing the moving rule of the dominant scatteringcenter in the un-scaled and scaled ISAR image sequence.
引文
[1]冯德军.导弹中段目标雷达识别与评估研究[D].长沙:国防科学技术大学,2006
    [2]赵锋.弹道导弹防御跟踪制导雷达探测技术研究[D].长沙:国防科学技术大学,2007.
    [3]饶彬.对抗条件下弹道目标的雷达跟踪技术研究[D].长沙:国防科学技术大学,2011.
    [4] Chernyak V.S. Fundamentals of Multisite Radar Systems (Multistatic Radars andMultiradar Systems). Gordon and Breach Scientific Publishers,1998.
    [5]杨振起,张永顺,骆永军.双(多)基地雷达系统[M].北京:国防工业出版社.1998.
    [6]黄光才,艾小锋,刘进,等.双(多)基地雷达系统发展综述[J].电子对抗,2011,5:46-51.
    [7] Cherniakov M. Bistatic Radar: Principles and Practice[M]. Wiley,2007.
    [8] Willis N.J., Griffiths H.D. Advanced in Bistatic Radar[M]. Scitech Publishing Inc,2007.
    [9] Peleg S., Friedlander B.. The discrete polynomial-phase transform[J]. IEEE Trans.Signal Process.,1995,43(8):1901-1914.
    [10] Barbarossa S., Analysis of multicomponent LFM signals by a combinedWigner-Hough transform[J]. IEEE Trans. Signal Process.,1995,43(6):1511-1515.
    [11] Barbarossa S., Scaglione A., Giannakis G.B.. Product high-order ambiguityfunction for multicomponent polynomial-phase signal modeling[J], IEEE Trans.Signal Process.,1998,46(3):691-708.
    [12] Muhammad Z.I., Zhou G.T.. Estimation of multicomponent polynomial phasesignals of mixed orders[J]. Signal Processing,2001,81:2293-2308
    [13] Pham D.S., Zoubir A.M.. Analysis of multicomponent polynomial phase signals[J]. IEEE Trans. Signal Process.,2007,55(1):56-75.
    [14] Pham D.S., Zoubir A.M.. Estimation of multicomponent polynomial phasesignals with missing observations[J]. IEEE Trans. Signal Process.,2008,56(4):1710-1715.
    [15] Rankinea L., Mesbaha M., Boashasha B.. IF estimation for multicomponentsignals using image processing techniques in the time-frequency domain[J].Signal Processing,2007,87:1234-1250.
    [16] Clark M.E. High range resolution techniques for ballistic missile scatterers[C].IEE Colloquium on High Resolution Radar and Sonar,1999:613-618.
    [17]李文臣.高速机动目标雷达信号参数估计与成像处理[D].长沙:国防科学技术大学,2009.
    [18]朱永锋,李为民,陈远征,等. Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1399.
    [19]陈远征,朱永锋,赵宏钟,等.基于包络插值移位补偿的高速运动目标的积累检测算法研究[J].信号处理,2004,20(4):387-390.
    [20]黄小红,邱兆坤,王伟.目标高速运动对宽带一维距离像的影响及补偿方法研究[J].信号处理,2002,18(6):487-490.
    [21]黄小红,陈曾平,庄钊文,等.空间目标高分辨距离像运动参数估计[J].宇航学报,2004,25(3):269-272.
    [22]刘爱芳,朱晓华,陆锦辉,等.基于离散匹配傅里叶变换的高速运动目标逆合成孔径雷达距离像补偿[J].兵工学报,2004,25(6):782-785.
    [23] Chen, V. C., Qian, S.. Joint time-frequency transform for radar range-Dopplerimaging[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):486-499.
    [24] Martorella M., Berizzi F.. Time windowing for highly focused ISAR imagereconstruction [J]. IEEE Transactions on Aerospace and Electronic Systems.2005,41(3):992-1007.
    [25] Berizzi F., Dalle M.E., Diani M., et al. High-resolution ISAR imaging ofmaneuvering targets by means of the range instantaneous Doppler technique:modeling and performance analysis[J]. IEEE Transaction on Image Processing.2001,10(12):1880-1890.
