用户名: 密码: 验证码:
多自由度可控机构式新型工程机械设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程机械是我国装备工业的重要组成部分,在农田、水利、交通、市政建设维护和各类综合性机械化施工方面发挥了重要的作用。但是,现有工程机械产品存在一些不足之处。以挖掘机为例,传统单自由度机械式挖掘机坚固耐用,但输出不够灵活;液压式挖掘机可实现柔性化的输出,但又存在液压系统零部件加工装配要求高、寿命不长、漏油等缺陷。这是工程机械领域一个长期未能取得突破的棘手难题。
     多自由度可控机构是机械技术与电子技术有机结合的产物,具有输出柔性化、刚度高、惯量低、承载能力强、动力学性能好等特点。国内外学者对可控机构开展了较多研究工作,但总体说来,有关成果还比较-零散、孤立,多是针对某种可控机构(如平面两自由度五杆机构)的研究,可供工程实际应用的机构构型依然很少。而且所讨论的多为平面机构,对空间可控机构的研究鲜见报道,尤其结合工程实际应用的研究还较少。
     针对上述问题,本文将多自由度可控机构应用于工程机械产品,研究这类机构面向任务创新设计相关的理论和方法,主要工作及创新点如下:
     1.提出了基于功能分析的面向任务机构型综合方法,并将其应用于工程机械产品的创新设计当中:
     在对现有工程机械输出动作要求、机构拓扑结构要求等全面分析的基础上,运用功能分析方法,通过功能求解模型求解得到其输出运动的规律和特性。通过机构构型演化和基于螺旋理论的约束综合,发明了一系列平面可控机构式、空间可控机构式、变胞可控机构式工程机械产品的执行机构。
     2.提出了新型可控机构式工程机械的结构学分析理论和方法:
     针对平面和空间可控机构各自的结构特点,在运动副运动自由度旋量描述的基础上,求解了机构各运动链运动螺旋系的基。基于互易螺旋理论,研究了运动链终端约束及其在约束下的自由运动,进而得到了这类机构末端执行器受到的约束以及在此约束下的自由度数和运动输出规律;
     针对具有变胞功能可控机构的特点,综合运用构态邻接矩阵、拓扑图、变胞机构的基因建模与构态进化的拓扑结构分析方法等,分析其工作原理和构态转化特点,得到了机构构态演变过程的生物学进化特性,发展了自由度为0的两种有向阿苏尔杆组作为新的变胞元并给出其表达方式,获得了变胞进化生长过程中构型的转化方式和蜕化方法,最后通过进化计算,得到了变胞源装载机构的基因模型表达式。
     3.提出了新型可控机构式工程机械的运动学分析理论和方法:
     针对平面可控机构式挖掘机的特点,以一种正铲式平面三自由度可控挖掘机构为例,运用闭环矢量法和约束方程建立了机构运动学模型,分析了机构的速度和加速度特性,求解得到了一阶和二阶运动影响系数。根据隐函数存在定理,求解了机构处于理论工作空间边界的条件,得到了机构的理论可达工作空间;
     针对空间可控机构式装载机的特点,运用D-H参数法建立了铲斗可实现两维转动输出的可控装载机构的运动学模型,进而通过位移群的平移计算,求解得到了铲斗运动学输出参数与各个输入变量之间的映射关系。
     4.提出了新型可控机构式工程机械的动态性能分析理论和方法:
     以正铲式平面三自由度可控挖掘机构为例,考虑到驱动电机转子偏心旋转引起不均匀磁场的机电耦合关系,运用有限元建模方法建立了此类可控挖掘机构整个系统的耦合动力学模型,利用多尺度法,研究了系统在驱动电机电磁参数激励下的主共振问题,得到其在此情况下的一阶近似定常解,分析了系统主共振机理。
     在上述理论分析的基础上,建立了多自由度可控机构式新型工程机械的虚拟样机模型,并进行了仿真分析。依据仿真结果,结合挖掘机和装载机完成典型挖掘、装载动作的要求,选取了各自驱动电机的型号以及相应的运动控制卡,设计了电气控制柜并开发了相关控制软件,完成了控制系统的搭建。制造了物理样机模型两台并进行相关实验,对本文所提出设计理论和方法予以验证,为后续实物样机的试制提供了参考。
Construction machinery is an important part of the equipment industry in China, which has played a significant role in the areas such as farmland, water conservancy, transportation, municipal building and maintenance, and all kinds of comprehensive mechanized constructions. However, there are some shortcomings in traditional construction machinery products. Excavator, for example, which is one of the most important construction machinery divided into two categories:mechanical excavator (also called Electric Shovel or Cable Shovel) and hydraulic excavator. Former is the excavator of choice in oil sands digging and surface mining for its durability, high productivity and low ownership costs resulting from long economic operating life, but lacks flexibility due to the structural limitations. The latter has almost replaced the mechanical excavator because of its flexibility and mobility. But there still exists some problems such as hydraulic leaks and high costs of manufacturing and maintaining. This is a long-term unsolved problem in construction machinery field.
