用户名: 密码: 验证码:
盐酸体系炼锌渣提铟及铁资源有效利用的工艺与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效利用硫化锌精矿中的铁资源,避免铁渣堆存对生态环境的污染,并简化现有铁矾渣提铟流程,提高铟的直收率,消除低浓度SO_2烟气排放危害,本论文提出了盐酸体系中炼锌废渣湿法提铟及铁资源有效利用的新工艺。首先对盐酸体系中铟锌提取、铁黄制备以及铁矾渣碱分解等过程进行了系统而深入的理论分析,详细阐明其热力学原理和动力学规律。采用双平衡法详细讨论了Zn(Ⅱ)-Fe(Ⅲ)-NH_3-CO_3~(2-)-C1-H_2O体系铁酸锌前驱体共沉淀过程中,[Zn]T、[Fe]T、[NH_3]T、[CO_3~(2-)]T、pH之间的平衡关系,确定了Zn~(2+)、Fe~(3+)离子共沉淀的最佳pH范围为6.3     在理论分析的基础上,对炼锌渣的热酸浸出、浸出液还原与净化、TBP萃取铟锌等过程进行了工艺研究。结果表明,在温度90℃、时间2h~4h、M_(HC1)/M_(Theory)=1.5~2.5、液固比L/S-(3~5):1的条件下,炼锌渣中Zn、Fe、In的浸出率均达95%以上。向热酸浸出液中加入磁黄铁矿或硫化锌精矿进行还原浸出。以磁黄铁矿为还原剂时,在W_(pyrrhotite)/W_(Theory)=1.4、温度90℃、时间2h、磁黄铁矿粒度为0.088mm~0.106mm的优化条件下,Fe~(3+)的还原率高达96.30%,As~(3+)、Sb~(3+)脱除率分别为67.7%和24.77%;采用硫化锌精矿为还原剂时,在温度90℃、时间3h、硫化锌精矿粒度45μm、W_(ZnS)/W_(Theory)=1.1的最佳条件下,Fe~(3+)平均还原率为96.62%,Zn、Fe、In平均浸出率分别为93.89%,94.46%和97.89%。在温度50℃、时间25min、铁粉用量为1.6倍理论量的最优条件下添加铁粉置换除杂,Cu~(2+)、Pb~(2+)、Cd~(2+)的脱除率分别为99.90%、32%和17%,In的损失率<1%。所得净化液在水相酸度1.5mol·L~(-1)、有机相组成70%TBP+30%磺化煤油、相比O/A=1.5:1、室温、振荡及静置时间均为10min、3级逆流萃取的最佳条件下同时萃取铟锌,In、Zn、Sn的萃取率均>99%,Fe~(2+)萃取率<1%,由此实现Fe与Zn、In的有效分离。在相比O:A=3:1、3级逆流反萃、室温、振荡及静置时间均为5min的最佳条件下,纯水反萃负载有机相,In、Zn反萃率分别为99%和60%-90%,而Sn的反萃率则<3%。常温下锌板置换反萃液中In~(3+)可产出海绵铟和纯ZnCl_2溶液,铟置换率>99%。
     以净化后的FeCl_2萃余液为原料,加入2mol·L~(-1)NH_4HCO_3溶液中和沉淀制取Fe(OH)_2+FeC03悬浮液,再通入空气氧化反应产出铁黄。整个氧化过程遵循“溶解电离.氧化沉淀”反应机制,分为晶核形成和晶体生长两个阶段,均为相界面的氧化反应控制,其活化能分别为127.26kJ·mol~(-1)和237.86kJ·mol~(-1)。氧化温度、空气流量和体系初始pH值均对氧化速率有显著影响。所得的氧化铁产物均为晶型规整的针形或纺锤形α-FeOOH晶粒聚集成的圆球。
     FeCl_2萃余液经H_2O_2氧化后,在有机相组成80%TBP+20%磺化煤油、水相酸度3.5mol·L~(-1)、相比O/A=3:1、相接触时间5min、室温的工艺条件下单级萃铁,平均萃铁率达99.69%;再在相比O/A=1.5:1、相接触时间3min、三级逆流反萃、室温的条件下纯水反萃,铁的平均反萃率为97.3%。所得纯FeCl_3纯溶液与ZnCl_2按n_(Zn):n_(Fe)=1:2混合均匀,总金属离子浓度为0.3mol·L~(-1),加入0.5mol·L~(-1)的NH_4HCO_3溶液作为沉淀剂,采用化学共沉淀法在温度50℃、M(NH_4HCO_3):M_(Theory)=1.2:1、搅拌速度600r·min~(-1)~850r·min~(-1)、添加剂为十六烷基三甲基溴化铵的工艺条件下制备铁酸锌前驱体。Zn~(2+)、Fe_(3+)离子基本按理论配比均匀沉淀,两者的液计平均沉淀率分别为Zn99.83%和Fe 99.92%。所得前驱体为单一、分散的球形粒子,平均粒径为100nm~120nm,锌铁摩尔比为n_(Zn):n_(Fe)=0.999:2。根据热重-差热分析结果,在500℃~700℃温度下煅烧前驱体,得到晶型规整、形貌单一、粒径分布窄的铁酸锌粉体。但煅烧温度的上升加剧了粉体的团聚,最佳煅烧温度为500℃,所得铁酸锌粉体平均粒径为150nm左右。提出了“NaOH分解-盐酸还原浸出-TBP萃取铟锌”的含铟铁矾渣湿法处理流程。在NaOH体系中分解铁矾渣,产出Na_2SO_4溶液和含In、Zn铁渣。前者经净化除杂、浓缩结晶回收芒硝后返回分解工序;后者则纳入盐酸体系选择性浸出和TBP萃取In、Zn,浸出渣经磁选富集后作为炼铁原料。对铁矾渣碱分解和分解渣HCl浸出进行了工艺研究,结果表明,在W_(NaoH):W_(铁矾渣)=0.3814:1、温度60℃、液固比2:1、时间2h的最优条件下,铁矾渣分解率高达98.03%,As的浸出率为83.36%,In、Cu、Pb、Cd、Ag、Zn、Sb、Sn等杂质绝大部留于分解渣。DSC-TGA热分析和XRD衍射分析结果表明,铁矾渣碱分解过程中,铁主要以Fe_3O_4形式入渣。分解渣中Fe、In、Zn的含量分别为38.81%、0.23%和12.89%,采用HCl在温度40℃、液固比7:1、反应时间2h、M_(Hcl)/M_(Theory)=1.8的最优条件下浸出,In、Zn、Cu、Cd、As、Sn、Sb、Pb、Ag的渣计浸出率分别为98.26%、99.35%、98.79%、98.93%、76.27%、68.50%、80.12%、64.82%和60.80%。分解渣中89.25%的Fe留于浸出渣中,浸出渣Fe含量高达52.48%,经磁选富集和除杂后可作为炼铁原料。
     盐酸体系中炼锌废渣湿法提取铟、锌及制备铁黄、铁酸锌新工艺实现了铁渣和低浓度SO_2烟气的零排放,In和Zn的直收率大幅提高。原料中的铁可以铁黄、铁酸锌、铁红、铁精矿等多种形式得到有效利用,消除了铁渣排放对生态环境的污染。本工艺可有效处理传统湿法炼锌提铟流程产出的含铟、锌的浸出渣和铁矾渣,对我国储量丰富的高铁铟闪锌矿资源的开发利用也具有重要意义。
Aimed at value-added utilization of iron resource in sphalerite concentrate and complete elimination of environmental pollution caused by waste ferric residue heaping,a new process for indium extraction and iron resource utilization in HCl medium was proposed in present dissertation. Adopting this process for jarosite residue treatment,the recovery flow sheet of indium and zinc can be simplified obviously,and the extraction ratio of valuable metals is enhanced consequently.Simultaneously,low concentration of SO_2 offgas emission is prohibited.Thermodynamic and kinetic analysis on the In & Zn solvent extraction,ferric yellow preparation and alkaline decomposition of jarosite residue was systematically carried out,respectively. Adopting double equilibrium method,the equilibrium relationship among [Zn]_T,[Fe]_T,[NH_3]_T,[CO_3~(2-)]_T and pH was also discussed in detail during zinc ferrite precursor preparation in Zn(Ⅱ)-Fe(Ⅲ)-NH_3-CO_3~(2-)-Cl~--H_2O system.The optimum pH value for Zn~(2+),Fe~(3+) co-precipitation was determined as 6.3<pH<7.3.
     Using zinc hydrometallurgical residue as raw material,technical studies on HCl hot-acid leaching,pregnant solution reduction and purification,In & Zn solvent extraction with tributyl phosphate(TBP) was carried out, respectively.The experimental results show that the leaching ratio of Zn,Fe and In is higher than 95%under the following conditions:90℃, M_(HCl)/M_(Theory)=1.5~2.5,2h~4h,L/S ratio(3~5):1.Adopting pyrrhotite as reductive reagent,Fe~(3+) ion in hot-acid leaching solution is reduced to Fe~(2+) with reduction ratio of 96.30%under the following conditions: W_(pyrrhotite)/W_(Theory)=1.4,90℃,2h,pyrrhotite particle size 0.088mm~0.106mm. And the removing ratio of As~(3+),Sb~(3+) is 67.70%and 24.77%,respectively. Using sphalerite concentrate as reductive reagent,the optimum conditions was obtained as follow:90℃,2h,ZnS concentrate particle size 45μm, W_(ZnS)/W_(Theory)=1.1.Under above optimum conditions,the leaching ratio of Zn, Fe and In is 93.89%,94.46%and 97.89%,respectively,and the reduction ratio of Fe~(3+) is 96.62%.Iron powder cementation was.conducted at 50℃for 25min. The removing ratio of Cu~(2+),Pb~(2+) and Cd~(2+) is 99.90%,32%,and 17%, respectively,when the addition of iron powder is 1.4 times of theoretical amount.And the loss ratio of indium is lower than 1%.Zn~(2+) and In~(3+) in purificatory solution were simultaneously solvent extracted with 70% TBP+30%sulfated kerosene under the following conditions:room temperature,agitation time 10rain,phase ratio O/A=1.51,acid concentration of water phase 1.5mol·L~(-1).After three-stage of countercurrent solvent extraction,the extraction ratio of Zn,In and Sn is larger than 99%, respectively,and that of Fe~(2+) is lower than 1%.Consequently,iron is completely separated from zinc and indium chloride solution.Zn~(2+) and In~(3+) in loaded organic phase was stripped by distilled water at ambient temperature for 5min with phase ratio of O/A=3:1.After three-stage of countercurrent solvent extraction,the stripping ratio of In and Zn is 99%and 60~90%, respectively,and that of Sn is lower than 3%.Zinc plate was added into stripping solution to produce sponge indium and purificatory ZnCl_2 solution. The cementation ratio of In~(3+) is higher than 99%.
