用户名: 密码: 验证码:
锂离子二次电池正极材料LiMn_2O_4的制备、结构和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概述了锂离子电池的工作原理、发展现状和正极材料的研究概况,重点介绍了LiMn_2O_4的物化性质及其制备方法,其存在的问题和解决的途径。在此基础上开展了LiM_xMn_(2_x)O_4(x=0~0.5)正极材料的制备,研究了其结构、形貌和电化学性能,并从理论上初步探讨了LiM_xMn_(2-x)O_4电极的能带结构及掺杂金属离子对开路电位的影响。
     首先,采用液相沉淀—高温焙烧法制备了LiMn_2O_4样品,考察了焙烧温度和时间对其物化性能的影响。发现前驱体在350℃已开始形成LiMn_2O_4相,高于700℃可得到纯LiMn_2O_4。由于少量的锂挥发,晶胞参数和单位晶胞体积随着焙烧温度的升高而下降。焙烧时间延长,晶胞参数随着焙烧温度的升高而增大,但Mn-O键振动频率不随热处理温度的变化和时间的延长而改变。FWHM_(311)和FWHM_(400)随着焙烧温度的升高先减小后增大,在750℃时达到最小。LiMn_2O_4样品的放电电位和放电比容量随着焙烧温度的升高先增大后减小。750℃的LiMn_2O_4样品因其较小的单位晶胞体积、较高的结晶度以及较小的颗粒尺寸导致的低电化学极化和扩散极化而具有较高的放电电位、较大的放电比容量和较好的电化学循环稳定性。延长焙烧时间能在一定程度上提高样品的放电比容量。
     其次,采用液相沉淀—高温焙烧法制备了掺杂型LiM_xMn_(2-x)O_4(M=Ni,Co,Ni/Co)尖晶石化合物,并详细考察了Ni,Co,Ni/Co掺杂LiMn_2O_4样品的结构、形貌和电化学性能。单独掺杂Ni可使Mn(Ⅳ)-O和Mn(Ⅲ)-O键的红外吸收峰分别发生蓝移或红移,随着镍掺杂量的增加,出现新的Ni-O振动峰,振动强度逐渐增大。单独掺杂Co可使Mn(Ⅳ)-O和Mn(Ⅲ)-O键的红外吸收峰均发生蓝移。复合掺杂Ni/Co可使Mn(Ⅳ)-O红外吸收峰发生蓝移,Mn(Ⅲ)-O红外吸收峰不发生变化。LiM_xMn_(2-x)O_4(M=Ni,Co,Ni/Co)中的Mn-O键的伸缩振动不受焙烧温度升高或焙烧时间延长的影响,但晶胞参数随着焙烧温度的升高或时间的延长而减小。因较强的M-O(M=Ni,Co,Ni/Co)键作用及掺杂离子半径较小的因素,LiM_xMn_(2-x)O_4(M=Ni,Co,Ni/Co)样品的晶胞参数随着掺杂金属离子含量的增大而减小。其中Ni掺杂会导致阳离子的混合度增加,颗粒尺寸减小,样品的分散度得到改善,而Co掺杂则导致阳离子的有序度增加,颗粒尺寸减小,样品的分散
The principle and the development of lithium ion batteries and the survey of cathode materials have been described in this dissertation. The physicochemical properties, the preparation methods, and some existing problems of LiMn_2O_4 have been introduced with emphasis. On the basis of this, the LiM_xMn_(2-x)O_4 (x=0~0.5) cathode materials were prepared and their structure and electrochemical performance were investigated in detail. Meanwhile, the electrode dynamics, electronic structure and the effects of substituted metal ions on the open circuit potential of LiM_xMn_(2-x)O_4 electrode were theoretically explored.Firstly, the LiMn_2O_4 samples were prepared by a liquid precipitation-calcination method and the effects of calcinations temperature and time on their physicochemical properties were investigated. It was found that the LiMn_2O_4 phase is formed when the precessor is calcined at 350 ℃, and the pure LiMn_2O_4 is obtained over 700 ℃. The cell parameter and unit cell volume decrease with the increase of the calcination temperature due to the volatilization of a little lithium, but the vibration frequency of Mn-0 bond does not change with the variety of calcination time and temperature. FWHM_((311)) and FWHM_((400)) decrease at first and then increase with the increase of calcination temperature, which have the minimum values at 750 ℃. The discharge potential and discharge capacity increase at first and then decrease with the increase of calcination temperature. The sample calcined at 750 ℃ has higher discharge potential, larger discharge capacity and better cycle stability due to lower electrochemical and diffusion polarizations which result from smaller unit cell volume, better crystallinity and smaller particle size. The increase of calcination time can contribute to the improvement on the discharge capacity.Secondly, the LiM_xMn_(2-x)O_4 (M=Ni, Co, Ni/Co) samples were prepared by the liquid precipitation-calcination method and their physical properties and electrochemical performance were investigated in detail. Due to the introduction of Ni, the vibration frequencies of Mn(Ⅳ)-O and Mn(Ⅲ)-O bonds shift to higher and lower wave number, respectively. The new vibration of Ni-O bond appears and its strength
