用户名: 密码: 验证码:
上称重法生长掺稀土钨酸钆钾及若干新晶体结构设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺稀土钨酸钆钾晶体(KGd(WO4)2,简称KGW)是极有发展前景的激光新材料之一,因为其一系列独特性能,正逐步受到科学界的重视。本论文主要研究了上称重法生长掺稀土钨酸钆钾及若干新晶体结构设计与制备。
     1.论文首先对激光晶体、晶体生长技术进行一个简单的概述和讨论,介绍了KGW晶体的基本性质,讨论对了KGW的晶体生长方法和生长条件的选择,对所涉及的顶部籽晶法、熔盐提拉法作了较为细致的分析。
     2.论文接着对KGW晶体相关国内外文献,从晶体生长、缺陷研究、光谱性能、激光实验等4个方面进行归纳和讨论;介绍了国内外在晶体生长装置方面研究的现状,包括温场设计、机械设计、自动化控制等,并对其未来发展作了展望。
     3.论文具体介绍KGW晶体生长研究工作,对实验中碰到的各种技术问题进行讨论,并提出相应的解决方案,具体内容包括:
     1)晶体生长实验室改造:
     根据熔盐法对于实验室环境中机械震动、温度波动、湿度、尘埃等特殊要求,对晶体生长室和控制室进行了改造,并介绍了实验所用2种控温仪的各自特点。
     2)晶体生长炉设计:
     讨论了熔盐炉的设计要求;根据KGW晶体生长特点,设计制备了Φ650×600mm大热容量生长炉,并对加热体密绕方式、热电偶选择和放置位置、坩埚设计进行了讨论,初步摸索出晶体生长炉设计和制备的2个关键技术点:
     炉体结构设计:目标是寻求最佳温度梯度分布,考虑加热功率计算、电热元件设计、温区布置及功率匹配等;重点进行炉衬材料的选择,精密计算炉壁各层的耐火及保温材料的界面温度、厚度及热流量,保证热场的维护与维修应方便实用。
     高精度的温度控制系统:目标是保证长时间(生长周期3个月内)温度波动小于0.1°C,由于晶体生长的系统是一个热滞很大的系统,而且其热滞后时间在整个晶体生长过程中不断变化,其变化是非线性的,关键在于控制被控系统的热滞后效应。
     3)温场设计
     论文讨论了温场设计的理论依据和需要考虑的具体问题,并通过改变加热丝的环绕方式、疏密程度、坩埚相对于加热元件的位置、坩埚上方的保温方式来实现温场调控,最终通过多层Al2O3保温筒,档板以及后热器组成一个可以灵活组合的保温系统,满足KGW晶体生长的要求。
     4)计算机辅助多功能熔盐法晶体生长系统的设计与制备:
     本人在晶体生长过程中也切身感觉到晶体生长工作强度很大,熟练技术的时间周期很长。能否设计和制备出一套计算机辅助多功能熔盐法晶体生长系统来解决这个问题。沿着这个思路,在指导教师的精心指导和同学的大力支持下,我在论文研究的后期开展了该项工作的研究,并取得了一定的进展,研究了系统硬件部分,如称重系统、信号放大器、功率控制系统等;使用软件开发工具Borland Delphi7Enterpise、数据库MicroSoft Access2000,根据应用需求,对系统管理、设备管理、通信管理、数据处理等十个功能模块进行设置和详细分析。
     5)原料合成
     首先讨论了熔盐法晶体生长助熔剂选择的基本原则和选择步骤,对比了生长KGW晶体可供选择的助熔剂性质;将与目前生长密切联系的相图K2W2O7体系的液相线重新作了测定和验证;讨论了Nd3+掺杂浓度与荧光强度的关系,选择Nd3+的最佳掺杂浓度;阐述了KGW原料组分的配比,具体原料制备过程,并对比了合成好的KGW原料与标准XRD谱图,发现KGW原料合作的效果很好,已经能够满足晶体的需求。
     6)生长工艺技术
     详细研究了KGW晶体生长的各个具体步骤和关键性技术,包括籽晶制备、原始料化料、晶体试种、晶体下种,不同生长阶段拉速、转动速率、降温速率的选择,晶体等径生长的控制和晶体后处理技术;以K2W2O7为助溶剂,采用熔盐提拉法,成功地生长出了一系列高质量的掺稀土KGW晶体,Nd掺杂浓度分别为1、1.6、2、3、3.5、5、8at%的不同晶体,晶体尺寸达60×60×30mm3,光学均匀性达1.25×10-5,在5mw红光照射下未见到散射通道;
     7)晶体缺陷探讨
     讨论了熔盐提拉法生长KGW晶体的包裹、开裂和生长纹等三个主要缺陷的表征、产生原因和可行的消除方式,提出在下种中,采用收脖和放斜肩技术,可以有效地提高晶体的内部质量。
     8)大尺寸晶片加工
     简述了晶体器件加工流程,包括定向、切割、粗磨、抛光、镀膜等,重点描述KGW晶体抛光中粗磨、预抛加工、加工平面度及平行度、加工光洁度等关键工艺点;经测试,加工出的KGW晶体表面的平面度为0.114λ,平行度为4.4”,表面粗糙度为0.556nm。
     9) Nd:KGW晶体光学和光谱性能的测试。测定了吸收和发射载面、波长、峰宽、量子效率及寿命等与激光运转有关的重要参数,测得Nd:KGW晶体在1067nm处荧光发射截面为1.483×10-20cm2,半峰宽:15nm;在810nm处吸收波长810nm,半峰宽14nm,吸收截面1.27831×10-20cm2;荧光寿命110μs。