    [26] Martorella M., Berizzi F., Haywood B.. Contrast maximization based techniquefor2-D ISAR autofocusing[J]. IEE Proceedings on Radar, Sonar and Navigation.2005,152(4):253-262.
    [27] Wong S.K., Duff G. and Riseborough E.. Distortion in the inverse syntheticaperture radar (ISAR) images of a target with time-varying perturbed motion[J].IEE Proc.-Radar Sonar Navig.,2003,150(4):221-227
    [28] M. Xing, R. Wu, Z. Bao. High resolution ISAR imaging of high speed movingtargets[J]. IEE Proc.-Radar Sonar Navig.,2005,152(2):58-67.
    [29]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [30]张焕颖,等.高速运动目标的ISAR成像方法[J].电子与信息学报,2007,29(8):1789-1795.
    [31]曹敏.空间目标ISAR成像技术研究[D].长沙:国防科学技术大学,2009.
    [32]朱玉鹏.复杂运动目标ISAR及MIMO雷达成像技术研究.[D].长沙:国防科学技术大学,2009.
    [33]吴亮.复杂运动目标ISAR成像技术研究[D].长沙:国防科学技术大学,2012.
    [34]邹飞.弹道中段目标逆合成孔径雷达成像技术研究[D].长沙:国防科学技术大学,2012.
    [35]王洋,陈建文,刘中.导弹目标ISAR成像仿真分析[J].现代雷达,2003,10:18-21.
    [36]冯德军,王雪松,肖顺平,等.导弹目标中段雷达成像仿真研究[J].系统仿真学报,2004,16(11):2511-2516.
    [37]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科学技术大学,2009.
    [38]刘进,王雪松,李文臣,等.基于进动的旋转对称弹头雷达成像方法[J].信号处理,2009,25(9):1333-1337.
    [39]郑建成,王党卫,马晓岩,等.弹头目标的ISAR回波特性分析[J].空军雷达学院学报,2011,25(6):399-403.
    [40]雷腾,刘进忙,李松,等.基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J].系统工程与电子技术,2011,33(12):2649-2654.
    [41]赵瑞行.一种弹道导弹多目标时频分析ISAR成像算法及仿真[J].海军航空工程学院学报,2010,25(3):299-302.
    [42]马林.空间目标逆合成孔径成像实验研究[J].现代雷达,2007,29(10):1-3.
    [43] Wang G Y, Xia X G, Chen V C. Three-dimensional ISAR Imaging ofManeuvering Targets Using Three Receivers[J]. IEEE Trans on Image Processing,2001,10(3):436-448.
    [44] Xu X J,Narayanan R M.Three-dimensional Interferometric ISAR Imaging forTarget Scattering Diagnosis and Modeling[J].IEEE Trans On Image Processing,2001,10(7):1094-1102.
    [45] Zhang Q, Yeo T S, Du G, et a1.Estimation of Three-dimensional MotionParameters in Interferometric ISAR Imaging[J].IEEE Trans on Geosci andRemote Sens.,2004,42(2):292-300.
    [46] Bhalla R, Ling H. Three-dimensional Scattering Center Extraction Using theShooting and Bouncing Ray Technique[J]. IEEE Trans on Antennas andPropagation,1996,44(11):1445-1453.
    [47] Mayhan J T, Burrows M L, Cuomo K M, et a1. High Resolution3D SnapshotISAR Imaging and Feature Extraction[J]. IEEE Trans on Aerospace andElectronic Systems,2001,37(2):630-641.
    [48] Qi Wang, Mengdao Xing, Guangyue Lu, et al. High-Resolution Three-Dimensional Radar Imaging for Rapidly Spinning Targets[J]. IEEE Trans onGeosci and Remote Sens.,2008,46(1):22-30.
    [49]王正.弹道雷达目标的三维snapshot成像方法[J].航天电子对抗,2006,22(2):1-3.