    gradually increases with increasing the nickel content in the samples. The vibration frequencies of both Mn(IV)-0 and Mn(III)-0 bonds shift to higher wave number with the increase of Co doping. For the samples with Ni/Co, the vibration frequency of Mn(IV)-0 shifts to higher wave number, and the one of Mn(III)-0 bond almost keeps unchange. The vibration frequencies of Mn-0 bonds in LiMxMn2-xO4 (M=Ni, Co, Ni/Co) do not change with the variety of calcination time and temperature, but the cell parameters decrease with the increase of calcination time and temperature. The cell parameters of LiMxMn2-x04 (M=Ni, Co, Ni/Co) decrease with the increase in the contents of the substituted metal ions due to the stronger M-0 (M=Ni, Co, Ni/Co) bond and the smaller radius of substituted metal ions. The addition of Ni leads to the increase in the extent of cation disorder, the decrease of particle size and the improvement of dispersivity, and the addition of Co leads to the increase in the extent of cation disorder, the decrease of particle size and the improvement of dispersivity. The trace impurity occurs when the content of the additives (Co, Ni/Co) exceeds 0.2. The increase of calcination time contributed to the improvement on dispersivity and uniformity of samples. The new current peaks and the potential flat appear at about 4.7 V for LiNixMn2-xO4 and LiNixCoxMn2-2xO4 due to the introduction of Ni, but they do not occur for LiCoxMn2-xO4 sample. The new current peak values increase and the peak values at about 4.0 V decrease with the increase of Ni contents in samples. The LiNio.05Mn1.95O4 sample has higher discharge potential, larger discharge capacity and better cycle stability due to the introduction of Ni, which decreases Rs, Rf and Warburg impedance and increases the diffusion coefficient of Li+. The values of Rs, Rf, Rt and Wo are greatly decreased by the introduction of Co. With the increase of Co contents, Rs decreases, Rf and Rt first decrease and then increase, and Wo increases. This may be the reason why the charge flat potential increases, and the current peak, the discharge flat potential and discharge capacity decrease for LiCoxMn2.xO4 samples. The LiCoo.1Mm.9O4 sample with smaller Rs, Rf, Rtand Wo values has higher discharge potential, larger discharge capacity, better rate capability and longer cycle life. The addition of Ni/Co leads to the decrease of Rs, Rf, Rt and Wo values, which results in the current peak values first increase and then decrease in 4 V potential range and the peak values in the 4.7 V increase. The LiNio.osCoo.osMni 9O4 sample has larger current peak, lower charge potential, higher discharge potential, larger discharge capacity, better rate capability and longer cycle life due to its minimum Rt and Wo values. The electrochemical performance of LiNio.1Coo.1Mn1.gO4 sample is improved by the increase of calcination time, which decreases the charge transfer resistance and
    diffusion resistance, namely, electrochemical and diffusion polarizations. The effects of calcination time on the samples with various Co contents are different. With the increase of calcination time, the polarization of the LiCoo.iMni 9O4 electrode is sharply decreased, but the electrode polarization of the LiCoo.2Mn1.gO4 sample is increased, which is unfavorable to the intercalation-deintercalation of Li+ and then results in the decrease of electrochemical performances. It was also found the LiMn2O4 sample with appropriate content of the additives (Ni, Co and Ni/Co) display better electrochemical-cycling performance at 55°C.Finally, the band structure and density of states of LiMr^Cn materials were explored by ab initio calculation method, and the effects of substitution of various metal ions on the open circuit potential were also studied. In general, the calculation results are close to the experimental ones.
引文
[1] 陈惠.稳态α型氢氧化镍的制备、结构和电化学性能,浙江大学博士学位论文,2004,P1.