     Purifatory FeCl_2 solution and 2mol·L~(-1) NH_4HCO_3 was added drop by drop into reaction vessel to prepare Fe(OH)_2+FeCO_3 suspension,which was subsequently oxidated by air to produce ferric yellow.The oxidation of Fe(OH)_2+FeCO_3 suspension follows“dissolving ionization-oxidative precipitation”mechanism,and whole course can be divided into nucleation period and crystal growth that controlled by oxidative reaction on interface. The activation energy of nucleation and crystal growth is 127.26kJ·mol~(-1)and 237.86kJ·mo1~(-1),respectively.Temperature,air flow and initial pH value has remarkable influences on the oxidation rate of Fe(OH)_2+FeCO_3 suspension. The morphology of ferric yellow obtained is a sphere aggregated by needle or spindleα-FeOOH particles.
     FeCl_2 raffinate was firstly oxidated by H_2O_2,and one-stage of solvent extraction of obtained FeCl_3 solution was carried out under the following conditions:room temperature,agitation time 5min,organic phase composition 80%TBP+30%sulfated kerosene,phase ration O/A=3:1,acid concentration of water phase 3.5mol·L~(-1).The extraction ratio of Fe~(3+) is 99.69%.Fe~(3+) ion in loaded organic phase was stripped by distilled water at ambient temperature for 3min with phase ratio of O/A=1.5:1.After three-stage of countercurrent solvent extraction,the stripping ratio of Fe is 97.30%.Using FeCl_3 stripping solution and purificatory ZnCl_2 solution as raw material,zinc ferrite precursor was obtained with co-precipitation method under the following conditions:50℃,60min,n_(Zn):n_(Fe)=1:2,C_16H_33(CH_3)_3NBr as radditive,C_(ZnCl_2+FeCl_3)=0.3mol·L~(-1), M_(NH_4CO_3:M_(Theory)=1.2:1,C_(NH_4CO_3=0.5mo·L~(-1).The results show that Zn~(2+) and Fe~(3+) are co-precipitated with theoretical ratio,and the precipitation ratio of Zn~(2+),Fe~(3+) is 99.83%and 99.92%,respectively.Zinc ferrite precursor obtained is a single,dispersive sphere with average particle size of 100nm~120nm.The Zn/Fe molar ratio of precursor is 0.999:2.According to DSC-TGA analysis results,the precursor was calcined at 500℃~700℃to obtain well crystallized zinc ferrite powder with narrow particle size distribution.The aggregation of zinc ferrite particle enhances with calcine temperature increasing,and the optimum temperature is determined as 500℃.The average particle size of zinc ferrite sample obtained at 500℃is about 150nm.
     A new hydrometallurgical process for indium extraction from jarosite residue was also proposed in this dissertation.Jarosite residue was firstly decomposed in NaOH medium to produce Na_2SO_4 solution and iron residue bearing indium.Na_2SO_4 solution was concentrated and then refrigerated crystallization to recover mirabilite after arsenic removal,mother liquid was recycled to alkaline decomposition operation.After selective leaching of In and Zn with dilute hydrochloric acid,the magnetic separation of leached residue was carried out to produce iron concentrates that used as raw material in iron smelting.Indium and zinc in pregnant solution were simultaneously solvent extracted by TBP as former mentioned.Technical studies on the alkaline decomposition ofjarosite and HCI leaching of decomposition residue were carried out.Obtained results show that the decomposition ratio of ammonium jarosite can reach 98.03%under the following optimum conditions: W_(NaOH)/W_(Jarosite)=0.3814:1,60℃,liquid-solid ratio 2:1,2h.Impurity elements like Zn,In,Cu,Cd,Pb,Sb,Sn and Ag,are left in residue,while 83.36%of As is leached into pregnant solution in presence of AsO_4~(3-).DSC-TGA thermal analysis and XRD characterization results demonstrate that Fe is precipitated in form of Fe_3O_4 during alkaline decomposition.The content of Fe,In and Zn in decomposition residue is 38.81%,0.23%and 12.89%,respectively.After selective leaching with dilute HCl,the leaching ratio of In,Zn,Cu,Cd,As,Sn, Sb,Pb and Ag is 98.26%,99.35%,98.79%,98.93%,76.27%,68.50%,80.12%, 64.82%and 60.80%,respectively,under the following optimum conditions: 40℃,liquid-solid ratio 7:1,2h,M_(HCl)/M_(Theory)=1.8.89.25%of Fe is left in leached residue,and the content of Fe is 52.48%.After magnetic separation and impurities removal,iron concentrate obtained can be used as raw material for iron smelting.
     In conclusion,the present process proposed for indium extraction and iron resource value-added utilization in HCl medium can achieve zero emission of ferric residue and SO_2 off-gas.The recovery flow sheet of indium and zinc is simple and flexible,and the direct recovery ratio of valuable metal like In,Zn is enhanced dramatically.Iron resource in raw material is value-added utilization in form of zinc ferrite,ferric yellow and iron concentrate.The environmental pollution caused by ferric residues heaping is originally prohibited.The present process has extensive application in the treatment of zinc leached residue and jarosite.Furthermore,tt is significant in the exploitation of sphalerite concentrate bearing high iron and indium.
引文
[1]徐采栋,林蓉,王大成编著.锌冶金物理化学.上海:上海科学技术出版社,1979
    [2]彭容秋编著.重金属冶金学.长沙:中南大学出版社,2004
    [3]《铅锌冶金学》编委会编著.铅锌冶金学.北京:科学出版社,2003
    [4]梅光贵,王德润,周敬元,等编著.湿法炼锌学.长沙:中南大学出版社,2001
    [5]《重有色金属冶炼设计手册》编委会编著.《重有色金属冶炼设计手册》(铅锌铋卷).北京:冶金工业出版社,1995
    [6]徐鑫坤,魏旭编著.锌冶金学.昆明:云南科技出版社,1994
    [7]刘志宏.国内外锌冶炼技术的现状及发展动向.世界有色金属,2000(1):23-26
    [8]王忠实.中国锌冶金现状.有色冶炼,1996(6):1-5
    [9]陈邦俊.世界铅锌工业现状与展望.世界有色金属,1997(5):19-24
    [10]周敬元.铅锌冶炼技术现状及发展方向.有色金属工业,2001(5):42-45
    [11]张乐如.现代铅锌冶炼技术的应用与特点.世界有色金属,2007(4):20-22
    [12]未立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究。矿冶,2000,9(2):63-66
    [13]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径.湖南有色金属,1999,15(1):26-29
    [14]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术.冶金能源,1995,14(2):32-36
    [15]王振岭编著.电炉炼锌.北京:冶金工业出版社,2001
    [16]蔡军林.韶冶铅锌密闭鼓风炉技术改造.有色冶炼,1998(4):24-28
    [17]李夏林.韶冶铅锌密闭鼓风炉I系统技术改造实践.有色冶炼,2001(5):12-15
    [18]Sasaoka Hideo,Tatsuta Norio,Kadoya Hiroki.Recent operational improvements in the ISP plant.Metallurgical Review of Mining and Metallurgical Institute of Japan,1996,13(1):154-165
    [19]Miyake Masakazu.Zinc-lead smelting at Hachinohe Smelter.Metallurgical Review of Mining and Metallurgical Institute of Japan,1995,12(1):39-50
    [20]Takewaki Masahiro,Kubota Harutoshi.Zinc-lead smelting and refining at Sumitomo Harima Works.Metallurgical Review of Mining and Metallurgical Institute of Japan,1995,12(1):77-95
    [21]王志刚.密闭鼓风炉炼铅锌技术改进与展望.湖南有色金属,2003,19(6):19-22
    [22]Zinck J M,Dutrizac J E.Behaviour of zinc,cadmium,thallium,tin and selenium during ferrihydrite precipitation from sulphate media.CIM Bulletin,1998,91(1019):94-101
    [23]Cunha M L,Gahan C S,Menad N,et al.Possibilities to use oxidic by-products for precipitation of Fe/As from leaching solutions for subsequent base metal recovery.Minerals Engineering,2008,21(1):38-47
    [24]Cheng Terry C,Demopoulos George P.Hydrolysis of ferric sulfate in the presence of zinc sulfate at 200℃:Precipitation kinetics and product characterization.Industrial and Engineering Chemistry Research,2004,43(20):6299-6308
    [25]Richmond William R,Loan Mitch,Newman Mike,et al.Zinc sulfide as a solid phase additive for improving the processing characteristics of ferrihydrite residues.Hydrometallurgy,2005,78(3-4):172-179
    [26]Elgersma F,Witkamp G J,Van Rosmalen G.Simultaneous dissolution of zinc ferfite and precipitation of ammonium jarosite.Hydrometallurgy,1993,34(1):23-47
    [27]Dutrizac J E.Effectiveness of jarosite species for precipitating sodium jarosite.JOM,1999,51(12):30-32
    [28]Seyer Sylvain,Chen Tzong T,Dutrizac John E.Jarofix:Addressing iron disposal in the zinc industry.JOM,2001,53(12):32-35
    [29]J E Dutrizac.Effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite.Hydrometallurgy,1996,42(3):293-312
    [30]Elgersma,F,Witkamp G J,Van Rosmalen G M.Incorporation of zinc in continuous jarosite precipitation.Hydrometallurgy,1993,33(3):313-339
    [31]Wang Qian-kun,Ma Rong-jun,Tan Zhi-zheng.Jarosite process-Kinetic study.Mining & Metallurgical Inst of Japan,1985,33(4):675-690
    [32]Ghodsi Mehdi,Detournay Jacquy,Marion Anne-Marie.Influence of the neutralizing agent on jarosite precipitation.Journal of Chemical Technology and Biotechnology,1982,32(10):953-958
    [33]Wood J,Haigh C.Jarosite process boosts zinc recovery in electrolutic plants.World Mining,1972,25(10):34-38
    [34]马荣骏著.湿法冶金新进展.长沙:中南工业大学出版社,1996
    [35]马荣骏编著.湿法冶金原理.北京:冶金工业出版社,2007
    [36]陈家镛,于淑秋,伍志春著.湿法冶金中铁的分离与应用.北京:冶金工业出版社,1991
    [37]钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出—亚硫酸锌还原—针铁矿法试验研究.有色金属,1981(1):82-87
    [38]林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分),1996(5):4-6
    [39]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究.湿法冶金,1999(2):36-40
    [40] Claassen Johann O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions: Defining the Zincor Process. Hydrometallurgy, 2002,67(1-3):87-108
    [41] Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions:Optimizing the Zincor Process. Journal of The South African Institute of Mining and Metallurgy, 2003,103(4):253-263
    [42] Loan M, Newman O M G, Cooper RMG,et al. Defining the Paragoethite process for iron removal in zinc hydrometallurgy. Hydrometallurgy, 2006,81(2): 104-129