     10)晶体激光实验首先在空腔的条件下对棒进行测试,得到在使用不同透过率的平面镜作为输出镜的情况下得到的输出功率与泵浦功率的关系;
     接着进行调Q实验,在静态条件下,使用不同透过率的平面镜作为输出镜,得到输出功率与泵浦功率的关系图,其最高的转换效率达到56%;
     在调Q的条件下,脉冲重复频率10Hz,泵浦脉宽385μs时,输出功率随着泵浦功率的增加而增加;在泵浦功率较小时,输出功率增长速度较快;在泵浦功率较高时,输出功率增长速度较慢;期间最大的转换效率为11.4%;
     实验证明Nd:KGW具有输出能量大,转换效率高的特点,可以用来研制高效率小型激光器。
     11)最后本章还对提高KGW晶体质量和尺寸的途径进行了展望,为下一阶段的研究工作指明方向。
     4.在本论文研究的后期,本人在导师的指导下,通过水热法合成了五种配位聚合物,并进行了晶体结构测定和描述,为下一阶段研究工作奠定基础。
Doped lanthanon potassium gadolinium tungstate crystal (KGd(WO4)2(abbreviated asKGW), which contains a series of unique properties is gradually getting scientificcommunity’s attention as being an extremely promising new laser material. This papermainly focuses on the growth of doped lanthanon potassium gadolinium tungstate crystaland a number of new crystal structure design and preparation.
     1. Paper first takes a brief overview and discussion on laser crystal and crystal growthtechnology, introduces the fundamental nature of the KGW crystal, and discusses the KGWcrystal growth method and the choice of growth conditions. Top-seeded solution growth andmolten salt Czochralski method are more detailed analyzed.
     2. Second, from the crystal growth, defect studies, spectroscopic properties and laserexperiments, paper goes on to induce and discuss KGW crystal related domestic and foreignliteratures; introduces domestic and foreign installations in the crystal growth status quo,including design of temperature field, machine design, automation control, etc., and itsfuture development is also expected.
     3. Paper describes KGW crystal’s specific research work of growth, discusses thetechnical problems encountered from experiments and provides appropriate solutions, whichspecifically includes:
     1) Transformation of Crystal Growth Laboratory:
     Transform the crystal growth chamber and control room according to the mechanicalvibration, temperature fluctuations, humidity, dust and other special requirements oflaboratory environment by using molten salt method. Paper also describes the experiment byusing two kinds of temperature control instrument for their own characteristics.