    [2] Iwahori T, Mitsui I, Shiraga S. Electrochim. Acta, 2000,45:1509
    [3] 陈昌国 余丹梅 黄宗卿.电池 2000,30(4):178
    [4] Nishi Y. The chemical Record, 2001, 1:406
    [5] Sit K, Li P K, Ip C W. J. Power Sources, 2004, 125:124
    [6] 徐保伯 刘务华.电池 2002,32(4):242
    [7] 张森.内聚合凝胶态聚合物锂离子蓄电池的研究,哈尔滨工业大学博士学位论文,2004,P3
    [8] 郭炳焜等 编著.锂离子电池,中南大学出版社,2002,P55
    [9] Wakihara M. Mater. Sci. Eng. Rev., 2001, 33:109
    [10] Desilvestro J, Haas O J. J. Electrochem. Soc., 1990, 237: 5C
    [11] Thackeray M M, Rossouw M H, Gummow R J. Electrochim. Acta, 1993, 38:1259
    [12] Wakihara M. Prog. Material Science and Engineering, 2001, R33:109
    [13] 陈立泉.电池,2002,32(S1):6
    [14] Im D, Manthiram A. Solid State Ionics, 2003, 159:249
    [15] Brouns S. Electrochim. Acta, 2000,45(8): 2461
    [16] Arai H, Okada S, Sakurai Y. J. Electrochem. Soc., 1997, 144(9): 3117
    [17] Masaki O, Ken-ichi T, Takashi M. J. Power Sources, 1997, 68:545
    [18] Nishida Y, Nakane K, Satoh T. J. Power Sources, 1997, 68:561
    [19] Hajime A, Masayyuki T, Yoji S. J. Power Sources, 2000, 90:76
    [20] 吴宇平,万春荣,姜长印,方世壁.锂离子二次电池,化学工业出版社,2002
    [21] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144:1188
    [22] Prosini P P, Zane D, Pasquali M. Electrochim. Acta, 2001, 46:3517
    [23] Croce F, Epifanio A, Hassoun J, Deptula A, Olczac T. Electrochem. Solid-State Lett., 2002, 5: A47
    [24] Takahashi M, Tobishima S, Takei K, Sakurai Y. J. Power Sources, 2001, 97-98:508
    [25] Yamada A, Chung S C, Hinokuma K. J. Electrochem. Soc., 2001, 148:A224
    [26] Whittingham M S, Zavalij PY. Solid State Ionics, 2000, 131:109
    [27] Eriksson T, DoeffM M. J. Power Sources, 2003,119-121:145
    [28] Guo Z P, Wang G X, Liu H K, Dou S X. Solid State Ionics, 2002, 148:359
    [29] Armstrong A R, Gitzendanner R, Robertson A. D, Bruce P G. Chem. Commun., 1998, 3:1833
    [30] Makimura Y, Ohzuku T. J. Power Sources, 2003,119-121 : 156
    [31] Aurbach D, Levi M D, Gamulski K. J. Power Sources, 1999, 81~82:472
    [32] Lee Y S, Sun Y K, Ota S, Miyashita Y, Yoshio M. Electrochim. Commun., 2002, 4:989
    [33] Ein-Eli Y, Vaughey J T, Mukerjee S, Yang X Q, J. Electrochem. Soc., 1999, 146:908
    [34] Masquelier C, Tabuchi M, Goodenough J B. J. Solid State Chem., 1996, 123:255
    [35] Chang S H, Ryu K S, Kim K M. J Power Sources, 1999, 84(1): 134
    [36] Gao Y, Dahn J R. J. Electrochem. Soc., 1996, 143:100
    [37] 康慨 戴受惠 万玉华.无机材料学报,2001,16(4):586
    [38] 关勇辉.浙江大学硕士学位论文,2004,P
    [39] 何福城 朱正和.结构化学,高等教育出版社,1988,188
    [40] Yamada A, Tanaka M, Tanaka K. J. Power Sources, 1999, 81~82:73
    [41] Tarascon J M, Wang E, Shokoohi F K. J. Electrochem. Soc., 1991, 138:2859
    [42] Ott A, Endres P, Klein V, J Power Sources, 1998, 72:2
    [43] YamadaA, Tanaka M. Mater. Res. Bull, 1995, 30:715
    [44] Molenda J, Swierczek K, Molenda M. Solid State Ionics, 2000, 135:53
    [45] Iguchi E, Tokuda Y. Nakatsugawa H. J. Applied Physical, 2002, 91:2149
    [46] Rodriguez-Carvajal, Rousse G, Masquelier C. Physical Review Letters, 1998, 81(21):4660
    [47] Shimakawa Y, Tamura T.J. Solid State Chem., 1997, 131 : 138