    [43] Cheng Terry C, Demopoulos George P, Shibachi Yutaka, et al. The precipitation chemistry and performance of the Akita Hematite Process-An integrated laboratory and industrial scale study. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC, 2003. 1657-1674
    [44] Van Niekerk, Christoffel Johannes. Thermal precipitation of iron from sulphate solutions. Mining & Metallurgical Inst of Japan, 1985,33(10):691-706
    [45] Yoshida T, Kahata M, Dobashi M, et al. Chlorine anion elimination from zinc sulfate solution by periodical current reverse electrolytic system. TMS Annual Meeting,Aqueous Electrotechnologies: Progress in Theory and Practice. Orlando FL, 1997.177-188
    [46] Mason Cashman R S, Grinbaum Baruch, Harlamovs Juris R, et al. Solvent extraction of halides from metallurgical solutions. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC: 2003. 765-776
    [47] Strickland Peter H, Lawson Frank. Deposit effects on the kinetics of the cementation of copper with zinc from dilute aqueous solution. Australas Inst Min Metal Proc,1973(246):1-6
    [48] IEl-Batouti. Mervettesobutanol effect on the production rates of copper powder on rotating zinc disc. Anti-Corrosion Methods and Materials, 1999,46(3): 189-197
    [49] Zarraa Mahmoud A. Effect of surface-active substances on the rate of production of copper powder from copper sulphate solutions by cementation on zinc rods in gas sparged reactors. Hydrometallurgy, 1996,41(2-3):231-242
    [50] Fadali Olfat A. Effect of drag-reducing polymer on the rate of cementation of copper ion on zinc pellets. Chemical Engineering and Technology, 2003,26(4):491-49
    [51] Karavasteva M. Influence of copper on the effect of certain surfactants during the cementation of cadmium by suspended zinc particles. Hydrometallurgy,1998,48(3):361-366
    [52] Ku Young, Wu Ming-Huan, Shen Yung-Shuen. A study on the cadmium removal from aqueous solutions by zinc cementation. Separation Science and Technology, 2002,37(3):571-575
    [53] Yonnesi S R, Alimadadi H, Alamdari E Keshavarz, et al. Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions. Hydrometallurgy, 2006,84(3-4): 155-164
    [54] Safarzadeh Mohammad Sadegh, Moradkhani Davood, Ilkhchi Mehdi Ojaghi.Determination of the optimum conditions for the cementation of cadmium with zinc powder in sulfate medium. Chemical Engineering and Processing: Process Intensification, 2007,46(12): 1332-1340
    [55] Halikia I, Voudouris N. Investigation of zinc dissolution and cadmium precipitation rates in a Cd~(2+)/Zn cementation system. Transactions of the Institutions of Mining and Metallurgy, 2005,144C(2):5-108
    [56] Taha A A, Abd El-Ghani S A H. Effect of surfactants on the cementation of cadmium.Journal of Colloid and Interface Science, 2004,280(1):9-17
    [57] Karavasteva M. Effect of certain surfactants on the cementation of cadmium by suspended zinc particles. Hydrometallurgy, 1997,47(1):91 -98
    [58] Karavasteva M. Influence of copper on the effect of certain surfactants during the cementation of cadmium by suspended zinc particles. Hydrometallurgy,1998,48(3):361-366
    [59] Aurousseau M, Pharn N T, Ozil P. Effects of ultrasound on the electrochemical cementation of cadmium by zinc powder. Ultrasonics Sonochemistry,2004,11(1):23-26
    [60] Boyanov Boyan S, Konareva Victoria V, Kolev Nikolai K. Purification of zinc sulfate solutions from cobalt and nickel through activated cementation. Hydrometallurgy,2004,73(1-2):163-168
    [61] Dib A, Makhloufi L. Mass transfer correlation of removal of nickel by cementation onto rotating zinc disc in industrial zinc sulfate solutions. Minerals Engineering,2007,20(2): 146-151
    [62] Karavasteva M. Effect of certain surfactants on the cementation of nickel from zinc sulphate solutions by suspended zinc particles in the presence of copper. Canadian Metallurgical Quarterly, 1999,38(3):207-210
    [63] Nelson A, Wang W, Demopoulos G P, et al. Removal of cobalt from zinc electrolyte by cementation: A critical review. Mineral Processing and Extractive Metallurgy Review,2000,20(4):325-356
    [64] Pas V, Dreisinger D B. Fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy, 1996,43(1-3):187-205
    [65] Nasi Jari. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process. Hydrometallurgy, 2004,73(1-2):123-132
    [66] Yang Dajin, Xie Gang, Zeng Guisheng, et al. Mechanism of cobalt removal from zinc sulfate solutions in the presence of cadmium. Hydrometallurgy, 2006,81(1):62-66
    [67] Dib A, Makhloufi L. Mass transfer correlation of simultaneous removal by cementation of nickel and cobalt from sulphate industrial solution containing copper.Part Ⅱ: Onto zinc powder. Chemical Engineering Journal, 2006,123(1-2):53-58
    [68] Zeng Guisheng, Xie Gang, Yang Dajin, et al. The effect of cadmium ion on cobalt removal from zinc sulfate solution. Minerals Engineering, 2006,19(2): 197-200
    [69] Nelson A, Demopoulos G P, Houlachi G. Effect of solution constituents and novel activators on cobalt cementation. Canadian Metallurgical Quarterly,2000,39(2): 175-186
    [70] Bockman Oluf, Ostvold Terje. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes. Hydrometallurgy, 2000,54(2-3):65-78
    [71] Bockman Oluf, Ostvold Terje, Voyiatzis George A, et al. Raman spectroscopy of cemented cobalt on zinc substrates. Hydrometallurgy, 2000,55(1):93-105
    [72] Karavasteva M. The effect of certain surfactants on the cementation of cobalt from zinc sulphate solutions by suspended zinc particles in the presence of copper or antimony. Canadian Metallurgical Quarterly, 2001,40(2): 179-184
    [73] Dreher Trina M, Nelson Amy, Demopoulos George P, et al. Kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives. Hydrometallurgy, 2001,60(2):105-116
    [74] Karavasteva M. Effect of the mixture of certain surfactants on the cementation of Cu~(2+),Cd ~(2+), Ni ~(2+) and Co ~(2+) from zinc sulphate solutions by suspended zinc particles. Canadian Metallurgical Quarterly, 2003,42(1):41-48
    [75] Van Tonder G J, Cilliers P J, Meyer E H O, et al. Cobalt and nickel removal from Zincor impure electrolyte by Molecular Recognition Technology (MRT) - Pilot plant demonstration. Journal of The South African Institute of Mining and Metallurgy,2002,102(1):11-17
    [76] Scott A C, Pitblado R M, Barton G W, et al. Experimental determination of the factors affecting zinc electrowinning efficiency. Journal of Applied Electrochemistry,1988,18(1):120-127
    [77] Piron Dominique L, Masse Normand, Berube Louis Ph. Zinc electrowinning under periodical reverse current (PRC). Behavior of the cathode and effects of lead impurities.Journal of the Electrochemical Society,1990,137(7):2126-2131
    [78]Berube L Ph,Piron D L,Mathieu D.Application of periodical reverse current to zinc electrowinning.Mining & Metallurgical Inst of Japan,1985,33(1):281-296
    [79]Adcock P A,Ault A R,Newman O M G.Importance of cathode zinc morphology as an indicator of industry electrowinning performance.Journal of Applied Electrochemistry,1985,15(6):865-878
    [80]Stefanov Y,Dobrev Ts.Developing and studying the properties of Pb-TiO_2 alloy coated lead composite anodes for zinc electrowinning.Transactions of the Institute of Metal Finishing,2005,83(6):291-295
    [81]Lupi C,Pilone D.New lead alloy anodes and organic depolariser utilization in zinc electrowinning.Hydrometallurgy,1997,44(3):347-358
    [82]Das S C,Singh P,Hefter G T.Effects of 4-ethylpyridine and 2-cyanopyridine on zinc electrowinning from acidic sulfate solutions.Journal of Applied Electrochemistry,1997,27(6):738-744
    [83]Akiyama Tetsuya,Fukushima Hisaaki.Effect of ethylene glycol on energy efficiency for zinc production.Metallurgical Review of MMIJ(Mining and Metallurgical Institute of Japan),1992,8(2):70-82
    [84]Recendiz Alejandro,Gonzalez Ignacio,Nava,Jose L.Current efficiency studies of the zinc electrowinning process on aluminum rotating cylinder electrode(RCE) in sulfuric acid medium:Influence of different additives.Electrochimica Acta,2007,52(24):6880-6887
    [85]Piron D L,Mathieu D,D'Amboise M.Zinc electrowinning with 2-butyne-1,4-diol.Canadian Journal of Chemical Engineering,1987,65(4):685-688
    [86]Ivanov Ivan.Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitorso Hydrometallurgy,2004,72(1-2):73-78
    [87]Ault A R,Frazer E J,Smith G.D J.Effect of dodium and potassium sulphates on zinc electrolywinning.Journal of Applied Electrochemistry,1988,18(1):32-37
    [88]钟竹前;梅光贵著.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986
    [89]钟竹前,梅光贵著.湿法冶金新工艺.长沙中南工业大学出版社,1994
    [90]Siegmund Andreas,Prengaman David.Zinc electrowinning using novel rolled Pb-Ag-Ca anodes.Proceedings of the TMS Fall Extraction and Processing Conference.San Diego,2003.1279-1288
    [91]Takasaki Y,Watanabe H,Kojke K.Corrosion behaviors of Pb-Ag-Ca anodes for zinc electrowinning in sulfuric-acid electrolyte. Yazawa International Symposium.Metallurgical and Materials Processing: Principles and Techologies; Aqueous and Electrochemical Processing. San Diego, 2003. 307-313
    [92] Stefanov Y, Dobrev Ts. Potentiodynamic and electronmicroscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning. Transactions of the Institute of Metal Finishing, 2005,83(6):296-299