     2) Design of Crystal Growth Furnace:
     Discuss the molten salt furnace design requirements; According to KGW crystal growthcharacteristics, design a large heat capacity growth furnace of Φ650×600mm and discusstight winding method for the heat body, thermocouple selection and placement, crucible design. Preparatory exploration on two key technical points of crystal growth furnace designand preparation:
     Furnace structural design: The goal is to find the best temperature gradientdistribution by considering the calculation of heating power, heating elementdesign, temperature zone layout and power matching, etc.; Concentrating on liningmaterial selection, precise calculation of furnace wall and the insulation layers offire-resistant materials interface temperature, thickness and heat flow, thermalfield to ensure the maintenance and repair could be convenient and practical.
     High-precision temperature control system:Goal is to ensure that long time(within3months of growth cycle) temperature fluctuation is less than0.1°C.Because crystal growth due to thermal hysteresis of the system is a great system,and the thermal lag time in the entire crystal growth process of changing isnonlinear, the key is to control the thermal lag effect of the controlled system.
     3)Temperature Field Design
     Paper discusses the theoretical basis for the design of temperature field and the need toconsider specific issues, and by changing the heating wire surround mode density levelcrucible relative to the location of heating elements, thermal insulation above the cruciblemeans to achieve the temperature field control, finally passed Al2O3multilayer insulationtube, bumpers, as well as the formation of a post-heater insulation system can be flexiblycombined to meet the KGW crystal growth requirements.
     4) The design and preparation of computer-aided multi-flux method crystalgrowth system:
     I also feel great intensity of work through the crystal growth process and take a longperiod of time to be skilled. Can computer-aided design and prepare a set of multi-fluxmethod crystal growth system to solve this problem? Along with this idea and through thecareful guidance from teachers and strong supports from students, in the latter part of mythesis work, I carry out this research and make some progress by studying the systemhardware components, such as weighing systems, signal amplifier, power control systems,etc.; According to the application requirements, I set up and analyze system management,equipment management, communications management, data processing and10otherfunctional modules by using software development tools, Borland Delphi7Enterpise,database, Microsoft Access2000.
     5) Material Synthesis
     First discuss the crystal growth flux method’s basic principles of choice and selectionsteps, compare the character of selective flux for growing KGW crystal; Re-determine andvalidate the close linked of current growth phase diagram K2W2O7system liquid line;Discuss Nd3+doping concentration and fluorescence intensity of the relationship betweenthe choice of the best Nd3+doping concentration; Explain KGW ratio of raw materialcomponents, specific raw material preparation process, and comparison of synthetic rawmaterials and standard XRD good KGW spectra. Find out that the effect of co-operationKGW material will have been able to meet the needs of crystals.
     6) The technology of growth
     Study the various concrete steps and key technologies of KGW crystal’s growth indetail, including seed preparation, raw material-based material, test growth, crystal seed,different growth stages of casting speed, rotation rate, the choice of cooling rate, crystaldiameter crystal growth control and post-processing techniques; Taking K2W2O7ascosolvent, using molten salt Czochralski method, I successfully get a series of high-qualitydoped KGW crystal, Nd-doped concentrations are1,1.6,2,3,3.5,5,8at%of different crystalsand its size up to60×60×30mm3, optical homogeneity up to1.25×10-5and under the5mw red light irradiation it showing no scattering channel。
     7) Defects of crystal
     Discuss three major defects of KGW crystal growth by using Molten salt Czochralskimethod, such as packages, cracking and growth texture’s token, appearing reason andpossible elimination methods. Propose to use control neck and release shoulder techniques toeffectively improve the internal quality of crystal during the seeding period.
     8) Large-size wafer processing
     Brief describes the process flow on crystal device, including orientation, cutting, coarsegrinding, polishing, coating and so on. Major focus on describing KGW crystal’s roughgrinding polishing, pre-polishing, machining flatness and parallelism, processing, finish andother key technique points; After processing, get surface flatness of0.114λ, parallel degree4.4", surface roughness0.556nm’s KGW crystal.
     9) The test of Nd: KGW crystal optical and spectral properties.
     Measure important parameters of laser operating such as absorption, emission section,wavelength, peak width, quantum efficiency and lifetime; Get Nd: KGW crystal’s fluorescence emission cross-section of1.483×10-20cm2at1067nm, half-peak width:15nm;absorption wavelength810nm at810nm and a half peak width14nm, absorptioncross-section1.27831×10-20cm2, fluorescence lifetime110μs.