     Multi-DOF (Degree of Freedom) controllable mechanism was developed by the combination of mechanics and electronics, which is provided with the characteristics such as flexible output, low inertia, high stiffness and carrying ability, etc. Researches on this type of mechanism have been conducted widely. But generally speaking, results are isolated and separated, mostly focusing on some specific type controllable mechanism such as the planar2-DOF five-bar mechanism. Configurations including planar and spatial type of the mechanism are still not enough for engineering applications.
     This paper introduces the application oriented design theories and methodologies applying controllable mechanism to the innovative design of engineering machinery, including:
     1. Application oriented type synthesis methods based on functional analysis
     Based on the analysis on output characteristics of traditional engineering machinery, functional analysis applying the solving model in the form of Function-Effect-Technical Action Process-Executive Action-Mechanism (F-E-P-A-M) is carried out. By configuration evolution and screw theory based type synthesis, a series of novel planar and spatial controllable mechanism type loaders and excavators are proposed, as well as an electric loader with metamorphic functions.
     2. Structure analysis theory and method
     A basis of the kinematic chain screw system is obtained according to the characteristics of the proposed planar and spatial controllable mechanisms respectively, based on the screw description of the kinematic pairs. Terminal constraints on the kinematic chains and the free movements under the constraints are analyzed based on the reciprocal screw theory. Then, the constraints as well as the numbers of DOF and the laws of output motions of the end effectors of these mechanisms are revealed.
     The source-metamorphic mechanism of the loading mechanism is introduced first, as well as its metamorphic ways to achieve variable topology. The adjacency matrix and topological graphs are applied to describe topological change of each working phase, based on which the principles and characteristics of configuration changing are analyzed. Two0-DOF directional Assur groups are developed to be the new metamorphic cells as well as their representations. Configuration transformation and its degeneration ways during the genetic growth are studied. Biological modeling for working-phase mechanisms is then proposed. The evolutionary synthesis process for generating the source-metamorphic loading mechanism and its representation is introduced by evolutionary operations.
     3. Kinematics analysis theory and method
     According to the features of planar controllable mechanism type excavators, the kinematic model of a face shovel type planar3-DOF controllable excavating mechanism is established applying the closed-loop vector method and constraint equations. The first-order and second-order kinematic influence coefficients are deduced by analyzing the velocity and acceleration characteristics. Based on the implicit function theorem, the conditions are obtained when the mechanism is in its workspace boundary as well as the theoretical reachable workspace.
     According to the characteristics of spatial controllable mechanism type loaders, the kinematic model of a controllable loading mechanism whose bucket can achieve two-dimensional rotating output is established using D-H parameter method. The mapping relationships between the output parameters and each input variable are obtained by the translational calculations of displacement groups.
     4. Dynamic characteristics analysis methods
     Taking a shovel type planar3-DOF controllable excavating mechanism as an example, the coupling dynamic model of the system is established using finite element method which contains the non-uniform magnetic field electromechanical coupling relationship caused by rotor eccentric rotation of the driven motors. The first order stationary solution is obtained by calculation applying the method of multiple scales, based on which, the primary resonance of the system aroused by electromagnetic parameters of the motors is analyzed
     On the basis of the above theoretical studies, a simulation analysis is carried out based on the virtual prototype model of the proposed multi-DOF controllable mechanism type novel engineering machinery. According to the simulation results, the control system satisfying the typical digging and loading demands of traditional hydraulic excavators and loaders is built, which contains the selection of the motor types, the motion control cards and the development of the electric control cabinet and relevant control software. Two physical prototypes are manufactured. Excavating and loading experiments are conducted, whose results verified the proposed design theories and methodologies, which can also provide some useful references for the subsequent trial of the physical prototypes.
引文
[1]A. S. Hall, P. R. McAree. Robust Bucket Position Tracking for a Large Hydraulic Excavator[J]. Mechanism and Machine Theory,2005(40):1-16.
    [2]William Richardson-Little, Christopher Damaren. Position Accommodation and Compliance Control for Robotic Excavation[J]. Journal of Aerospace Engineering,2008,21(9):27-34.