    [93] Petrova M, Stefanov Y, Noncheva Z, et al. Electrochemical behaviour of lead alloys as anodes in zinc electrowinning. British Corrosion Journal, 1999,34(3): 198-200
    [94] Rashkov St, Dobrev Ts, Noncheva Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes. Hydrometallurgy, 1999,52(3):223-230
    [95] Wesselmark M, Lagergren C, Lindbergh G. Methanol oxidation as anode reaction in zinc electrowinning. Journal of the Electrochemical Society, 2005,152(11):201-207
    [96] Furuya N, Sakakibara T. High speed zinc electrowinning system using a hydrogen anode and a rotating aluminium disc cathode. Journal of Applied Electrochemistry,1996,26(1):58-62
    [97] Bestetti M, Ducati U, Kelsall G H, et al. Use of catalytic anodes for zinc electrowinning at high current densities from purified electrolytes. Canadian Metallurgical Quarterly, 2001,40(4):451-458
    [98] Bestetti M, Ducati U, Kelsall G, et al. Zinc electrowinning with gas diffusion anodes:State of the art and future developments. Canadian Metallurgical Quarterly,2001,40(4):459-469
    [99] Cho Byung-Won, Yun Kyung-Suk. Study on energy saving of zinc electrowinning by using catalytic electrolytes. Mining & Metallurgical Inst of Japan, 1985,35(2):325-335
    [100] Gonzalez-Dominguez J A, Lew R W. Evaluating additives and impurities in zinc electrowinning. JOM, 1995,47(1):34-37
    [101] Tripathy B C, Das S C, Singh P, et al. Zinc electrowinning from acidic sulphate solutions Part Ⅳ: Effects of perfluorocarboxylic acids. Journal of Electroanalytical Chemistry, 2004,565(1):49-56
    [102] Tripathy B C, Das S C, Singh P, et al. Zinc electrowinning from acidic sulphate solutions. Part Ⅲ: Effects of quaternary ammonium bromides. Journal of Applied Electrochemistry, 1999,29(10):1229-1235
    [103] Das S C, Singh P, Hefter G T. Effects of 2-picoline on zinc electrowinning from acidic sulfate electrolyte. Journal of Applied Electrochemistry, 1996,26(12):1245-1252
    [104] Karavasteva M, Maahn E. Effect of some surfactants on the cathodic and anodic polarization of zinc and on the cathodic polarization of nickel electrodes in sulphate electrolytes. Hydrometallurgy, 1993,3(2):255-261
    [105] Mackinnon D J, Brannen' J M, Morrison R M. Effect of thiourea on ainc electrolywinning from industrial acid sulphate electrolyte. Journal of Applied Electrochemistry, 1988,18(2):252-256
    [106] Tripathy B C, Das S C, Hefter G T, et al. Zinc electrowinning from acidic sulphate solutions. Part Ⅱ: Effects of triethylbenzylammonium chloride. Journal of Applied Electrochemistry, 1998,28(9):915-922
    [107] Jin Shize, Ghali Edward, St-Amant Guy, et al. Effect of some polyols and organic acids on the current efficiency and the cell voltage during zinc electrowinning. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC,2003. 1219-1231
    [108] Ohgai T, Fukushima H, Baba N, et al. Effect of polymer additives on zinc electrowinning. Proceedings of the TMS Fall Extraction and Processing Conference.Pittsburgh PA, 2000. 855-863
    [109] Muresan L, Maurin G, Oniciu L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy, 1996,43(l-3):345-354
    [110] Jaksic Milan M. Impurity effects on the macromophology of electrodeposited zinc. Ⅱ.Causes, appearances and consequences of spongy zinc growth. Surface & Coatings Technology, 1986,28(2): 113-127
    [111] Akiyama Tetsuya, Fukushima Hisaaki, Nakayama Hiroshi, et al. Characteristics behavior of iron-group metals in the electrowinning of zinc. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan),1987,4(2):62-74
    [112] MacKinnon D J, Brannen J M. Effect of manganese, magnesium, sodium and potassium sulphates on zinc electrowinning from synthetic acid sulphate electrolytes.Hydrometallurgy, 1991,27(1):99-111
    [113] Ault A R, Frazer E J. Effects of certain impurities on zinc electrowinning in high-purity synthetic solution. Journal of Applied Electrochemistry,1988,18(4):583-588
    [114] Ohyama Shigeru, Morioka Susumu. Effects on some impurities on the electrowinning of zinc. Mining & Metallurgical Inst of Japan, 1985,35(2):219-234
    [115] Karavasteva M. Electrodeposition of metal impurities during the zinc electrowinning at high current density in the presence of some surfactants. Hydrometallurgy,1994,35(3):391-396
    [116] Frazer E J. Effect of trace lead on the coulombic efficiency of zinc electrowinning in high-purity synthetic solutions. Journal of the Electrochemical Society, 1988,135(10):2465-2471
    [117] Mackinnon D J, Fenn P L. Effect of tin on zinc electro winning from industrial acid sulphate electrolyte. Journal of Applied Electrochemistry, 1984,14(6):701-707
    [118] Mackinnon D J, Morrison R M, Brannen J M. Effects of nickel and cobalt and their interaction with antimony on zinc electrowinning from industrial acid sulphate electrolyte. Journal of Applied Electrochemistry, 1986,16(1):53-61
    [119] Bozhkov C, Petrova M, Rashkov St. Nickel and cobalt synergism effect in zinc electrowinning from sulphate electrolytes. Journal of Applied Electrochemistry,1992,22(1):73-81
    [120] Fukushima Hisaaki, Akiyama Tetsuya, Suda Toru, et al. Deposition behavior of zinv from sulfuric acid baths containing cobalt. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1986,3(1):34-47
    [121] Cachet C, Wiart R. Zinc electrowinning in acidic sulfate electrolytes: Impedance analysis and modelling of the influence on nickel impurities. Journal of the Electrochemical Society, 1994,141(1):131-140
    [122] Rashkov St, Petrova M, Bozhkov Chr. Effect of nickel on the mechanism of the initial stages of zinc electrowinning from sulphate electrolytes. Part Ⅰ. Investigations on a spectrally pure aluminium cathode. Journal of Applied Electrochemistry,1990,20(1):11-16
    [123] Bozhkov Chr, Petrova M, Rashkov St. Effect of nickel on the mechanism of the initial stages of zinc electrowinning from sulphate electrolytes. Part Ⅱ. Investigations on aluminium cathodes alloyed with iron impurities. Journal of Applied Electrochemistry, 1990,20(1): 17-22
    [124] Stefanov Yavor, Ivanov Ivan. The influence of nickel ions and triethylbenzylammonium chloride on the electrowinning of zinc from sulphate electrolytes containing manganese ions. Hydrometallurgy, 2002,64(3): 193-203
    [125] Mackinnon D J. Effect of copper on zinc electrowinning from industrial acid sulphate electrolyte. Journal of Applied Electrochemistry, 1985,15(6):953-960
    [126] Umetsu Yoshiaki, Tozawa Kazuteru. Study on behavior of germanium in electrolytic zinc production process. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1987,4(1):66-81
    [127] Mackinnon D J, Fenn PL S. Effect of germanium on zinc electrowinning from industrial acid suphate electrolyte. Journal of Applied Electrochemistry,1984,14(4):467-475
    [128] Akiyama Tetsuya, Fukushima Hisaaki. Effect of ethylene glycol on energy efficiency for zinc production. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1992,8(2):70-82
    [129] Tripathy B C, Das S C, Misra V N. Effect of antimony(Ⅲ) on the electrocrystallisation of zinc from sulphate solutions containing SLS. Hydrometallurgy,2003, 69(1-3):81-88
    [130] Robinson D J, O'Keefe T J. On the effects of antimony and glue on zinc electrocrystallization behavior. Journal of Applied Electrochemistry, 1976,6(1): 1-7
    [131] Alfantazi AM, Dreisinger D B. Foaming behavior of surfactants for acid mist control in zinc electrolysis processes. Hydrometallurgy, 2003,69(1-3):57-72
    [132] Hosny Ashraf Y. Electrowinning of zinc from electrolytes containing anti-acid mist surfactant. Hydrometallurgy, 1993,32(2):261-269
    [133] Cheng C Y, Urbani M D, Miovski P, et al. Evaluation of saponins as acid mist suppressants in zinc electrowinning. Hydrometallurgy, 2004,73(1 -2): 133-145
    [134] MacKinnon D J. Effects of foaming agents, and their interaction with antimony,manganese and magnesium, on zinc electrowinning from synthetic acid sulphate. Hydrometallurgy, 1994,35(1):11-26
    [135] Kaskiala Toni. Determination of mass transfer between gas and liquid in atmospheric leaching of sulphidic zinc concentrates. Minerals Engineering, 2005,18(12):1200-1207
    [136] Ozberk E, Chalkley M E, Collins M J, et al. Commercial applications of the Sherritt zinc pressure leach process and iron disposal. Mineral Processing and Extractive Metallurgy Review, 1995,15(1-4):115-133
    [137] Martin M T, Jankola W A. Cominco's trail zinc pressure leaching operation. CIM Bulletin, 1985,78(876):77-81
    [138] Filippou Dimitrios. Innovative hydrometallurgical processes for the primary processing of zinc. Mineral Processing and Extractive Metallurgy Review,2004,25(3):205-252
    [139] Collins M J, Masters I M, Ozberk E, et al. Deportment of selected minor elements at the HBMS zinc pressure leach plant. CIM Bulletin, 1995,88(986):62-67
    [140] Chalkley M E, Ozberk E, Vardill W D. Treatment of bulk concentrates by the Sherritt zinc pressure leach process. Minerals Engineering, 1993,6(8-10):937-948
    [141] Buban K R, Collins M J, Masters I M, et al. Comparison of direct pressure leaching with atmospheric leaching of zinc concentrates. Proceedings of the TMS Fall Extraction and Processing Conference. Warrendale PA, 2000. 727-738.