     10) Laser experimentFirst, Test the crystal bar under the cavity condition, obtain the relations of outputpower and pump power by using different transmission plane mirror;
     Second, the Q-experiment, under static state conditions, using a differenttransmission plane mirror as the output mirror, get the output power and pumppower diagram and the highest conversion efficiency of56%;
     Under the Q-conditions, where pulse repetition frequency is10Hz, pump pulseduration is385μs, the output power increases with pump power; When pumppower is small, the output power rise fast; When pump power is high, the outputpower rise slow; During the experiment, the maximum conversion efficiency is11.4%;
     This experiment proofs that Nd: KGW has large energy output, high conversionefficiency, which can be used to develop high-efficiency small-scale lasers.
     11) The final chapter takes an outlook of improving the KGW crystal quality and sizeand pointing the direction of research for next stage of work.
     4. In the latter part of this thesis, under the guidance of instructors and through thehydrothermal synthesis of the five kinds of coordination polymers, I carry out crystalstructure determination and description in order to establish the foundations for next stage ofstudy.
引文
[1][苏] A.A卡明斯基.激光晶体.北京:科学出版社,1981.1-2.
    [2] B. Henderson, R. H. Bartram.Crystal-Field Engineering of Solid-State Laser Materials.UK:Cambridge University Press,2000.1-2
    [3] A. L. Schawlow, C. H. Townes. Infrared and optical masers. Phys. Rev.1958(112),1940-1949
    [4] L. F. Johnson, R. E. Dietz, H. J. Guggenheim. Optical maser oscillation from Ni2+in MgF2involvingsimultaneous emission of phonons. Phys. Rev. Lett.,1963(11):318-320
    [5] J. C. Walling, H. P. Jenssen, R. C. Morris, et al. Tunable-laser performance in BeAl32O4:Cr+. Opt. Lett.,1979(4):182–183
    [6] G. D. Boyd, R. J. Collins, S. P. S. Porto, A.Yartv, W. A. Hargreaves. Excitation, relaxation andcontinuous maser action in the2.613—micron transition of CaF3+2:U. Phys. Rev. Lett,1962(8):269-272
    [7] L. F. Johnson, L. G. Vanuitert, J. J. Rubin, R. A. Thomas. Energy Transfer from Er3+to Tm3+and Ho3+Ions in Crystals. Phys Rev,1964(133): A494
    [8] L. F. Johson, K.Nassau. Infrared fluorescence and stimulated emission of Nd3+in CaWO4.Proc. IRE,1961(49):1704-1706
    [9] J. E. Geusic, H.M. Marcos, L. G. Van Uitert. Laser oscillation in Nd:doped yttrium aluminium,yttrium gallium and gadolinium garnets.Appl. Phys. Lett.,1964(4):182-184.
    [10] K. S. Bagdasarov, Y. K. Voronko, A. A. Kaminskii, V. V. Osiko, A. M. Prokhorov. Kristallografiya,1966(10):746-748
    [11] K. S. Bagdasarov, A. A. Kaminskii. Zh. Eksper. Teor. Fiz. Pisma1969(9):501-503
    [12] A. L. Harmer, A. Linz, D. Gabbe. J. Phys. Chem.,1969(30):1483-1485
    [13] K. Voronko, A. A. Kaminskii, V. V. Osiko, A. M. Prokhorov. Zh. Eksper. Teor. Fiz. Pisma1965(1):5
    [14] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+at2.69μ and Tm3+at1.86μ inmixed crystals of CaF3:TmF3. Appl. Phys. Letters,1967(10):167-170
    [15] L. F. Johnson, H. J. Guggenheim, R. A. Thomas. Phonon-Terminated Optical Masers. Phys. Rev.,1966(149):179–185
    [16] L. F. Johnson, A. A. Ballman. Coherent emission from rare earth ions in electro-optic crystals. J.Appl Phys1969(40):297-302
    [17] L. F. Johnson, H. J. Guggeniieim. New laser lines in visible from Er3+ions in BaY2F8. Appl. Phys.Letters1972(20):474-476
    [18] A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk. Phys. Stat Sol,1971(5): k79
    [19] C. D. Brendle, J. C. Vanderleden. Growth, optical properties, and CW laser action ofneodymium-doped gadolinium scandium aluminum garnet. IEEE J. Quantum Electronics,1974(10):67-71
    [20] H. P. Weber, T. C. Damen, H. G. Danielmeyer, B. C. Tofield. Nd-ultraphosphate laser.Appl. Phys.Letters,1973(22):534-536
    [21] D. P. Devor, B. H. Soffer, M. Robison. Stiumlated emission from Ho3+at2μm in HoF3. Appl. Phys.Letters,1971(18):122-124
    [22] A. M. Morozov, I. G. Podkolzina, A. M. Tkachuk, V. A. Fedorov, P. P. Feofilov. Optika iSpektroskopiya,1975(39):605
    [23] J. C. Walling, H. P. Jenssen, R. C. Morris, et al. Tunable-laser performance in BeAl2O4:Cr3+.Opt.Lett.,1979(4):182–183
    [24] P. Moulton.Ti-doped sapphire: a tunable solid state laser. Opt. News,1982(8):9-11
    [25]单振国,干福熹.当代激光之魅力.北京:科学出版社,2000,180-373
    [26]邓开发.激光技术和应用.国防科技大学出版社,2002
    [26] V.I.Popov, Kh.S.Bagdasaror. IN:PGusera et al, Soviet Physics-Crystallography,1969(13):974.