    [50]杨冬,王俊,张玉玺.利用弹头目标微动信息的两种三维散射中心提取方法[J].信号处理,2011,27(2):282-286.
    [51]贺柏森,张磊,张龙,等.一种高速自旋日标三维成像新算法[J].西安电子科技大学学报(自然科学版),2009,36(5):825-830.
    [52] Xueru Bai, Mengdao Xing, Feng Zhou, et al. High-ResolutionThree-Dimensional Imaging of Spinning Space Debris[J]. IEEE Trans on Geosciand Remote Sens.,2009,47(7):2352-2362.
    [53] Xueru Bai, Feng Zhou, Mengdao Xing, et al. Scaling the3-D Image of SpinningSpace Debris via Bistatic Inverse Synthetic Aperture Radar[J]. IEEE Geosci andRemote Sens. Letters,2010,7(3):430-434.
    [54]刘永祥,黎湘,庄钊文.导弹防御系统中的雷达目标识别技术进展[J].系统工程与电子技术,2006,28(8):1188-1193.
    [55]刘永祥,黎湘,庄钊文.导弹防御系统中的雷达目标识别研究[J].国防科学技术大学学报,2004,26(4):6-9.
    [56] V.C. Chen. The Micro-Doppler Effect in Radar[M]. Norwood, MA: ArtechHouse,2011.
    [57]毕莉,赵锋,高勋章,等.基于高分辨距离像的弹道目标尺寸综合估计方法[J].现代雷达,2009,31(10):42-46.
    [58]毕莉,赵锋,高勋章,等.基于一维像序列的进动目标尺寸估计研究[J].电子与信息学报,2010,32(8):1825-1830.
    [59]刘慧敏,王宏强,黎湘.逆合成孔径雷达像轮廓提取方法[J].系统工程与电子技术,2010,32(10):2076-2080.
    [60]魏建功.弹道中段目标ISAR成像与特征提取研究[D].长沙:国防科学技术大学,2006.
    [61]李康乐.雷达目标微动特征提取与估计技术研究[D].长沙:国防科学技术大学,2009.
    [62]刘进.微动目标雷达信号参数估计与物理特征提取[D].长沙:国防科学技术大学,2010.
    [63]马梁.弹道中段目标微动特性及综合识别方法[D].长沙:国防科学技术大学,2011.
    [64]肖立.窄带雷达体制下弹道中段目标微动特征提取[D].长沙:国防科学技术大学,2011.
    [65]刘丽华.基于雷达测量的导弹目标微动特征提取[D].长沙:国防科学技术大学,2012.
    [66]徐少坤.基于中段雷达目标特性的有源欺骗式干扰技术研究[D].长沙:国防科学技术大学,2012.
    [67]陈行勇,黎湘,郭桂蓉,等.中段目标进动雷达特征提取[J].信号处理,2006,22(05):701-711.
    [68]金文彬.弹道导弹运动估计及特征提取[D].长沙:国防科学技术大学,2003:12-15.
    [69]胡杰民,付耀文,黎湘.空间锥体目标进动周期估计[J].电子与信息学报,2008,30(12):2849-2852.
    [70]魏玺章,姚辉伟,丁小峰,等.变区间分组检验相乘积累进动周期估计[J].电子学报,2010,38(1):135-140.
    [71]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,2004,14(11):1329-1332.
    [72]冯德军,刘进,丹梅.弹道中段目标RCS周期特性及其估计方法[J].宇航学报,2008,29(1):362-365.
    [73]肖立,周剑雄,何峻,等.弹道中段目标进动周期估计的改进自相关法[J].航空学报,2010,31(4):812-818.
    [74] Thayaparan T. Separation of target rigid body and micro-Doppler effects inISAR/SAR imaging[R]. Ottawa: Defence Research and Development Canada,2006.
    [75] Stankovic L, Djurovic I, Thayaparan T. Separation of target rigid body andmicro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Geoscience andRemote sensing,2006,42(4):1496~1506.
    [76] Stankovic L, Djurovic I, Thayaparan T. Micro-Doppler-based target detectionand feature extraction in indoor and outdoor environments[J]. Journal of theFranklin Institue,2008,1(3):1-23.