    [142] Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes.JOM, 1999,51(12):23-25
    [143]Owusu G.,Dreisinger D B.Interfacial properties determinations in liquid sulfur,aqueous zinc sulfate and zinc sulfide systems.Hydrometallurgy,1996,43(1-3):207-218
    [144]Berezowsky R M G S,Collins M J,Kerfoot D G E,et al.Commercial status of pressure leaching technology.JOM,1991,43(2):9-15
    [145]Corriou Jean-Pierre,Gely Roger,Viers Philippe.Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid.Hydrometallurgy,1988,21(1):85-102
    [146]谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ).国外金属矿选矿,2000(4):2-5
    [147]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展.国外金属矿选矿,2007(4):4-6
    [148]刘荣荣,刘书明.氧化锌矿浮选现状与进展.国外金属矿选矿,2002(7):17-19
    [149]段秀梅,罗琳.氧化锌矿浮选研究现状述评.矿冶,2000,9(4):47-51
    [150]Harvey T G.The hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel Process.Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279
    [151]Moghaddam Javad,Sarraf-Mamoory Rasoul,Yamini Yadollah,et al.Determination of the optimum conditions for the leaching of nonsulfide zinc ores(high-SiO_2) in ammonium carbonate media.Industrial and Engineering Chemistry Research,2005,44(24):8952-8958
    [152]Meng Xinghui,Han Kenneth N.Principles and applications of ammonia leaching of metals-a review.Mineral Processing and Extractive Metallurgy Review,1996,16(1):23-61
    [153]Rabah M A,E1-Sayed A S.Recovery of zinc and some of its valuable salts from secondary resources and wastes.Hydrometallurgy,1995,37(1):23-32
    [154]胡云,朱云.难选氧化锌矿氨浸的热力学.云南冶金,2004,33(1):28-31
    [155]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学.过程工程学报,2002,2(1):81-85
    [156]张元福,梁杰,李谦,等.铵盐法处理氧化锌矿的研究.贵州工业大学学报(自然科学版),2002,3 1(1):37-40
    [157]刘晓丹,张元福.铵盐浸出氧化锌矿动力学研究.贵州工业大学学报(自然科学版),2004,33(2):82-84
    [158]张保平,唐谟堂,杨声海.锌氨配合体系电积锌研究.湿法冶金,2001,20(4):175-178
    [159]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌.中南工业大学学报, 2003,34(6):619-623
    [160]张保平,唐谟堂.NH_4C1-NH_3-H_2O体系浸出氧化锌矿.中南工业大学学报,2001,32(5):483-486
    [161]YANG Sheng-hai,TANG Mo-tang.Thermodynamics of Zn(Ⅱ)-NH_3-NH_4Cl-H_2O system.Transaction of Nonferrous Metal Science of China,2000,10(6):830-832
    [162]Ju Shaohua,Motang Tang,Shenghai Yang,Yingnian Li.Dissolution kinetics of smithsonite ore in ammonium chloride solution.Hydrometallurgy,2005,80(1-2):67-74
    [163]Kim Min-Seuk,Lee Jae-Chun,Kim Byung-Su,et al.Electrochemical recovery of zinc from NH_4Cl leaching solution of ZnO.REWAS'04-Global Symposium on Recycling,Waste Treatment and Clean Technology-Proceedings.Madrid,2005.1893-1899
    [164]Mitra S A,Acosta G M,Khan J.Extraction of Zinc Oxide from Electric Arc Furnace Dust.Solubilities of Zinc Chloride and Zinc Oxide in Aqueous Ammonium Chloride Solutions from 303-363 K.Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering,1997,32(2):497-515
    [165]Lozano Blanco L J,Meseguer Zapata V F,De Juan Garcia D.Statistical analysis of laboratory results of Zn wastes leaching.Hydrometallurgy,1999,54(1):41-48
    [166]Nyirenda R L,Lugtmeijer A D.Ammonium carbonate leaching of carbon steelmaking dust.Detoxification potential and economic feasibility of a conceptual process.Minerals Engineering,1993,6(7):785-797
    [167]唐谟堂,鲁君乐,袁延胜,等.Zn(Ⅱ)-NH_3-(NH_4)_2SO_4-H_2O系的氨络合平衡.中南矿冶学院学报,1994,25(6):701-705
    [168]唐谟堂,欧阳民.硫铵法制取等级氧化锌.中国有色金属学报,1998,8(1):118-121
    [169]唐谟堂,张鹏,何静,等.Zn(Ⅱ).(NH_4)_2SO_4.H_2O体系浸出锌烟尘.中南大学学报,2007,18(5):867-871
    [170]Moustafa Samia Abd.Extraction of zinc from Egyptian zinc Ore with(NH_4)_2SO_4[J].World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [171]Saleh Hesham I,Hassan Kamaleldin M.Extraction of zinc from blast-furnace dust using ammonium sulfate.Journal of Chemical Technology and Biotechnology,2004,79(4):397-402
    [172]Chaudhury G Roy,Sarma P V R Bhaskar,Sahoo P K.Processing of zinc leach liquor in mixer-settler units using D_2EHPA-a case study.Minerals & Metallurgical Processing,1994,11(4):188-191
    [173]王延忠,朱云,胡汉.从氨浸液中萃取锌的试验研究.有色金属, 2004,56(1):37-39
    [174] 陈浩, 朱云, 胡汉. Zn(Ⅱ)- NH_3- H_20 体系中 Lix54 萃取锌.有色金属, 2003,55(3):50-51
    [175] Alguacil F J, Alonso M. Effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using LIX54. Hydrometallurgy, 1999,53(2):,203-209
    [176] Alguacil Francisco Jose, Cobo Antonio. Extraction of zinc from ammoniacal/ammonium sulphate solutions by LIX54. Journal of Chemical Technology and Biotechnology, 1998,71 (2): 162-166
    [177] Alguacil F J, Martinez S. Solvent extraction equilibrium of zinc(II) from ammonium chloride medium by CYANEX923 in Solvesso 100. Journal of Chemical Engineering of Japan, 2001,34(11):1439-1442
    [178] Amer S, Luis A. Extraction of zinc and other minor metals from concentrated ammonium chloride solutions with D2EHPA and Cyanex272. Revista de Metalurgia (Madrid), 1995,31(6):351-372
    [179] Olper M, Maccagni M. The recycling of zinc bearing secondary materials and industrial wastes with the combined INDUTEC/EZINEX process. REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology. Madrid, 2005.2125-2132
    [180] Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process. 2000 TMS Fall Extraction & Processing. Pittsburgh, 2000. 379-396
    [181] Limpo Gil Jose Luis, Figueiredo J M, Amer Amezaga Sebastian, et al. Method for the recovery of zinc ,copper and lead of oxidized and/or sulfurized ores and materials.EP0434831A1, 1991.
    [182] Limpo J L, Amer S, Figueiredo J M, et al. Hydrometallurgical treatment of complex sulphide ores using highly concentrated ammonium chloride solutions. ICHM'92 Proceedings of the Second International Conference on Hydrometallurgy. Changsha:1992. 302-309
    [183] Limpo J L, Figueiredo J M, Amer S, et al. The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions. Hydrometallurgy, 1993,28(2):149-161
    [184] Limpo J L, Luis A, Gomez C. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process. Hydrometallurgy, 1993,28(2):163-178
    [185] Limpo J L, Luis A. Solubility of zinc chloride in ammoniacal ammonium chloride solutions. Hydrometallurgy, 1993,32(2):247-260
    [186] Amer S, Figueiredo J M, Luis A. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(2-ethylhexyl)phosphoric acid.Hydrometallurgy,1995,37(3):323-337.
    [187]杨声海,唐谟堂,邓昌雄,等.由氧化锌烟灰氨法制取高纯锌.中国有色金属学报,2001,11(6):1110-1114
    [188]杨声海,唐谟堂,何静,等.锌焙砂氨法生产高纯锌.中国有色冶金,2004(2):14-17
    [189]杨声海,唐谟堂.Zn(Ⅱ)-NH_3-NH_4cl-H_2O体系生产金属锌.有色金属(冶炼部分),2001(1):7-9
    [190]唐谟堂,杨声海.Zn(Ⅱ)-NH_3-NH_4Cl-H_2O电积锌工艺及阳极反应机理.中南工业大学学报,1999,30(2):153-155
    [191]YANG Sheng-hai,TANG Mo-tang,CHEN Yi-feng,et al.Anodic reaction kinetics of electrowinning zinc in system of Zn(Ⅱ)-NH_3-NH_4Cl-H_2O.Transactions of Nonferrous Metals Society of China,2004,14(3):626-630
    [192]张乾,刘志浩,战新志,等.分散元素铟富集的矿床类型和矿物专属性.矿床地质,2003,22(1):309-316
    [193]伍永田,王明艳,范森葵.分散元素铟的富集规律研究综述.南方国土资源,2005(10):33-35
    [194]Kramer A,Brown D,Blossom W,et al.Gallium,germanium,indium,sellenium,tellurium,thallium.USA Geoglogical Survey,Mineral Commodity Summaries,2001(1):3-4.
    [195]中国地质和矿物资源信息研究所编.中国矿物资源.北京:地质出版社,1993
    [196]王顺昌,齐守智.铟的资源、应用和市场.世界有色金属,2000(12):22-24
    [197]周智华,莫红兵,徐国荣,等.稀散金属铟富集与回收技术的研究进展.有色金属,2005,57(1):71-76
    [198]伍锡军.国内外锗和铟回收工艺的发展.稀有金属,1995,19(3):218-223.