    [48] Thackeray M M, Prog. Solid State. Chemical., 1997, 25:1
    [49] Xia Y Y, Yoshio M. J. Electrochem. Soc., 1997, 144:4186
    [50] 吴宇平 李阳兴 万春荣等.功能材料,2000,31:18
    [51] Thackeray M M, KockA D, Rossouw M H. J. Electrochem. Soc., 1992, 139:363
    [52] Lu C H, Lin S W. J. Power Sources, 2001, 93: 14
    [53] Hwang K T, Um W S, Lee H S, Song J K Chung K W. J. Power Sources, 1998, 74:169
    [54] Naghash A R, Lee J Y. J. Power Sources, 2000, 85:284
    [55] Tarascon J M, Mckinnon W R, Coowar F. J. Electrochem. Soc., 1994, 141:1421
    [56] Thackeray M M, Johnson P J, Piccioto L A, Bruce P G, Goodenough J B. Material Research Bulletin, 1984, 19:179
    [57] Gu W B, Wang C Y. ECS Proceedings, 2000, 25 (1): 748
    [58] Spotnitz R. J. Power Sources, 2003, 113:72
    [59] Choi H J, Lee K M, Lee J G. J. Power Sources, 2001, 103:154
    [60] Wen S.J., Richardson T.J., Ma L., J.Electrochem. Soc., 1996, 143:L136
    [61] Jang D H, Shin Y J, OH S M. J. Electrochem. Soc., 1996, 143:2204
    [62] Xia Y, Zhou Y, Yoshio M, J. Electrochem. Soc., 1997, 144:2593
    [63] Robertason A D, Lu S H, Howard W F. J. Electrochem. Soc., 1997, 144:3505
    [64] YamadaA, Miura K, Hinokuma K. J. Electrochem. Soc., 1995, 142:2149
    [65] Yamada A, Tanaka M, Tanaka K. J. Power Sources, 1999, 81~82:73
    [66] Aurbach D, Eli Y E, Chusid O. J. Electrochem. Soc., 1994, 141:603
    [67] Aurbach D, Markovsky B, Shechter A. J. Electrochem. Soc., 1996, 143:3809
    [68] Vincent C A. Solid State Ionics, 2000, 134:159
    [69] Gao Y, Dahn J R. Solid State Ionics, 1996, 84:33
    [70] Shao-Hom Y, Hackney S A, Kahaian A J, J Power Sources, 1999, 81~82:496
    [71] Pasquier D A, Blyr A, Cressent A, JPower Sources, 1999, 81~82:54
    [72] Hunter J. J Solid State Chem., 1981, 39:142
    [73] Tarascon J M. J. Electrochem.Soc., 1991, 138:2864
    [74] Yoshio M, Inoue S, Hyakutake M, J Power Sources, 1991, 34:147
    [75] 卢集政 赖琼玉.化学研究与应用,1998,10(6):702
    [76] Sun H K, John B, Goodenough. Electrochemical and Solid State Letters, 2001, 4(5): A49
    [77] 康慨 戴受惠 万玉平.功能材料,2000,31(3):283
    [78] 吴宇平 李阳兴 万春荣等.电源技术,2000,24(2):112
    [79] Liu W, Farrington G C, Chapm E J. Electrochem.Soc., 1996, 143:879
    [80] Barbox P, Tarason J M, Shokoohi F K, J Solid State Chem., 1991, 94:185
    [81] Huang H T, Bruce P G, J Power Sources, 1995, 54:52
    [82] Bach S. Electrochim. Acta, 1992, 37(8): 1303
    [83] 杨文胜 刘庆国 仇卫华.电源技术,1993,23(3):49
    [84] 刘培松 刘兴泉 陈召勇.应用化学,2000,17(1):60
    [85] Sun Y.K., Kim D W, Chio Y M, JPower Sources, 1999, 79(2): 231
    [86] Sun Y K, Oh I H, Kim K Y. Ind. Eng. Chem. Res., 1997, 36:4 839
    [87] Hwang K T, Um W S, Lee H S. J Power Sources, 1998, 74(2): 169
    [88] Xia Y Y, Kumada N, Yoshio M.J. Power Sources, 2000, 90:135
    [89] Kim J U, Jeong I S, Gu H B. J. Power Sources, 2001, 97~98:450
    [90] Li G H, Ikuta H, Uchida T, Wakihara M. J. Electrochem.Soc., 1996, 143:178
    [91] Arora P, Popov B N, White R E. J. Electrochem.Soc., 1998, 145:807
    [92] Robertson A D, Lu S H, Averill W F. J. Electrochem. Soc., 1997, 144:3500