    [77] Thayaparan T, Stankovic L, Djurovic I. Target detection and feature extraction inindoor and outdoor environments using micro-Doppler analysis[R]. Ottawa:Defence Research and Development Canada,2008.
    [78] Setlur P, Amin M, Ahmad F. Analysis of Micro-Doppler Signals Using LinearFM Basis Decomposition[C]. SPIE Proceedings on Radar Sensor Technology,2006,6210:1-11.
    [79] Setlur P, Amin M, Ahmad F. Indoor Imaging of Targets Enduring SimpleHarmonic Using Doppler Radars[C]. IEEE International Symposium on SignalProcessing and Information Technology,2005:141-146.
    [80] Setlur P, Amin M, Thayaparan T. Micro-Doppler Signal Estimation for Vibratingand Rotating Targets[C]. Proceedings of the8th International Symposium onSignal Processing and Its Applications,2005:639-642.
    [81] Li K, Liu Y, Jiang W, Li X. Feature Extraction of Cone with Precession based onmicro-Doppler[C]. IET International Radar Conference,2009.
    [82] Y.-X. Liu, X. Li, Z.-W. Zhuang. Estimation of micro-motion parameters based onmicro-Doppler[J]. IET Signal Process.,2010,4(6):213-217.
    [83]邹小海,艾小锋,李永祯,等.基于微多普勒的圆锥弹头进动与结构参数估计[J].电子与信息学报,2011,33(10):2413-2419.
    [84]丁小峰.基于窄带信息的弹道中段目标特性反演技术研究[D].长沙:国防科学技术大学,2011.
    [85] Q. Zhang, T. S. Yeo, H. S. Tan, et al. Imaging of a moving target with rotatingparts based on the Hough transform. IEEE Trans. Geosci. Remote sens.[J],2008,46(1):291-299.
    [86]马梁,王涛,冯德军,等.旋转目标距离像长度特性及微运动特征提取[J].电子学报,2008,36(12):2273-2279.
    [87]吴晓芳,刘阳,王雪松,等.基于频率步进雷达时间-距离像的宽带微动特征提取[J].电子学报,2009,37(7):1416-1421.
    [88] Xiaofang Wu, Xuesong Wang, Huanzhang Lu. Motion feature extraction forstepped frequency radar based on Hough transform[J]. IET Radar, Sonar andNavigation,2010,4(5):17-27.
    [89]金光虎,朱玉鹏,高勋章,等.基于一维像序列的中段雷达目标进动特征提取[J].信号处理,2009,25(5):771-776.
    [90]朱玉鹏,王宏强,黎湘,等.基于一维距离像序列的空间弹道目标微动特征提取[J].宇航学报,2009,30(3):1133-1140.
    [91]贺思三,周剑雄,付强.利用一维距离像序列估计弹道中段目标进动参数[J].信号处理,2009,25(6):925-929.
    [92]艾小锋,邹小海,李永祯,等.基于时间-距离像分布的锥体目标进动与结构特征提取[J].电子与信息学报,2012,33(9):2083-2088.
    [93]孙照强,鲁耀兵,李宝柱,等.宽带信号及其特征的微多普勒提取技术研究[J],系统工程与电子技术,2008,30(11):2040-2045.
    [94]刘慧敏,王宏强,黎湘.基于一维距离像序列几何投影分析的锥形目标进动周期估计[J],信号处理,2009,8(8):590-594.
    [95]颜维,孙文峰,钱李昌,等.基于一维像序列的弹道中段目标进动特征提取[J].空军雷达学院学报,2011,25(2):87-90.
    [96]雷腾,刘进忙,余付平,等.基于时间-距离像的弹道目标进动特征提取新方法[J].信号处理,2012,28(1):73-79.
    [97]霍凯.基于OFDM新体制雷达信号的微动目标特征提取研究[D].长沙:国防科学技术大学,2011.