    [199]Alfantazi A M,Moskalyk R R.Processing of indium:A review.Minerals Engineering,2003,16(8):687-694
    [200]邹家炎,陈少纯.稀散金属产业的现状与展望.中国工程科学,2002,4(8):86-92
    [201]侬键桃.我国铟产业现状及发展.有色冶炼,2002(8):12-14
    [202]王树楷编著.铟冶金.北京:冶金工业出版社,2006
    [203]Hoffmann James E.Advances in the extractive metallurgy of selected rare and precious metal.JOM,1991,43(4):18-23
    [204]White C E T,Slattery J A.Review of the extraction metallurgy of indium.Soc of Mining Engineers of AIME,1983(1):95-102
    [205]石玲斌,郑顺德.富铟铜渣氯化挥发初探.采矿技术,2002,2(4):18-19
    [206]Fortes M C B,Martins A H,Benedetto J S.Indium recovery from acidic aqueous solutions by solvent extraction with D_2EHPA:A statistical approach to the experimental design.Brazilian Journal of Chemical Engineering,2003,20(2):121-128
    [207]Paiva A P.Recovery of indium from aqueous solutions by solvent extraction.Separation Science and Technology,2001,36(7):1395-1419
    [208]Naik Mandar T,Dhadke Purshottam M.Solvent extraction of indium(Ⅲ) with bis(2-ethylhexyl) phosphinic acid in toluene.Journal of Chemical Engineering of Japan,1999,32(3):366-369
    [209]Rodriguez M Avila,Cote G,Bauer D.Recovery of indium(Ⅲ) from mixed hydrochloric acid-sulphuric acid media by solvent extraction with cyanex 301~((R)).Solvent Extraction and Ion Exchange,1992,10(5):811-827
    [210]Ishii Hajime,Tsuchiya Masahiro,Kohata Katsunori,et al.Solvent extraction of indium with 1-(4-alkylphenyl)-3-hydroxy-2-methyl-4-pyridones.Solvent Extraction and Ion Exchange,1991,9(1):61-72
    [211]Bhattacharya Badal,Mandal Dilip Kumar,Mukherjee Siddhartha.Equilibrium and kinetics of the extraction of indium(Ⅲ) by p-tolyl-α-thiopicolinamide.Journal of Chemical Engineering of Japan,2003,36(6):703-706
    [212]De San Miguel E R,De Gyves J,Munoz M,et al.Solvent extraction of In(Ⅲ) from concentrated HCl media with adogen364.Solvent Extraction and Ion Exchange,1995,13(1):109-126
    [213]Avila-Rodriguez M,Cote G,Mendoza R N,et al.Thermodynamic study of the extraction of indium(Ⅲ) and cadmium(Ⅱ) by Cyanex301 from concentrated HCl media.Solvent Extraction and Ion Exchange,1998,16(2):471-485
    [214]Gupta B,Deep A,Malik P.Extraction and recovery of cadmium using Cyanex923.Hydrometallurgy,2001,61(1):65-71
    [215]Fortes M C B,Martins A H,Benedetto J S.Selective separation of indium by iminodiacetic acid chelating resin.Brazilian Journal of Chemical Engineering,2007,24(2):287-292
    [216]Fortes M C B,Martins A H,Benedetto J S.Indium absorption onto ion exchange polymeric resins.Minerals Engineering,2003,16(7):659-663
    [217]刘军深,蔡伟民.萃淋树脂技术分离稀散金属的研究现状及展望.稀有金属与硬质合金,2003,31(4):36-39
    [218]刘军深,李桂华,宋文芹,等。螫合树脂法从酸性溶液中分离回收铟和镓.有色金属(冶炼部分),2006(3):32-35
    [219]郭天立,任益民.湿法炼锌生产中铟的富集实践.有色矿冶,1998,12(6):25-28
    [220]王强,李科立,刘贵德.铟在竖罐炼锌中的走向及其回收方法.有色矿冶,2003,19(5):34-36
    [221]颜美凤.韶关冶炼厂铟的综合回收及深加工探讨.中国资源综合利用,2003(2):11-12
    [222]杨斌,戴永年,罗文洲.硬锌提锌和富集锗铟技术的研究和应用.真空科学与技术,1999,19(增刊):166-168
    [223]李淑兰,刘永成,翟大成,等.硬锌真空蒸馏富集锗铟的研究.昆明工学院学报,1994,19(4):38-45
    [224]郑顺德.硬锌处理新工艺研究.有色金属(冶炼部分),1996(5):14-16
    [225]林兴铭.真空炉渣综合回收锗铟银等金属的碱熔法试验研究.有色矿冶,2004,20(3):33-34
    [226]胡新.从硬锌综合回收锗铟工艺浅析.有色金属(冶炼部分),1997(5):23-26
    [227]邓学广,李清湘,吴坤霖.硬锌真空蒸馏脱锌和富集锗、铟.有色金属(冶炼部分),2000(2):31-34
    [228]郑顺德.从电炉底铅中回收铟和锗.有色金属(冶炼部分),1997(3):26-28
    [229]郑顺德.熔盐分层法处理隔焰炉底铅.有色冶炼,1999,28(6):25-26
    [230]蓝宗营.从真空炉渣中综合回收锗铟银.有色金属(冶炼部分),2003(5):33-34
    [231]何静,张鹏,吴斌秀,等.含铟铅合金提铟新工艺研究.稀有金属,2006,8(30):10-14
    [232]林文军,刘全军.含铟锌渣浸出和萃取铟的研究.昆明理工大学学报(理工版),2006,3 1(2):23-25
    [233]陈爱国.提高富集铟渣品位及铟回收率的途径探讨.湖南有色金属,2000,16(增刊):4-6
    [234]王露娟,温加冰,闫杰军.提取铟工艺流程改革试验研究.有色矿冶,2000,16(2):31-34
    [235]陈立三.株冶铟冶炼过程及改造.湖南有色金属,1995,11(1):39-42
    [236]马立明,马运柱.株冶铟富集工艺改进及应用研究.矿冶工程,2003,23(2):59-62
    [237]陈志飞,姚先理,宁顺明,等.铁矾渣焙烧浸出萃取提铟的工艺.CN98112542.5,1998
    [238]宁顺明,陈志飞.从黄钾铁矾渣中回收锌铟。中国有色金属学报,1997,7(3):56-58
    [239]王令明.来冶铟系统技改设计思路浅述.湖南有色金属,2002,18(2):17-19
    [240]沈奕林,覃庶宏,熊志军.铁矾渣的处理及萃取提铟新工艺研究.有色金属(冶炼部分),200 1(4):33-35
    [241]张银堂,陈志飞,宁顺明.In_2O_3还原挥发的热力学计算.中国有色金属学报, 2002,12(3):592-595
    [242]马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟.湿法冶金,1997(2):58-61
    [243]陈志飞,马荣骏,沈湘黔,等.从高铟铁溶液中回收铟的工.CN87102083.1,1987
    [244]宋素格,蒋开喜,李运刚,等.湿法炼锌过程中铟铁的分离.有色金属(冶炼部分),2006(3):5-7
    [245]布克斯鲍姆,普法夫编著.工业无机颜料.北京:化学工业出版社,2007
    [246]毕胜.国内外颜料工业概况及发展趋势.涂料工业,2003,33(7):44-47
    [247]李永庆.国内氧化铁行业现状及发展趋势.化工科技市场,2004(10):27-31
    [248]曲颖.我国无机颜料工业的现状与展望.中国涂料,2006,21(7):5-15
    [249]周志刚.铁氧体磁性材料.北京:科学出版社,1981
    [250]于文广,张同来,魏雨,等.纳米Mn-Zn铁氧体的制备研究进展.材料导报,2006,20(5):33-36
    [251]刁春丽,娄广辉.铁氧体磁性材料的研究现状与展望.山东陶瓷,2006,29(1):18-21
    [252]刘志勇,刘九皋,包大新.高磁导率锰锌铁氧体材料新进展.新材料产业,2005,(12):12-16
    [253]翁兴园.前景广阔的中国软磁铁氧体产业.新材料产业,2003,133(4):27-33
    [254]刘亚丕,何时金,包大新.软磁材料的发展趋势.磁性材料及器件,2003,34(3):26-29
    [255]李东风,贾振斌,魏雨.尖晶石型软磁铁氧体纳米材料的制备研究进展.电子元件与材料,2003,22(6):37-40
    [256]翁兴园.Ni-Zn软磁铁氧体材料应用与市场发展.新材料产业,2002,101(4):23-24
    [257]李东风,贾振斌,魏雨.软磁铁氧体的发展历程及展望.化工时刊,2002(8):12-14
    [258]陈国华.21世纪软磁铁氧体材料和元件的发展趋势.磁性材料及器件,2001,32(4):31-34
    [259]彭龙,张怀武.我国软磁铁氧体产业发展与未来.新材料产业,2007,158(1):38-41
    [260]Metcalf Eddy.Wastewater engineering:treatment and reuse.北京:清华大学出版社,2003
    [261]常青.水处理絮凝学.北京:化学工业出版社,2003
    [262]王辉.锌挥发窑废渣物理分选回收工艺研究.稀有金属与硬质合金,2007,35(1):31-35
    [263]王辉.湿法炼锌工业挥发窑窑渣资源化综合循环利用.中国有色冶金, 2007(6):46-50
    [264]卢安贤,黎文献,谢佑卿,等.锌挥发窑渣在玻璃工业中的应用.中国有色金属学报,1994,4(3):48-51
    [265]王伟光.锌渣综合利用的研究与利用.矿冶,1996,5(1):74-80
    [266]Pappu Asokan,Mohini Saxena,Shyam R Asoleker.Hazardous jarosite use in developing non-hazardous product for engineering application.Journal Hazardous Materials,2006,137(3):1589-1599
    [267]Moutanaro L,Bianchini N,Riucon J Ma,et al.Sintering behavior of pressed red mud wastes from zinc hydrometallurgy.Ceramics International,2001,27(1):29-37
    [268]Sylvain Seyer,Tzong T Chen,J E Dutrizac.Jarofix:Addressing iron disposal in the zinc industry.JOM,2001,53(12):32-35
    [269]Pappu Asokan,Saxena Mohini,Asolekar Shyam.Jarosite characteristics and its utilization potentials.Science of the Total Environment,2006,359(2):232-243
    [270]Plescia Paolo,Maccari Dante.Recovering metals from red mud by thermal treatment and magnetic separation.JOM,1996,48(1):25-28
    [271]J L T Hage,R D Schuiling,S P Vriend.Production of magnetite from sodiumjarosite under reducing hydrothermal conditions:The reduction of Fe~Ⅲ to Fe~Ⅱ with cellulose.Canadian Metallurgical Quarterly,1999,38(4):267-276
    [272]J L T Hage,R D Schuiling.Comparative column elution of jarosite waste and its autoclaved product-Evidence for the immobilization of deleterious elements in jarosite.Minerals Engineering,2000,13(3):287-296
    [273]J E Dutrizac.Converting jarosite residues into compact hematite products.JOM,1990,42(1):36-39
    [274]G K Das,S Anand,S Acharya,Das R P.Preparation and decomposition of ammoniojarosite at elevated temperature in H_2O-(NH_4)_2SO_4-H_2SO_4 media.Hydrometallurgy,1995,38(3):263-276
    [275]Romero M,Ma Rincon J.Preparation and properties of high iron oxide content glasses obtained from industrial wastes.Journal of the European Ceramic Society,1998,18(2):153-166
    [276]Pelino M,Cantalini C,Rincon J M.Preparation and properties of glass-ceramic materials obtained by recycling goethite industrial waste.Journal of Materials Science,1997,32(17):4655-4660
    [277]Montanaro L,Bianchini N,Rincon J Ma.,et al.Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy.Ceramics International,2001,27(1):29-37