    [93] Nakai I, Yasaka K, Wakihara M. J. Power Sources, 2001, 97~98:412
    [94] Baochen W, Xia Y Y, Li F. J. Power Sources, 1993, 43~44:539
    [95] Kawai H, Nagata M, Tukamoto H. J. Solid State Electrochem., 1998, 1:212
    [96] Kawai H., Nagata M, West A R. Electrochimca Acta, 1999, 45:315
    [97] Mandal S, Rojas R M, Amarilla J M. Chem. Mater., 2002, 14:1598
    [98] Shimakawa Y, Tamura T. J. Solid State Chem., 1997, 131 : 138
    [99] Kawai H, Nagata M, Tukamoto H. West A R J. Power Sources, 1999, 81~82:67
    [100] Ohzuku T, Takeda S, Iwanaga M. J.Power Sources, 1999, 81~82:90
    [101] Zhong Q, Gao Y, Dahn J R. J. Electrochem. Soc., 1997, 144:205
    [102] Eun-Eui Y, Vaughoy J T, Thackeray M M J. Electrochem. Soc., 1999, 146(3): 908
    [103] Ein-Eli Y, Howard W F, J. Electrochem. Soc., 1997, 144:L205
    [104] Ein-Eli Y, Howard W F, Thackeray M M. J. Electrochem. Soc., 1998, 145:1238
    [105] Doretta C, Marcella B, Carlo B. Solid State Commun., 2003, 125:179
    [106] Jeong I S, Kim J U, Gu H B. J. Power Sources, 2001, 102:55
    [107] Kock A D, Ferg E, Gummow R J. J. Power Sources, 1998, 70:247
    [108] Cras F L, Bloch D, Anne M, Strobel P. Solid State Ionics, 1996, 89:203
    [109] Pistoia G, Antonini A, Rosati R, Bellitto C. J. Electroanal. Chem., 1996, 410:115
    [110] Lee Y S, Lee H j, Yoshio M. Electrochemistry Communications, 2001, 3:20
    [111] Lee Y S, Kumada N, Yoshio M. J. Power Sources, 2001, 96:376
    [112] 陈前火 童庆松 连锦明.电源技术,2004,28(2):84
    [113] Ohzuku T, Takeda S, Iwanaga M. J.Power Sources, 1999, 81~82:90
    [114] Ohzuku T, Ariyoshi K, Takeda S. Electrochimica Acta, 2001,46:2327
    [115] Robertson A D, Lu S H, Averill W F. J. Electrochem. Soc., 1997, 144:3500
    [116] Kwang S Y, Nam W C, Oh Y J. Solid State Ionics, 1998, 113~115:43
    [117] Gopu Kumar, H. Schlorb, D. Rahner. Materials Chemistry and Physics, 2001, 70:117-123
    [118] Murali K R, Saravanan T, Anand S. Material Research Bulletin, 2000, 35:2287
    [119] Pistoia G, Antonini A, Rosati R. J. Electroanal.Chem., 1996, 410:115
    [120] Bellitto C, DiMarco M G, Branford W R. Solid State Ionics, 2001, 140:77
    [121] Liu W, Kowal K, Farrington G C. J. Electrochem. Soc., 1996, 143:3590
    [122] Strobel P, Anne M, Tarascon J M. J. Power Sources, 1999, 81~82:458
    [123] Palacin M R, Strobel P, Tarascon J M. J. Power Sources, 1999, 81~82:627
    [124] Sun Y K, Jeon Y S. Electrochemistry Communications, 1999,1:597
    [125] Sun Y K, Oh B, Lee H J. Electrochimica Acta, 2000, 46:541
    [126] Wu X M, Zong X F, Wu H Q. J. Fluorine chemistry, 2001, 107:39
    [127] Amatuccig G, Blyr A, Sigala C. Solid State Ionics, 1997, 104:13
    [128] Cho J, Kim G. Electrochemical and Solid-State Letters, 1999, 2(6): 253
    [129] Kweon H J, Kim S J, Pork D G J.Power Sources, 2000, 88:255
    [130] 金拟粲 应皆荣 姜长印 万春荣.功能材料,2004,6(35):725
    [131] 王志兴 刑志军 李新海 郭华军 彭文杰.物理化学学报,2004,20(8):790
    [1] Yu P, Popov B N, Ritter J A, White R E. J. Electrochem. Soc., 1999, 146:8
    [1] 李运姣 常建卫 杨敏.功能材料,2002,33(6):578
    [2] zheng J P, Jow T R. J Electrochem Soc., 1995, 142(1): L6