    [98] Martorella M.. On Bistatic Inverse Synthetic Aperture Radar[J]. IEEE TransAerosp Electron Syst.,2007,43(3):1125-1134.
    [99] Ross R.A., Freeny C. C., Cleary J. C.. Bistatic scattering matrix for a finiteright-circular cylinder[J]. Electronics Letters,1968,4(8):148-149.
    [100] Ross R.A.. Bistatic scattering matrix for a frustum[J]. IEEE Transations onAntennas and Propagation,1969,44(1):103-106.
    [101] Bhalla R, Ling Hao, Lee Shung-Wu, et al.. Bistatic scattering center extractionusing the shooting and bouncing ray technique[C]. SPIE Conference onAlgorithms for Synthetic Aperture Radar Imagery,1999:612-619.
    [102]李柱贞.雷达散射截面常用算法[D],目标特性编辑部,1981.
    [103] Tsao T, Slamani M, Varshney P, et al. Ambiguity function for a bistatic radar[J].IEEE Trans Aerosp Electron Syst,1997,33(3):1041-1051.
    [104]陈卫东.基于宽带多传感器系统的目标精确定位与跟踪[D].合肥:中国科学技术大学,2005.
    [105]张容权,黄钰林,杨建宇.双基地线性FMCW雷达信号模糊函数及分辨特性[J].电子与信息学报,2007,29(4):836-840.
    [106]张南,陶然,王越.双基地雷达模糊函数及目标参数估计性能分析[J].中国科学E辑:技术科学,2009,39(7):1247-1255.
    [107] T. DERHAM, S. DOUGHTY, C. BAKER, et al. Ambiguity Functions forSpatially Coherent and Incoherent Multistatic Radar[J]. IEEE Trans. Aerosp.Electron Syst.,2010,46(1):230-235.
    [108] Cherniakov M. Bistatic radar: emerging technology[M]. John Wiley&Sons Ltd.2008.
    [109] Walterscheid I., Espeter T., Brenner A.R. Bistatic SAR experiments with PAMIRand TerraSAR-X-setup, processing, and image results[J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(8):3268-3279.
    [110] Michael P., Michael J., Sclriih Alex, et al. Bistatic ISAR images from attime-domain code[J]. IEEE Antennas and Propagation Magazine,1995,37(5):25-32.
    [111] J.T. Johson. Comparison of Monostatic and Bistatic Radar Images[J]. IEEEAntennas and Propagation Magazine,2001:281-284.
    [112] J. Palmer, M. Martorella, I. D. Longstaff. Airborne ISAR imaging using theemulated bistatic radar system[C]. in Proceedings of the EUSAR2004Conference,2004.
    [113] J. Palmer, M. Martorella, J. Homer, et al. ISAR imaging using an emulatedmultistatic radar system[J]. IEEE Trans Aerosp Electron Syst,2005,41(4):1464–1472.
    [114] M. Martorella. Analysis of the robustness of bistatic inverse synthetic apertureradar in the presence of phase synchroni-zation errors[J]. IEEE Trans. Aerosp.Electron. Syst.,2011,47(4):2673-2689.
    [115] M. Martorella, B. Haywood, W. Nel, et al. Optimal sensor placement formulti-bistatic ISAR imaging[C]. Proceedings of the7th European RadarConference,2010,228-231.
    [116] D. Pastina, Marta Bucciarelli, Pierfrancesco Lombardo. Multistatic and MIMODistributed ISAR for Enhanced Cross-Range Resolution of Rotating Targets[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(8):3300-3317.
    [117] D. Pastina, F. Santi, M. Bucciarelli. Multi-angle Distributed ISAR withStepped-Frequency Waveforms for Surveillance and Recognition[C]. IEEE CIERadar Conference2011:528-532.
    [118] Kei Suwa, Toshio Wakayama, Masafumi Iwamoto. Three-Dimensional TargetGeometry and Target Motion Estimation Method Using Multistatic ISAR Moviesand Its Performance[J], IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2361-2373.
    [119] Victor C. Chen, Andre des Rosiers, Ron Lipps. Bi-static ISAR Range-DopplerImaging and Resolution Analysis [C], IEEE Radar conference2009:1-6.