    [278]Pelino Mario,Cantalini Carlo,Abbruzzese Carlo,et al.Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc.Hydrometallurgy,1996,40(1-2):25-35
    [279]Piga L,Stoppa L,Massidda R.Recycling of industrial goethite wastes by thermal treatment.Resources,Conservation and Recycling,1995,14(1):11-20
    [280]Plescia Paolo,Maccari Dante.Recovering metals from red mud by thermal treatment and magnetic separation.JOM,1996,48(1):25-28
    [281]Kendall Douglas S.Toxicity Characteristic Leaching Procedure and iron treatment of brass foundry waste.Environmental Science and Technology,2003,37(2):367-371
    [282]Picaro T,Pei B,Kane A R,et al.Separation and mineralogical analysis of bayer red mud.Developments in Chemical Engineering and Mineral Processing,2002,10(5-6):475-489
    [283]杨绍文,曹耀华,李清.氧化铝生产赤泥的综合利用现状与进展.1999(6):46-47
    [284]姜怡娇,宁平.氧化铝厂赤泥的综合利用现状.环境科学技术,2003,26(1):40-42
    [285]Yang Jiakuan,Zhang Dudu,Hou Jian,et al.Preparation of glass-ceramics from red mud in the aluminium industries.Ceramics International,2008,34(1):125-130
    [286]Peng Fei,Liang Kai-Ming,Shao Hua,et al.Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud.Chemosphere,2005,59(6):899-903
    [287]Youssef N F,Shater M O,Abadir M F,et al.Utilization of red mud in the manufacture of ceramic tiles.Key Engineering Materials,2001,206-213(3):1775-1778
    [288]Sglavo Vincenzo M,Maurina Stefano,Conci Alexia,et al.Bauxite ‘red mud' in the ceramic industry.Part 2:Production of clay-based ceramics.Journal of the European Ceramic Society,2000,20(3):245-252
    [289]罗道成,刘俊峰.铝厂赤泥制备无机高分子絮凝剂聚硅酸铁及应用.无机盐工业,2005,37(6):52-54
    [290]孙体昌,解建伟,李发生.用赤泥制备复合混凝剂的研究.环境工程,2003,21(5):71-73
    [291]罗道成,易平贵,陈安国,等.用氧化铝厂赤泥制备高效混凝剂聚硅酸铝铁.环境污染治理技术与设备,2002,3(8):33-35
    [292]Sushil Snigdha,Batra Vidya S.Catalytic applications of red mud,an aluminum industry waste:A review.Applied Catalysis B:Environmental,2008,81(1-2):64-77
    [293]Alvarez Jorge,Ordonez Salvador,Rosal Roberto,et al.A new method for enhancing the performance of red mud as a hydrogenation catalyst.Applied Catalysis A:General,1999,180(1-2):399-409
    [294]廖春发,姜平国,焦芸芬.从赤泥中回收铁的工艺研究.中国矿业, 2007.16(2):93-95
    [295]何小虎,韦莉,何书焱.平果赤泥综合利用探讨和建议.轻金属,2004(3):14-18
    [296]梅贤功,孙宗毅,陈荩.高铁赤泥煤基直接还原过程中固相反应的热力学分析.轻金属,1994(7):8-12
    [297]梅贤功,袁明亮,左文亮,等.高铁赤泥煤基直接还原中铁晶粒成核及晶核长大动力学.中南工业大学学报,1996,27(2):159-162
    [298]刘永康,梅贤功.高铁赤泥煤基直接还原研究.烧结球团,1995,20(2):5-9
    [299]邱冠周,刘永康,梅贤功.添加剂对高铁赤泥煤基的直接还原行为.中南工业大,学学报,1995,26(6):734-739
    [300]刘永康,王淀佐,罗文华,等.添加剂对高铁赤泥煤基直接还原的催化作用.湖南冶金,1995(6):5-7
    [301]罗道成,刘俊峰,易平贵,等.氧化铝厂赤泥综合利用的新工艺.中国矿业,2002,11(5):50-53
    [302]方觉,李振国,尹海生,等编著.非高炉炼铁工艺与理论.北京:冶金工业出版社,2002
    [303]廖春发,卢惠明,邱定蕃,等.从赤泥中综合回收有价金属工艺的研究进展。轻金属,2003(10):18-22
    [304]姜平国,王鸿振.从赤泥中回收铁工艺的研究进展.四川有色金属,2005(2):23-25
    [305]何波.关于回收赤泥中铁的研究现状.轻金属,1996(12):21-26
    [306]张元福,刘永钢,甘国耀,等.平果赤泥综合利用现状和开发研究展望.轻金属,1994(7):13-16
    [307]刘丕旺.谈广西平果铝土矿拜耳法赤泥综合利用.轻金属,1994(7):13-16
    [308]熊国宣,许文苑,马建国,等.钛白副产硫酸亚铁的综合利用研究.环境污染与防治,2003,25(6):339-341
    [309]刘海宁,关晓辉.钛白生产副产硫酸亚铁的综合利用.环境工程,2003,21(5):74-76
    [310]吴素芳,戴君裕,王樟茂.硫酸亚铁制备铁氧体用α-氧化铁研究概述.无机盐工业,1998,30(5):17-19
    [311]谢海云,刘殿文,孙力军,等.钛白生产中废酸和硫酸亚铁综合利用及产品开发.昆明理工大学学报,2000,25(4):10-13
    [312]李振民,刘跃进,熊双喜.钛白副产硫酸亚铁制取云母氧化铁颜料的研究.湘潭大学自然科学学报,2003,25(1):46-49
    [313]周宏民,刘跃进,熊双喜.钛白副产硫酸亚铁制备氧化铁黑的研究.湘潭大学自然科学学报,2001,23(1):65-69
    [314]朱萍,施利毅,张仲燕,等.利用钛白副产物绿矾制备纳米α-FeOOH的研究.环境科学学报,2000,20(3):382-384
    [315]黄平峰.用钛白副产硫酸亚铁生产氧化铁系列颜料.无机盐工业,2003,35(5):7-9
    [316]刘新才.钛白副产绿矾制食品级乳酸亚铁的工艺研究.湖南化工,1999,29(3):18-20
    [317]中国有色金属协会.2007年我国铅锌行业运行情况.http://www.chinania.org.cn/web/website/index_1009320589237710000.htm,2008
    [318]周廷熙,王吉坤.高铁硫化锌精矿冶炼工艺研究进展.中国有色冶金,2006(1):13-17
    [319]窦明民.锌冶金中铁酸锌生成及离解机理研究.云南金属,2003,22(9):63-65
    [320]王玉芳,蒋开喜,王海北.高铁闪锌矿低温低压浸出新工艺研究.有色金属(冶炼部分),2004(4):4-6
    [321]王书民,张国春.高铁闪锌矿精矿的氨浸工艺.商洛师范专科学校学报,2006,20(1):100-102
    [322]董英.高铁硫化锌精矿冶炼工艺的探讨.云南冶金,2000,29(4):26-29
    [323]王吉坤,周廷熙.高铁硫化锌精矿加压浸出研究及产业化.有色金属(冶炼部分),2006(2):24-26
    [324]王吉坤,李存兄,李勇,等.高铁闪锌矿高压酸浸过程中ZnS-FeS-H_2O系电位-pH图.有色金属(冶炼部分),2006(2):2-5
    [325]王吉坤,周廷熙,吴绵梅.高铁闪锌矿精矿加压浸出半工业试验研究.中国工程科学,2005,7(1):60-64
    [326]王吉坤,周廷熙,吴绵梅.高铁闪锌矿精矿加压酸浸新工艺研究.有色金属(冶炼部分),2004(1):5-8
    [327]王吉坤,彭建蓉,杨大锦,等.高铟高铁闪锌矿加压酸浸工艺研究.有色金属(冶炼部分),2006(2):30-32
    [328]杨大锦,廖元双,徐亚飞,等.高铁闪锌矿悬浮电解工艺研究Ⅰ悬浮电解液的对比研究.云南冶金,2004,33(1):23-26
    [329]杨大锦,廖元双,熊昆云,等.高铁闪锌矿悬浮电解工艺研究Ⅱ.云南冶金,2004,33(5):16-19
    [330]唐谟堂,李仕庆,杨声海,等.一种无铁渣湿法炼锌方法.CN03118199.6,2003
    [331]李仕庆.高铁铟锌精矿无铁渣湿法炼锌提铟及铁源高值化利用工艺与原理研究[博士学位论文].长沙:中南大学冶金与科学工程学院,2006
    [332]唐谟堂,李仕庆,杨声海,等.无铁渣湿法炼锌提铟工艺.有色金属(冶炼部分),2004(6):27-29
    [333]李仕庆,刘伟峰,唐谟堂,等.从无铁渣湿法炼锌流程还原补锰液中萃取铟.吉 首大学学报(自然科学版),2004,25(4):14-18
    [334]LI Shi-qing,TANG MO-tang,HE Jing,et al.Extracting indium from indium-zinc concentrate.Transactions of Nonferrous Metals society of China,2006,16(6):1448-1454
    [335]沈湘黔,陈志飞.提高黄钾铁钒法炼锌中银回收率的探讨.矿冶工程,1988,8(4):35-38
    [336]J E Dutrizac,O Dinardo.The co-precipitation of copper and zinc with lead jarosite.Hydrometallurgy,1983,11(1):61-78
    [337]J E Dutrizac,D J Hardy,T T Chen.The behavior of cadmium during jarosite precipitation.Hydrometallurgy,1996,41(3):269-285
    [338]F Elgersma,G J Witkamp,G M van Rosmalen.Incorporation of zinc in continuous jarosite precipitation.Hydrometallurgy,1993,33(3):313-339
    [339]谢美求,陈志飞.锑在沉矾过程中的行为[J].矿冶工程,2003,23(2):56-58
    [340]J E Dutrizac,J L Jambor.The behavior of arsenic during jarosite precipitation:Arsenic precipitation at 97℃ from sulphate or chloride media.Canadian Metallurgical Quarterly,1987,26(2):91-101
    [341]J E Dutrizac,J L Jambor,T T Chen.The behavior of arsenic during jarosite precipitation:Reactions at 150℃ and the mechanism of arsenic precipitation.Canadian Metallurgical Quarterly,1987,26(2):103-105
    [342]J A 迪安主编.兰氏化学手册.北京:科学出版社,2003
    [343]叶大伦,胡建华编著.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    [344]杨显万编著.高温水溶液热力学数据计算手册.北京:冶金工业出版社,1983
    [345]徐光宪,王文清,吴瑾光,等著.萃取化学原理.上海:上海科学技术出版社,1984
    [346]胡之德,关祖京编著.分析化学中的溶剂萃取.北京:科学出版社,2001
    [347]俞斌,陈智,滕藤,等.TBP-CCl_4-H_2O体系中水和磷酸三丁酯作用的NMR研究.化学学报,1984,42(9):893-898
    [348]俞斌,陈智,滕藤,等.zn~(2+)离子水合数及水在TBP-ZnCl_2萃取体系中的行为的核磁共振研究.金属学报,1985,21B(2):51-57
    [349]鲍猛,刑湘萍,张振伟,等.TBP萃取Zn(Ⅱ)的平衡及FT-IR研究.山东建材学院学报,1996,13(2):109-111
    [350]罗文申.铁黄制备过程的物理化学研究.化工冶金,1990(2):27-30
    [351]Katsumi Goto,Hiroki Tamura,Masaichi Nagayama.The mechanism of oxygenation of ferrous ion in neutral solution.Inorganic Chemistry,1970,9(4):963-964
    [352]Misawa T,Haskimoto K,Shimodaira S.The mechanism of formation iron oxide and oxyhydroxides in aqueous solution at room temperature.Corrosion Science,1974,14(1):131-149
    [353]陈学元,曾桓兴,万召奎,等.纺锤形铁黄α-FeOOH微晶合成动力学研究.中国科学技术大学学报,1994,24(2):176-184
    [354]曾桓兴,张庶元,刘先松,等.均匀纺锤形铁黄α-FeOOH微晶生长机制研究.科学通报,1994,39(4):319-322
    [355]曾桓兴,任福明,张庶元,等.均匀纺锤形铁黄α-FeOOH微晶的生长.无机材料学报,1992,7(2):236-241
    [356]都有为,陆怀先,焦洪震,等.FeOOH生成条件研究.物理学报,1980,29(7):879-896
    [357]张昭,彭少方,刘栋昌编著.无机精细化工工艺学.北京:化学工业出版社,2002
    [358]#12
    [359]#12
    [360]Rokert M Smith,Arthur E Martell.Critical stability constants.Volume 4:Inorganic Complexes.New York and London:Plenum Press,1976
    [361]Hogfel.Stability constents of Metal-ion Complexes.London:Special Publication,1964
    [362]E H(o|¨)gfeldt.Stability Constants.Part A:Inorganic Ligands.Oxford:Pergamon Press,1982
    [363]D D Perrin.Stability Constants.Part B:Organic Ligands.Oxford:Pergamon Press,1979