    [27] R.M.Kolbas, N.G.Anderson, W.D.Laidig, Y.Sin, Y.C.Lo, et al.Stained-layer InGaAs-GaAs-AlGaAsphotopumped and current injection lasers. IEEE J.Quantum Eleetron,1988(24):1605
    [28] D.P.Bour, D.B.Gillbert, K.B.Fabian, et al.Low Degradation rate in strained InGaAs/AlGaAs singlequantum well lasers. IEEE Photon, Technol Lett,1990(2):173
    [29] W.F.Krupke, IEEE J.Seclect.Topic Quantum Electron.2000(6):1287
    [30] T.Y.Fan.Heat generation in Nd:YAG and Yb:YAG. IEEE J.Quantum Electron,1993(29):1457
    [31] A.Giesen, H.Hugel, A.Voss, et al.Scalable concept for diode-pumped high-power solid statelasers.Appl. Phy. B,1994(58):365
    [32]臧竞存,刘燕行.方兴未艾的二极管泵浦的激光晶体材料.激光技术,1994(18):66-68
    [33] F. Druon, G. Aka et al.12-mJ.350-fs Yb:GdCOB regenerative amplifier.Optics Communications,2001(199):181-187
    [34] F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. H nninger, F. Salin, A. Aron, F.Mougel, G. Aka, D. Vivien. Generation of90-fs pulses from a mode-locked diode-pumpedYb3+:Ca4GdO(BO3)3laser.Optics Letters,2000(25):423-425
    [35] F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. H nninger, F. Salin, M.Zavelani-Rossi, F. Augé, JP Chambaret, A. Aron, G. Aka, D. Vivien. High-power diode-pumpedYb:GdCOB laser: from continous-wave to femtosecond regime.Optical Materials,2002(19):73-80
    [36] S. Chenais, F. Druon, F. Balembois, P. Georges, R. Gaumé, P. H. Haumesser, B. Viana, G. Aka, D.Vivien. Spectroscopy and efficient laser action from diode pumping of new broadly tunable crystal:Yb3+: Sr3Y(BO3)3. J. Opt. Soc. Am. B,2002(19):1083-1091
    [37] F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr,D. Kopf.Diode-pumped Yb:Sr3Y(BO3)3femtosecond laser.Optics Letters2002(27):197-199
    [38] Kaminskii A A. Laser crystal: Their physics and properties.New York: Springer,1981
    [39] D. P. Devor, B. H. Soffer, M. Robison. Stiumlated emission from Ho3+at2μm in HoF3. Appl. Phys.Letters,1971(18):122-124
    [40]张克从,张乐蕙.晶体生长科学与技术.科学出版社,第二版,1997
    [41]闵乃本.晶体生长的物理基础.上海科学技术出版社
    [1] Kushawaha V,BanerjeeA,Major L.High-efficieney flashlamp-pumped Nd:KGW lasers. APPl. Phys.(B).1993,56(4):239-242;