    [120] Shohei Nakamura, Kei Suwa, et al. An Experiment Study of enhangcement of thecross-range resolution of ISAR imanging using ISDB-T digital TV based passivebistatic radar[C]. IGARSS2011:2837-2840.
    [121] Changzheng Ma, Tat Soon Yeo, Qiang Guo, et al. Bistatic ISAR ImagingIncorporating Interferometric3-D Imaging Technique[J]. IEEE Transactions onGeoscience and Remote Sensing,2012,50(10):3859-3867.
    [122]王贵生,王东进.双基地雷达系统中的高分辨距离像[J].系统工程与电子技术,2005,27(8):557-559.
    [123]王贵生,王东进,陈卫东.多基地雷达系统一维距离像的三维成像[J].现代雷达,2005,27(4):5-9.
    [124]韩宁,尚朝轩,何强,等.基于稀疏分解的双基地ISAR一维距离成像方法[J].信号处理,2012,28(1):54-59.
    [125] X. Ai, Y. Li, X. Wang, et al. Some results on characteristics of bistatic high-rangeresolution profiles for target classification[J]. IET Radar Sonar Navig.,2012,6(5):379-388.
    [126]赵亦工.双基地逆合成孔径雷达成像与信号外推方法的研究和应用[D].北京:北京理工大学博士学位论文,1989.
    [127]吴勇.双站逆合成孔径雷达二维成像算法研究[D].长沙:国防科学技术大学,2005.
    [128]张亚标,朱振波,汤子跃,等.双站逆合成孔径雷达成像理论研究[J].电子与信息学报,2006,28(6):969-973.
    [129]曾星慧,宿富林,徐国栋.伪双站ISAR成像方法研究[J].哈尔滨工程大学学报,2007,28(8):1036-1040.
    [130]高昭昭,梁毅,邢孟道,等.双基地逆合成孔径雷达成像分析[J].系统工程与电子技术,2009,31(5):1055-1060.
    [131]朱小鹏,张群,朱仁飞,等.双站ISAR越距离单元徙动分析与校正算法[J].系统工程与电子技术,2010,32(9):1828-1832.
    [132]朱小鹏,张群,李宏伟.基于双基地ISAR的极坐标格式算法及其改进算法[J].宇航学报,2011,32(2):388-394.
    [133]朱小鹏,张群,罗迎,等.基于调频连续波的双基逆合成孔径雷达研究[J].电波科学学报,2011,26(4):771-776.
    [134]朱小鹏,颜佳冰,张群,等.基于双基ISAR的空间高速目标成像分析[J].空军工程大学学报,2011,12(6):44-49.
    [135]董健,尚朝轩,高梅国,等.空间目标双基地ISAR成像的速度补偿研究[J].中国电子科学院学报,2010,5(1):78-85.
    [136]董健,尚朝轩,高梅国,等.双基地ISAR成像平面研究及回波模型修正[J].电子与信息学报,2010,32(8):1855-1862.
    [137]尚朝轩,韩宁,董健.合作空间目标双基地ISAR图像畸变分析及校正方法[J].电讯技术,2012,52(1):38-42.
    [138]韩宁,尚朝轩,董健.小转角下空间目标双基地ISAR二维成像算法[J].传感器与微系统,2011,30(11):138-141.
    [139]韩宁,王立兵,何强,等.双基角时变下的空间目标BISAR自聚焦算法[J].航空学报,2012,33(1):1-8.
    [140]芮力,蒋涛,汤子跃.岸基双基地雷达ISAR舰船成像时间选择[J].电光与控制,2011,18(1):37-41.
    [141]许然,李亚超,邢孟道.基于子孔径参数估计的双基地ISAR图像融合方法研究[J].电子与信息学报,2012,34(3):622-626.
    [142]叶春茂,许稼,彭应宁,等.多视观测下雷达转台目标成像的关键参数估计[J].中国科学:信息科学,2010,40(11):1596-1507.