    [3] 陈立泉.电池,1998,28(6):255
    [4] Chang S H, Ryu K S, Kim K M. J.Power Sources, 1999, 84:134
    [5] 江志裕.电池,1997,27(6):255
    [6] Liu W, Kawal K, Farrington G C. J. Electrochem. Soc., 1996, 143(11): 3590
    [7] Takada T, Enoki H, Hayakawa H. J. Solid State Chem., 1998, 139:290
    [8] 杨遇春 郑有国.电池,1998,28(4):181
    [9] Rougier C J, Nazri G A, Julien C. Mater. Res. Soc. Symp. Proc., 1997, 453:647
    [10] Rouier A, Nazri G, Julien C. Ionics, 1997, 3:170
    [11] Richardson Y J, Ross P N. Mater Res Bull, 1996, 31: 935
    [12] Chitra S, Kalyani P, Mohan T, Massot M, Ziolkiewicz S, Gangadharan R, Eddrief M, Julien C Ionics, 1998, 4:1
    [13] Rougier C J, Nazri G A, Julien C (1997) Mater. Res. Soc. Syrup. Proc. 453:647
    [14] Huang H T and Peter G. Bruce. J. Electrochem. Soc., (1994)141:L106
    [15] Chitra S, Kalyani P, Mohan T, Gangadharan R, Yebka B, Massot M, Julien C, Eddrief M J. Electrochem. Soc., 1999, 3:4:433
    [16] Guyomard D, Taraseon J M. J. Electrochem. Soc., 1991, 138:2864
    [17] Lu C H, Lin S W. J. Power Sources, 2001, 97-98:458
    [18] Hwang K T, Um W S, Lee H S, Song J K, Chung K W. J. Power Sources, 1998, 74:169
    [19] Wan C Y, Nuli YN, Wu Q, Yan M M, Jiang Z Y. J. Appl. Electrochem., 2003, 33:107
    [20] Lee Y S, Hideshima Y, Sun Y K, Yoshio M. J. Electroceramics, 2002, 9:209
    [21] Miura K, Yamada A, Tanaka M. Electrochim. Acta, 1996, 41 : 249
    [22] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1991, 137:769
    [23] Sphar M E, Novak P, Schnyder B, Haas O, Nesper R. J. Electrochem. Soc., 1998, 145:1113
    [24] Levi M D, Aurbach D. J. Phy.s Chem. B, 1997, 101:4630
    [25] Levi M D, Levi E A, Aurbach D. J. Electroanal. Chem., 1997, 421: 89
    [26] Aurbach D, Levi M D, Levi E A. J. Electrochem. Soc., 1998, 145:3024
    [27] Levi M D, Aurbach D. J. Phys. Chem. B, 2004, 108:11693
    [28] Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D. J. Electroanal. Soc., 1999, 146:1279
    [1] Koksbang R, Barker J, Shi H, Saidi M Y. Solid State Ionics, 1996, 84:1
    [2] Scrosati B. Electrochim. Acta, 2002, 45:2461
    [3] Amine K, Tukamoto H, Yasuka H, Fujila Y. J. Electrochem. Soc., 1996, 143:1607
    [4] Ozawa K. Solid State Ionics, 1994, 69:212
    [5] Ebner W, Fouchard D, Xie L. Solid State Ionics, 1994, 69:238
    [6] Gumow R J, Thackeray M M. J. Electrochem. Soc., 1993, 140:3365
    [7] Jang D H, Shin J Y, Oh S M. J. Electrochem. Soc., 1996, 143:2004
    [8] Gumow R J, Kock A, Thackeray M M. Solid State Ionics, 1994, 69:59
    [9] Yamada A. Solid State Ionics, 1996, 122:160
    [10] Song D, Ikuta H, Unchida T, Wakihara M. Solid State Ionics, 1999, 117:151
    [11] Julien C, Ziolkiewicz S, Lemal M, Massot M. J. Mater. Chem., 2001, 11:1837
    [12] Jeong I S, Kim J U, Gu H B. J. Power Sources, 2001, 102:55
    [13] Kumar G, Schlorb H, Rahner D. Mater. Chem. Phys., 2001, 70:117
    [14] Bang H J, Donepudi V S, Prakash. Electrochim. Acta, 2002, 48:443
    [15] Banov B, Todorov Y, Trifonova A, Momchilov A, Manev V. J. Power Sources, 1997, 68:578