    [2] Flood CJ,Walker D R,van Driel H M.CW diode Pumping and FM mode lockying of a Nd:KGWIaser. APPI.Phys.(B).1995,60(3):309-312;
    [3] Karlitsehek P,Hillrichs G.. Actives and Passive Q-switching of a diode Pumped of Nd:KGWlaser.Appl.phys.(B),1997,64(l):21-24
    [4] Ripoll J,Bausa L E.optical speetropy of Nd3+-doped KGd(WO4)2monocrystalsJ.Lumin.1997.72-74(4):253-254
    [5] Kushawaha V,Banerjee A.Major L.High-effieieney flashlamp-pumped Nd3+:KGW laser【J】.Appl.Phys.,1993,B56:239-242
    [6] Kushawaha V,Miehael A.Major L Effect of Nd concentration on the Nd3+:KGW laser[J].Appl.Phys.,1994B58:533-535
    [7] stankov K A.MarowshyG.High-efficieney multicolour Q-switehed Nd3+:KGW laser【J】.Appl.Phys,1995,B61:213-215
    [8]刘景和,李建利,洪元佳.等.Nd: KGd (WO4)2激光晶体生长.硅酸盐学报,200129(3)
    [9]王英伟,程灏波,刘景和.Yb:KGW激光晶体原料制备与单晶生长.人工晶体学报,200433(6)
    [10]张礼杰,王英伟,雷鸣.等.Nd3+:KGd(WO4)2晶体生长及激光性能,200528(2)
    [11]王宇明,刘文莉,张礼杰.等.稀土掺杂钨酸钆钾激光晶体生长,200533(12)
    [12]王海丽,齐家宝,周南浩.等.Er,Yb:KGd(WO4)2激光晶体的生长,200736(1)
    [13]朱忠丽,林海,钱艳楠.等.泡生法生长Ho3+,Yb3+双掺KGd(WO4)2晶体及其光谱性能,200734(10)
    [14]王宇明,刘景和,张礼杰.TSSG法生长Er3+/Yb3+:KY(WO4)2激光晶体及性能表征.稀有金属材料与工程,200635(9)
    [15]王英伟,程灏波.Yb:KY(WO4)2晶体生长.稀有金属材料与工程,200837(5)
    [16]李建立,王宇明,张礼杰.Yb:KY(WO4)2晶体生长及缺陷分析.稀有金属材料与工程,200635(8)
    [17]洪元佳,李建立,刘景和.等.激光晶体Nd:KGW晶体的表面缺陷观察.人工晶体学报,200029(1)
    [18]张莹,王成伟,刘文莉.Er:Yb:KGW激光晶体生长及缺陷研究.中国稀土学报,200624(z1)。
    [19]吕少珍,杨文琴.LD泵浦光入射方向和偏振方向对钨酸钾钆激光晶体荧光性能的影响.福建师范大学学报(自然科学版),200622(3)
    [20]刘璟,郑志强,黄抒洁.等.掺钕KGW激光晶体的各向异性吸收光谱及其上转换发光.人工晶体学报
    [21]吕少珍,杨文琴,冯尚源.掺钕、镱两种激活离子KGW晶体的喇曼光谱.激光与红外,200636(6)
    [22]郭丽花,杨文琴,冯尚源.Nd:KY(WO4)2、Nd:KG(WO4)2晶体光谱性能研究比较.人工晶体学报,200736(2)
    [23]吕少珍,杨文琴,姚少波.等.Yb3+离子掺杂钨酸钾钆晶体的光谱参数,200728(3)
    [24]李小燕,郑志强,冯卓宏.等.掺钕KGW晶体不同晶轴的光谱分析,200723(5)
    [25]朱忠丽,林海,乔正言.Ho3+,Yb3+双掺KGd(WO4)2激光晶体的光谱性能,200826(1)
    [26]郭丽花,杨文琴,杨俊杰.Nd:KY(WO4)2晶体的光谱及上转换发光.福建师范大学学报(自然科学版),200824(3)
    [27]邱闽旺,涂朝阳,李坚富.等.KGW晶体1.067μm激光特性研究.量子电子学报,200118(4)
    [28]毛艳丽,邓佩珍,李成富.等.闪光灯抽运的Nd∶KGW和Nd∶YAG激光器的性能比较.光学学报,200222(1)
    [29]毛艳丽,邓佩珍,李成富.等.闪光灯泵浦的Nd∶KGd(WO4)2激光器.光子学报,200231(4)