    [143]杜兰.雷达高分辨距离像目标识别方法研究[D].西安:西安电子科技大学,2007.
    [144]刘敬.雷达一维距离像特征提取与识别方法研究[D].西安:西安电子科技大学,2008.
    [145]魏崇毓,徐善驾,王东进.一种利用多站雷达距离差信息确定柱状目标几何中心及其长度的新方法[J].电子科学学刊,1999,21(6):765-770.
    [146]艾小锋,杨建华,李永祯,等.宽带T/R-R双基地雷达目标特征提取方法研究[J].宇航学报,2011,32(11):2372-2379.
    [147]雷腾,刘进忙,杨少春,等.基于三站一维距离像融合的弹道目标特征提取方法研究[J].宇航学报,2012,33(2):228-234.
    [148]艾小锋,李永祯,赵锋,等.基于多视角一维距离像序列的进动目标特征提取[J].电子与信息学报,2012,33(12):2846-2850.
    [149]艾小锋,邹小海,李智浩,等. T/R-R双基地雷达进动目标参数估计与ISAR成像[J].电子学报,2012,40(6):1148-1153.
    [150] Ma Liang, Liu Jin, Wang Tao, et al. Micro-Doppler characteristics of sliding-typescattering center on rotationally symmetric target [J]. Science China: InformationScience,2011,41(5):605-616.
    [151] V.C. Chen, Hao Ling. Time-Frequency Transforms for Radar Imaging and SignalAnalysis[M]. Artech House, INC.2002.
    [152] Renfei Zhu, Qun Zhang, Xiaopeng Zhu, et al. Micro-Doppler Analysis ofVibrating Target in Bistatic Radar. IEEE Int. Conf. APSAR,2009:981-984.
    [153] G.E. Smith, K. Woodbridge, C.J. Baker, et al. Multistatic micro-Doppler radarsignatures of personnel targets[J]. IET Signal Process.,2010,4(3):224-233.
    [154] D. H. Deng, J. He, M. Wang, et al. A method for extracting Micro-motion featureof target with rotating parts based on bi-ISAR system[C]. IEEE CIE Int. Conf.Radar,2011:524-527.
    [155]邹小海,艾小锋,李永祯,等.进动圆锥弹头双基地微多普勒特性分析[J].电子与信息学报,2012,34(3):609-615.
    [156]邹小海,艾小锋,李永祯,等.自旋尾翼弹头的双基地微多普勒研究[J].电子与信息学报,2012,34(9):2122-2127.
    [157] Ai Xiaofeng, Zou Xiaohai, Yang Jianhua, et al. Feature Extraction of RotatingTarget Based on Bistatic Micro-Doppler Analysis[C]. IEEE CIE RadarConference2011:609-612.
    [158]罗迎,张群,李松,等.基于分布式组网雷达弹道目标三维进动特征提取[J].电子学报,2012,40(6):1079-1085.
    [159] Eugene F K, John F S, Michael T T. Radar Cross Section[M]. Raleigh NC:SciTech Press.2005:200-209.
    [160] EM Software&Systems-S.A.(Pty) Ltd. FEKO User’s Manual (v5.2).2006.
    [161] Tsao J, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwaveimaging: the CLEAN technique[J]. IEEE Transactions on Antennas Propagation,1988,36(4):543–556.
    [162] Peleg S, Friedlander B. Multicomponent signal analysis using the polynomialphase transform[J]. IEEE Transactions on Antennas and Propagation,1996,32(1):378-387.
    [163] Barbarossa S, Scaglione A, Giannakis G B. Product high order ambiguityfunction for multicomponent polynomial phase signal modeling[J]. IEEETransactions on Signal Processing,1998,46(3):691-708
    [164] Chen H W, Sun Z K. A nonlinear optimized location algorithm for bistatic radarsystem[C]. IEEE Proceedings of the National Aerospace and ElectronicsConference,1995.
    [165] Chen Y G, Sun Z K, Chen H W. A study on multi-stage tracking technique inTR-R bistatic system[C]. IEEE Proceedings of the National Aerospace andElectronics Conference,1995.