    [16] Amine K, Tukamoto H, Yasuda H, Fujita Y. J. Power Sources, 1997, 68:604
    [17] Feng Q, Hanoh H, Miyai Y, Ooi K. Chem. Mater., 1995, 7:379
    [18] Appetecchi G B, Scrosati B. J. Electrochem. Soc., 1997, 144:L138
    [19] Myung S T, Komaba S, Hirosaki N, Kumagai N. Electrochem. Commun., 2002, 4:397
    [20] Zhang D, Popov B N, White R E. J. Power Sources, 1998, 76:81
    [21] Ein-Eli Y, Lu S H, Rzeznik M A G B, Mukerjee S, Yang X Q, McBreen J. J. Electrochem, Soc., 1998, 145:3383
    [22] Ein-Eli Y, Howard W F. J. Electrochem. Soc., 1997, 144:L205
    [23] Song D, Ikuta H, Uchida T. Solid State Ionics, 1999, 117:151
    [24] Yoo K S, Cho N W, Oh Y J. Solid State Ionics, 1998, 113-115:43
    [25] Pandya K I, O Grady W E, Hoffman R W. J. Phys.Chem., 1990, 94:21
    [26] McBreen I, O Grady W E, Pandya K I. J. Phys. Chem., 1989, 93:6308
    [27] Wang G G, Wang J M, Mao W Q, Shao H B, Zhang J Q, Cao C N. J. Solid State Electrochem., 2004,(in pressed)
    [28] Balarew C, Stoilova D. J. Solid State, 1981, 38:192
    [29] Bertaut E F, Tran Q D, Baulet P. Acta Cryst., 1974, B30:2234
    [30] 冯传奇 张克立 孙聚堂.光谱学与光谱分析,2003,23(2):279
    [31] Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM (2002) Solid State Ionics 152-153:143
    [32] Ooms F G B, Kelder E M, Schoonman J, Wagemaker M, Mulder F M. Solid State Ionics, 2002, 152-153:143
    [33] Amine K, Tukamoto H, Yasuda H, Fujita Y. J. Electrochem. Soc., 1996, 143:1607
    [34] Fu Y P, Su YH, Lin C H. Solid State Ionics, 2004, 166:137
    [35] Su Y C, Zou Q F, Wang Y W, Yu P, Liu J Y. Mater. Chem. Phys., 2004, 84:302
    [36] Alcantara R, Jaraba M, Lavela P, Tirado J L. J. Electrochem. Soc., 2004, 151:A53
    [37] Bang H J, Donepudi V S, Prakash J. Electrochim. Acta, 2002, 48:443
    [38] Li G H, Ikuta H, Uchida T, Wakihara M. J. Electrochem. Soc., 1996, 143:178
    [39] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137:769
    [40] Feng C Q, Zhang K L, Sun J T. Functional Materials (supplemenO, 2001, 32:1144
    [41] Lee Y S, Sun Y K, Ota S, Miyashita T, Yoshio M. Electrochem. Commun., 2002, 4:989
    [42] Ein-Eli Y, Vaughey J T, Thackeray M M, Mukerjee S, Yang X Q, McBreen J. J. Electrochem. Soc., 1999, 146:908
    [43] Zhong Q M, Bonakdarpour A, Zhang M J, Gao Y, Dahn J R. J. Electrochem. Soc., 1997, 144: 205
    [44] 徐宁 刘国强 曾潮流等.中国有色金属学报,2003,13(1):81
    [45] Takahashi K, Saitoh M, Sano M, Fujita M. J. Electrochem. Soc., 2004, 151:A173
    [46] Wu X, Kim S B. J. Power Sources, 2002, 109:53
    [47] Alcantara R, Jaraba M, Lavela P, Tirado J L. J. Electrochem. Soc., 2004, 566:187
    [48] Levi M D, Aurbach D. J. Phys. Chem. B, 1997, 101:4630
    [49] Levi M D, Levi E A, Aurbach D. J. Electroanal. Chem., 1997, 421:89
    [50] Aurbach D, Levi MD, Levi E A. J. Electrochem. Soc., 1998, 145:3024
    [51] Levi M D, Aurbach D. J. Phys. Chem. B, 2004, 108:11693
    [1] Jiang Z R Abraham K M. J. Electrochem. Soc., 1999, 146(5): 1 591
    [2] Bach S, Pereira JP, Barfer N. J. Electrochim. Acta, 1992, 37:1 301
    [3] Xia Y Y, Hio L N, Masaki Y. J. Solid State Chemistry, 1995, 119:216