    [364]Tang Motang,Zhao Tiancong.A Thermodynamic study on the basic and negative potential fields of the systems of Sb-S-H_2O and Sb-Na-S-H_2O.Journal of Cent South Inst Min Metall,1988,19(1):35-43
    [365]日本化学学会编著.无机固态反应.北京:科学出版社,1985
    [366]Ehrhardt H,Campbell S J,Hofmann M.Magnetism of the nanostructured spinel zinc ferrite.Scripta Materialia,2003,48(8):1141-1146
    [367]Choi Eun Jung,Ahn Yangkyu,Song Ki-Chang.Mossbauer study in zinc ferrite nanoparticles.Journal of Magnetism and Magnetic Materials,2006,301(1):171-174
    [368]Upadhyay C,Verma H C.Anomalous change in electron density at nuclear sites in nanosize zinc ferrite.Applied Physics Letters,2004,85(11):2074-2076
    [370]Hofmann M,Campbell S J,Ehrhardt H,et al.The magnetic behaviour of nanostructured zinc ferrite.Journal of Materials Science,2004,39(16-17):5057-5065
    [371]Chinnasamy C N,Narayanasamy A,Ponpandian N.Ferrimagnetic ordering in nanostructured zinc ferrite.Scripta Materialia,2001,44(8-9):1407-1410
    [372]Chinnasamy C N,Narayanasamy A,Ponpandian N,et al.Magnetic properties of nanostructured ferrimagnetic zinc ferrite.Journal of Physics Condensed Matter,2000,12(35):7795-7805
    [373]张密林,刘顺隆,彭艳兵.尖晶石结构铁氧体的制备及其分解CO_2的研究.哈尔滨工程大学学报,1999,20(6):52-56
    [374]Tamaura Y,Tabata M.Complete reduction of carbon dioxide to carbon using cation-excess magnetite.Nature,1990,346(6281):255-256
    [375]周望岳,陈献诚,李清祈,等.正丁醇在铁系尖晶石催化剂上氧化脱氢的反应机理.催化学报,1983,4(3):167-175
    [376]Meng Weiqing,Li Feng,Evans David G;et al.Photocatalytic activity of highly porous zinc ferrite prepared from a zinc-iron(Ⅲ)-sulfate layered double hydroxide precursor.Journal of Porous Materials,2004,11(2):97-105
    [377]Liu Jianjun,Lu Gongxuan,He Hongliang,et al.Studies on photocatalytic activity of zinc ferrite catalysts synthesized by shock waves.Electrochimica Acta,1996,41(17):1049-1056
    [378]曹锋,李新勇,曲振平,等.铁酸锌纳米晶的合成及其催化脱色性能研究.环境污染与防治,2006,28(12):891-894
    [379]Tomas-Alonso F,Latasa J M Palacios.,Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurization.Fuel Processing Technology,2004,86(2):191-203
    [380]Ikenaga Na-Oki,Ohgaito Yousuku,Matsushima Hiroaki,et al.Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning.Fuel,2004,83(6):661-669
    [381]Kobayashi Makoto,Shirai Hiromi,Nunokawa Makoto.High-temperature sulfidation behavior of reduced zinc ferrite in simulated coal gas revealed by in situ x-ray diffraction analysis and mossbauer spectroscopy.Energy and Fuels,2002,16(3):601-607
    [382]Ayana Y M Abu,E1-Sawy S M,Salah S H.Zinc-ferrite pigment for corrosion protection.Anti-Corrosion Methods and Materials,1997,44(6):381-388
    [383]Stejskal Jaroslav,Trchova Miroslava,Brodinova Jitka,et al.Coating of zinc ferrite particles with a conducting polymer,polyaniline.Journal of Colloid and Interface Science,2006,298(1):87-93
    [384]Rahaman Mohamed N,De Jonghe Lutgard C.Reaction sintering of zinc ferrite during constant rates of heating.Journal of the American Ceramic Society,1993,76(7):1739-1744
    [385]Bera S,Prince A A M,Velmurugan S,et al.Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS.Journal of Materials Science,2001,36(22):5379-5384
    [386]Xue Hun,Li Zhaohui,Wang Xuxu,et al.Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method.Materials Letters,2007,61(2):347-350
    [387]Li Yao,Zhao Jiupeng,Qiang Liangsheng,et al.Combustion synthesis of zinc ferrite powders in oxygen.Journal of Alloys and Compounds,2004,373(1-2):298-303
    [388]Li Yao,Zhao Jiupeng,He Xiaodong.Influence of oxygen pressure on combustion synthesis of zinc ferrite powders.Materials Science and Engineering B:Solid-State Materials for Advanced Technology,2004,106(2):196-201
    [389]Bid S,Pradhan S K.Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld's analysis.Materials Chemistry and Physics,2003,82(1):27-37
    [390]Verdier Thomas,Nachbaur Virginie,Jean Malick.Mechanosynthesis of zinc ferrite in hardened steel vials:Influence of ZnO on the appearance of Fe(Ⅱ).Journal of Solid State Chemistry,2005,178(11):3243-3250
    [391]Botta P M,Bercoff P G,Aglietti E F,et al.Synthesis and magnetic properties of zinc ferrite from mechanochemical and thermal treatments of Zn-Fe_3O_4 mixtures.Materials Science and Engineering A,2003,360(1-2):146-152
    [392]Martin de Vidales J L,Lopez-Delgado A,Vila E,et al.Effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature.Journal of Alloys and Compounds,1999,287(1):276-283
    [393]叶琳,段月琴,袁志好.共沉淀法制备的铁酸锌纳米材料的晶化与晶粒生长行为,天津理工大学学报,2007,23(6):36-38
    [394]田庆华,黄凯,郭学益.纳米铁酸锌的制备研究矿冶工程.矿冶工程,2005,25(2):46-48
    [395]Tanaka Katsuhisa,Katsuta Makoto,Nakashima Seisuke,et al.Hydrothermal synthesis and magnetic properties of zinc ferrite nanocrystals.Journal of the Japan Society of Powder and Powder Metallurgy,2005,52(4):221-227
    [396]Rozman Marko,Drofenik Miha.Hydrothermal synthesis of manganese zinc ferrites.Journal of the American Ceramic Society,1995,78(9):2449-2455
    [397]Lucke R,Schlegel E,Strienitz R.Hydrothermal preparation of manganese zinc ferrites.Journal De Physique.IV:JP,1997,7(1):63-64
    [398]Gong Cairong,Chen Dairong,Jiao Xiuling.Sol-gel synthesis of hollow zinc ferrite fibers.Journal of Sol-Gel Science and Technology,2005,35(1):77-82
    [399]Atif M,Hasanain S K,Nadeem M.Magnetization of sol-gel prepared zinc ferrite nanoparticles:Effects of inversion and particle size.Solid State Communications,2006,138(8):416-421
    [400]张荣俊,黄戒介,赵建涛,等.硬脂酸前驱体法制铁酸锌脱硫剂及其在中温下的应用.燃料化学学报,2007,35(2):217-221
    [401]Verges Andres M,Martinez M.Synthesis and characterization of zinc ferrite particles prepared by hydrothermal decomposition of zinc chelate solutions.Journal of Materials Research,1993,8(11):2916-2920
    [402]Carp Oana,Segal E,Brezeanu Mafia,et al.Synthesis of manganese-zinc ferrite through the transformation of polynuclear coordination compounds.Journal of Thermal Analysis,1996,47(3):857-869
    [403]Yener Doruk O,Giesche Herbert.Synthesis of pure and manganese-,nickel-,and zinc-doped ferrite particles in water-in-oil microemulsions.Journal of the American Ceramic Society,2001,84(9):1987-1995
    [404]Roy M K,Verma H C.Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition.Journal of Magnetism and Magnetic Materials,2006,306(1):98-102
    [405]Liu Shixi,Yue Bin,Jiao Kun,et al.Template synthesis of one-dimensional nanostructured spinel zinc ferrite.Materials Letters,2006,60(2):154-158
    [406]F Patino,E Salinas,M Cruells,et al.Alkaline decomposition-cyanidation kinetics of argentian natrojarosite.Hydrometallurgy,1998,49(3):323-336
    [407]A Rola,J Vinals,M Arranz,et al.Characterization and alkaline decomposition-cyanidation of beudantite-jarosite materials from Rio Tinto ores.Canadian Metallurgical Quarterly,1999,38(2):93-103
    [408]E Salinas,A Roca,M Cruells,et al.Characterization and alkaline decomposition-cyanidation kinetics of industrial ammonium jarosite in NaOH media.Hydrometallurgy,2001,60(3):237-246
    [409]A Rola,M Cruells,F Patino,et al.Kinetics model for the cyanidation of silver ammonium jarosite in NaOH medium.Hydrometallurgy,2006,81(1):15-23
    [410]F Patino,M Cruells,A Rola,et al.Kinetics of alkaline decomposition and cyanidation of argentian ammonium jarosite in lime medium.Hydrometallurgy,2003,70(1):153-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700