    [166] Chen Y G, Wu J H. Bistatic location and tracking based on intermittent datafusion[C]. IEEE Proceedings of the National Aerospace and ElectronicsConference,1997.
    [167]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社,1996:77-104.
    [168]张磊,李亚超,刘燕,等.基于时频特性的窄带高速自旋目标运动估计及成像算法[J].中国科学:信息科学,2010,40(6):863-875.
    [169]胡万秋.弹道中段目标进动特征提取方法研究[D].长沙:国防科学技术大学,2010.
    [170] Wang T., Wang X., Chang Y., et al. Estimation of precession parameters andgeneration of ISAR images of ballistic missile targets. IEEE Transactions onAerospace and Electronic Systems,2010,46(4):1983-1995.
    [171] Hsueh-Jyh Li, Yung-Deh Wang, Long-Huai Wang. Matching Score PropertiesBetween Range Profiles of High-Resolution Radar Targets[J]. IEEE Transationson Antennas and Propagation,1996,44(4):444-452.
    [172] D. H. Ballard. Generalization the Hough transform to detect arbitrary shapes[J].Pattern Recogniton.,1981,13(2):111–122.
    [173] A. S. Aguado, M. E. Montiel M. S. Nixon. Improving parameter spacedecomposition for the generalised Hough transform[C]. IEEE Int. Conf. ImageProcess.,1996:627-630.
    [174] Roy R, Paulraj A, Kailath T. ESPRIT: A subspace rotation approach toestimation of parameters of cissoids in noise[J]. IEEE Transactions on Acoustic,Speech, Signal Processing,1986,34(5):1340-1342.
    [175] Vespe M, Baker C, Griffiths H. Radar target classification using multipleperspectives[J]. IET Radar Sonar Navigation,2007,1(4):300-307.
    [176] Zhu F, Zhang X-D, Hu Y-F, et al.. Nonstationary hidden markov models formultiaspect discriminative feature extraction from radar targets[J]. IEEETransactions on Signal Processing,2007,55(5):203-214.
    [177] Liao X, Runkle P, Jiao Y, et al.. Identification of ground targets from sequentialhrr radar signatures[C]. IEEE International Conference on Acoustics, Speech, andSignal Processing,2001:2897-2900.
    [178] Smith G E, Woodbridge K, Baker C J, et al.. Multistatic micro-Doppler radarsignatures of personnel targets[J]. IET Signal Processing,2010,4(3):224-233.
    [179] Smith G E, Woodbridge K, Baker C J. Multi-perspective micro-Dopplersignature classification[C]. IET International Conference on Radar Systems,2007:46-51.
    [180] Liao K., Yang W. Extraction of radar target length based on high resolutionrange profile[J]. International Conference on Electrical and Control Engineering,2010:956-959.
    [181]白雪茹.空天目标逆合成孔径雷达成像新方法研究[D].西安:西安电子科技大学,2011.
    [182] T. Sato. Shape estimation of space debris using single-range Dopplerinterferometry[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(2):1000-1005.
    [183]李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报,2000,28(6):44-47.
    [184]王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报,2007,29(3):521-523.
    [185]佘志顺,朱兆达.逆合成孔径雷达横向定标[J].电子学报,1997,25(3):45-48.
    [186]李文臣,王雪松,丹梅,等.基于对称模型的ISAR成像横向距离定标与性能分析[J].电子与信息学报,2009,31(10):2504-2508.
    [187] M. Martorella. Novel approach for ISAR image cross-range scaling [J]. IEEETrans. on Aerospace and Electronic Systems,2008,44(1):281-294.
    [188] H Li, B S Manjunanth, SK Mitra. A contour-based approach to multi-sensorimage registration [J].IEEE Trans. on Image Processing,1995,4(3):320-334.
    [189] Raymond J Althof, Marco G J Wind, James T Dobbins. A rapid and automaticimage registration algorithm with subpixel accuracy[J]. IEEE Trans. on MedicalImaging,1997,16(3):308-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700