    [4] Amarilla J M, Martin J L. Solid State Ionics, 2000, 127:73
    [5] Heman L, Morales J, Sanches L. Solid State Ionics, 1999, 118:179
    [6] 徐宁 刘国强 曾潮流等.中国有色金属学报,2003,13(1):81
    [7] Liu S H, Shen C H. Solid State Ionics, 2003, 157:95
    [8] Li G H, Ikuta H, Uchida T, Wakihara M. J. Electrochem Soc., 1996, 143:178
    [8] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137:769
    [10] Arora R Popov B N, White R E. J. Electrochem. Soc., 1998, 145:807
    [1] 吴宇平 戴晓兵 马军旗 程预江 编著.锂离子电池-应用与实践,化学工业出版社及材料科学与工程出版中心出版,2004年,P179
    [2] Hong Y S, Han C H, Kim K, Kwon C W, Campet G, Choy J H. Solid State Ionics, 2001, 139: 75
    [3] Shaju K M, Rao G, Chowdari B. Solid State Ionics, 2002, 148:343
    [4] Sun Y K. J. Appl. Electrochem., 2001,31:149
    [5] Amatucci G, Pereira N, Zheng T, Tarascon J. J. Electrochem. Soc., 2001, 148:A171
    [6] Tsai Y W, Santhanam R, Hwang B J, Hu S K, Sheu H S. J. Power Sources, 2003, 119~121:701
    [7] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137:769
    [8] Feng C Q, Zhang K L, Sun J T. Functional Materials (supplement), 2001, 32:1144
    [9] Li G H, Ikuta H, Uchida T, Wakihara M. J. Electrochem. Soc., 1996, 143:178
    [10] 吴宇平 万春荣 姜长印 方世壁.锂离子二次电池,化学工业出版社,2002
    [11] 吴宇平 戴晓兵 马军旗 程预江 编著.锂离子电池-应用与实践,化学工业出版社及材 料科学与工程出版中心出版,2004年,P171
    [1] Xu X G, Li C, Li J X, Kolb U, Wu F, Chen G, J. Phys. Chem. B, 2003, 107:11648~11651.
    [2] Yukinori Koyama, Isao Tanaka, Hirohiko Adachi, J. Electrochem. Soc., 2000, 147(10):3633~3636.
    [3] Yukinori Koyama, Isao Tanaka, Hirohiko Adachi,Yoshinari Makimura, Tsutomu Ohzuku, J. Power Sources, 2003, 119-121:644~648.
    [4] Saiful Islam M, Andrew Davies R, Gale J D., Chem. Mater., 2003, 15: 4280~4286.
    [5] Koudriachova M V, Harrison N M, Leeuw S W, Solid State Ionics, 2002, 152-153:189~194.
    [6] Kganyago K R, Ngoepe P E, Catlow C RA, Solid State Ionics, 2003, 159:21~23.
    [7] Yukinori Koyama, Isao Tanaka, Hirohiko Adachi, Yoshiharu Uchimoto, Masataka Wakihara, J. Electrochem. Soc., 2003, 150(1):A63~A67.
    [8] Kresse G, Furthmuller J. Phys. Rev., 1996, B54:11169
    [9] Vanderbalit V. Phys. Rev., 1990, B41:7892
    [10] Hwang B J, Tsai Y W, Carlier D. Chem. Mater., 2003, 15:3676
    [11] Arroyoy de Dornpablo M E, Ceder G. J. Power Sources, 2003, 119-121:654
    [12] Arroyoy de Dompablo M E, Van der Ven A, Ceder G. Phys. Rev. B, 2002, 66:64
    [13] Van der VenA, Aydinol M K, Ceder G. Phys. Rev. B, 1998, 58:2975
    [14] Slater J C. Phys. Rev., 1985, B32:3876
    [15] Slater J C. The Self-Consisitent field for molecules and Solids. 1974, New York: Mc Graw Hill
    [16] Accerlys Inc., San Diego, CA, 2003
    [17] Liu W, Kowal K, Farrington G C. J. Electrochem. Soc., 1998, 145:459
    [18] 李荣 陈昌国 梁国明 余丹梅.化学物理学报,2004,17(5):567
    [19] 李荣 陈昌国 梁国明 余丹梅.中国有色金属学报,2004,14(5):865
    [20] 郭炳焜,李新海,杨松青编著,化学电源——电池原理及制造技术,中南工业大学出版社,2000,p35.
    [21] 查全性等 著,电极过程动力学导论,科学出版社,2002,p22
    [22] Ohzuku T, Atsuo Yamada. Electrochim. Acta, 1996, 41:249
    [23] 郭炳焜等 编著.锂离子电池,中南大学出版社,2002,P129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700