    [30]叶毅聪,林文雄,王国富.等.LD抽运Nd:KGW薄片激光器的研究.激光技术,200630(5)
    [31]刘树山,刘敏,李雷.等.LD端面泵浦Nd:KGW激光器热效应的理论研究,200829(6)
    [32]涂朝阳.李坚富.游振宇.等.熔盐提拉法生长的Nd3+:KGd(WO4)2单晶的性能研究,200419(3)
    [33]王宇明,张礼杰,李建利.掺钕钨酸钆钾激光晶体生长及性能研究.稀有金属材料与工程,200635(10)
    [34]王英伟,程灏波,刘景和.等.熔盐法生长Nd:KGW多波长激光晶体结构及光谱性能的研究.光学技术,200430(6)
    [35]王英伟,程灏波,朱忠丽.等.Yb3+:KGW激光晶体生长与表征.功能材料,200435(z1)
    [36]张莹,张学建,王成伟.铒镱共掺钨酸钆钾激光晶体生长、结构及光谱特性.硅酸盐学报,200836(2)
    [37]帕力哈提·米吉.Yb:KYW激光飞秒脉冲振荡的稳定性研究.华北工学院学报,200425(1)
    [38]李艳红,李建利,洪元佳.Nd∶KGW多波长激光晶体生长与光谱特性.中国激光,200229(5)
    [39]王英伟,程灏波,朱忠丽.Yb:KGd(WO4)2激光晶体结构与振动光谱.无机材料学报,200520(6)
    [40]王成伟,张莹,张学建.等.Ybx:KY1-x(WO4)2晶体的生长与结构及光谱性能.硅酸盐学报,200735(6)
    [41]刘景和,张莹,张礼杰.Ybx:KY1-x(WO4)2晶体生长及振动光谱研究,200828(2)
    [42]张礼杰,雷鸣,李建立.Yb3+:KY(WO4)2晶体生长与光谱性能.中国稀土学报,200523(6)
    [43]张礼杰,雷鸣,王宇明.等.Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析.物理学报,200655(6)
    [44]毛艳丽,李成富,邓佩珍.等.闪光灯抽运Nd∶KGW晶体获得1.06μm激光运转,200128(3)
    [45]涂朝阳,李坚富,游振宇.Nd3+:KGd(WO4)2激光晶体的性能研究,200431(z1)
    [46]周沐,王晓峰,谭吉春.Yb:KGW激光晶体无热方向的计算与分析.应用光学,200829(1)
    [47]路治平.炉温突变对BBO晶体生长界面温度的影响.人工晶体学报,1997(2)
    [48]梁秀梅,陈巨才.三温区晶体生长炉热场设计探讨.人工晶体学报,200130(3)
    [49] Ju.Linhart Myron Pankevich.用数学模型计算生长大尺寸光学晶体加热系统结构第1部分-对φ400mmCaF2晶体生长加热系统计算的方法和结果.人工晶体学报
    [50]敬成君,高辉,贾琛霞.等.单晶生长炉全局热分析(1)——三维模型建立.工程热物理学报,200829(2)
    [51]李留臣,薛抗美.我国人工晶体生长设备的回顾与展望.人工晶体学报,200231(3)
    [52]高利强.单晶炉机械传动系统综述.机械传动,200529(6)
    [53]罗军,谈晓臣,张中礼.等.温场可编程控制的小型空间晶体炉设计与测试
    [54]苗宇,金蔚青,潘志雷.等.晶体生长三维实时观察技术研究.无机材料学报,200217(1)
    [55]张睿彬.模糊参数自整定PID控制器的设计与仿真研究.中原工学院学报,200718(1)
    [56]任丙彦,李洪源,张燕.等.Φ200mm CZSi复合式热场的数值模拟研究.稀有金属,200832(2)
    [57]梁秀梅.Y60A单晶炉慢速提拉控制系统设计.电子工业专用设备
    [58]刘勤贤,陈祥华.单晶炉提拉速度控制系统.电工技术,2001(4)
    [59]尹力峰,谭明.单晶炉的振动分析与计算.安全与环境学报,20066(z1)
    [60]刘勤贤,陈祥华.单晶炉提拉速度控制系统的设计与分析.微电机,200134(3)
    [61]张元勇,李华,吴中福.氧化物单晶炉的新型谐波齿轮减速器研制.压电与声光
    [62]苏全振,闫钿,唐守勤.等.单晶炉坩埚旋转速度控制系统设计.现代电子技术,200730(5)
    [63]董淑梅,李言,李留臣.等.激光晶体炉上称重法自动直径控制(ADC)技术.人工晶体学报,200534(6)
    [64]韩晓军,王晓明,赵晴晴.图像处理技术在单晶硅生产监测中的应用研究.传感技术学报,200619(2)
    [65]赵葵银,胡俊达,吴俊.基于混合式自调整模糊控制的单晶炉提拉速度控制系统.半导体技术,200328(3)
    [66]田达晰,蒋科坚.直拉法单晶制造中的直径检测技术.半导体技术,200328(3)
    [67]潘春月,李世伦.基于遗传算法的单晶炉热场温度控制系统.机电工程,200623(7)
    [68]胡洁微,任国臣,陈晓英.晶炉温度控制系统中提高温度测量精度方法.国外电子测量技术,200625(10)
    [69]涂瑾,吴胜登,曹建伟.等.基于CCD测量技术的不完整圆直径测量算法研究
    [70]潘春月.基于DMC算法的单晶炉热场温度控制系统.机电工程,200724(8)
    [71]施敏芳,吕俊白.高精度温控系统中的差值检测及参数自整定.自动化仪表,199920(1)
    [72]陈川贵,贺碧会,佘建军.等.单晶炉上称重电子秤系统的研究与分析.压电与声光,200830(5)
    [1] Alcade, E., Dinares, I., Perez-Garia, L.&Roca, T.(1992). Synthesis,295–398.
    [2] Molecular Structure Corporation&Rigaku (2000). CrystalStructure (Version3.7.0) and CrystalClear(Version1.36). MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
    [3] Sheldrick, G. M.(1997). SHELXS97and SHELXL97University of G ttingen, Germany.
    [4] Thurston, J. T., Dudley, J. R., Kaiser, D. W., Hechenbleikner, I., Schaefer, F. C.&Holm-Hansen, D.(1951). J. Am. Chem. Soc.73,2981–2983.
    [5](a) Sahouani, H.(2006). US Patent No.2006110540.(b) Sahouani, H., Vogel, K. M.&Radcliffe, M.D.(2001). PCT Int. PatentWO No.2001035161.(c) Sahouani, H., Vogel, K. M.&Schaberg, M. S.(2002). US Patent No.2002066885.(d) Sahouani, H.&Vogel, K. M.(2002). PCT Int. Patent WO No.2002038698.
    [6](a) Kosnic, E. J., Lynn McClymont, E., Hodder, R. A.&Squattrito, P. J.(1992). Inorg. Chim. Acta,201,143–151.(b)Gunderman, B. J., Kabell, I. D., Squattrito, P. J.&Dubey, S. N.(1997). Inorg. Chim.Acta,258,237–246.(c) Shubnell, A. J., Kosnic, E. J.&Squattrito, P. J.(1994). Inorg. Chim. Acta,216,101–112.
    [7] Yuan, R. X., Xiong, R. G., Xie, Y. L., You, X. Z., Peng, S. M.&Lee, G. H.(2001). Inorg. Chem.Commun.4,384–387.
    [8] Xiong, R. G., Zhang, J., Chen, Z. F., You, X. Z., Che, C.M.&Fun, H. K.(2001). J. Chem. Soc.Dalton Trans.780–782.
    [9] Su, C. Y., Yang, X. P., Liao, S., Mak, T. C.W.&Kang, B. S.(1999). Inorg. Chem. Commun.2,383–385.
    [10](a) Cao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi&Shi, Q.(2002). Inorg. Chem.41,2087-2094(b) Hu, M. L., Xiao, H. P.&Yuan, J. X.(2004). Acta Cryst. C60, m112-m113.(c) Li, Y. G.,Hao, N., Wang, E. B., Kang, Z. H.&Hu, C. W.(2003). Inorg. Chem.42,3119-3124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700