    [3]J. Maciejewski, A. Jarzgbowski, W. Trampczyriski. Study on The Efficiency of the Digging Process Using the Model of Excavator Bucket[J]. Journal of Terramechanics,2004 (40):221-233.
    [4]Zygmunt Towarek. Dynamics of a Single-bucket Excavator on a Deformable Soil Foundation during the Digging of Ground[J]. International Journal of Mechanical Sciences,2003,45:1053-1076.
    [5]黄志雄,何清华,张新海,等.小型挖掘机的现状及发展趋势[J].工程机械与维修,2004(5):65-66.
    [6]Samuel Frimpong, Ying Li. Stress Loading of the Cable Shovel Boom under in-situ Digging Conditions [J]. Engineering Failure Analysis,2007,14:702-715.
    [7]朱齐平.进口工程机械使用维修手册[M].沈阳:辽宁科学技术出版社,2001.
    [8]李新德,王丽.工程机械液压系统常见故障的原因分析及对策[J].机床与液压,2008,36(7):164-167.
    [9]闫书文.机械式挖掘机设计[M].北京:机械工业出版社,1996.
    [10]林贵瑜,连晋华.机械式挖掘机设计与发展的几个问题探讨[J].矿山机械,2006,34(12):52-54.
    [11]管荣根,顾玲.国内外矿山工程机械的现状与发展[J].工程机械与维修,2005,7:66-69.
    [12]王得胜.12m3机械式矿用挖掘机履带架强度和刚度分析研究[D].长春:吉林大学,2007.
    [13]Peyret F., Jurasz J.. The Computer Integrated Road Construction project[J]. Automation in Construction,2000(9).
    [14]Singh S., Cannon H.. Multi-Resolution Planning for Earth moving. Proceedings International Conference on Robotics and Automation[C].Leuven, Belgium,1998.
    [15]邹慧君,李瑞琴,郭为忠,等.机构学10年来主要研究成果和发展展望[J].机械工程学报,2003,39(12):22-30.
    [16]周双林,邹慧君,姚燕安,等.混合输入五杆机构构型的分析[J].上海交通大学学报,2001,35(7):1045-1048.
    [17]张新华,张策,田汉民.精确实现成组轨迹的二自由度连杆机构逆运动学综合问题[J].机械设计,2001,10(10):9-12.
    [18]王汝贵,蔡敢为,李岩舟.可控连杆机构系统预定轨迹下的动态优化综合[J].中国机械工程,2008,19(22):2653-2656.
    [19]邹慧君,李瑞琴.电机驱动型广义机构概念设计知识库的建立方法和应用[J].机械设计与研究,2002,18(1):10-12.
    [20]K. Yueng, W. Z. Guo, R. Du. The Prototype of a New Metal Forming Press Using Controllable Mechanism[C]. CIRP 2nd International Conference on Reconfigurable Manufacturing. Ann Arbor, MI, USA,2003.
    [21]Du R., W. Z. Guo. The Design of a New Metal Forming Press with Controllable Mechanism[J]. ASME Journal of Mechanical Design,2003,125(3):582-592.
    [22]陆永辉.混合输入机构驱动曲柄压力机的研究[D].天津:天津大学,2001.
    [23]卢宗武.可控压力机研究[D].天津:天津大学,2002.
    [24]李辉.混合驱动可控压力机的基础理论研究[D].天津:天津大学,2003.
    [25]李学刚.混合驱动可控机构的研究[D].唐山:河北理工大学,2005.
    [26]方新国.平面两自由度七杆机构混合驱动机的设计理论及实验研究[D].上海:上海交通大学,2003.
    [27]田汉民.混合输入五杆机构的分析与综合[D].天津:天津大学,2001.
    [28]方新国,邹慧君,郭为忠,梁庆华.混合驱动平面两自由度七杆机构最优运动规划[J].机械设计与研究,2004,20(1):35-38.
    [29]张珂.混合驱动连杆机构系统动力学建模、优化与控制研究[D].上海:东华大学,2005.
    [30]周洪.可控机构的设计理论及其应用研究[D].上海:上海交通大学,2000.
    [31]周双林.实现轨迹的混合驱动五杆机构设计理论及其实验研究[D].上海:上海交通大学,2001.
    [32]王建宇.实现给定轨迹的平面五杆可控机构的研究[D].哈尔滨:哈尔滨工业大学,2003.
    [33]陈昕.混合驱动机械系统在考虑速度波动情况下的运动重新规划[D].天津:天津大学,2005.
    [34]王喆.混合驱动机器的跟踪控制和原理性实验研究[D].天津:天津大学,2006.
    [35]J. S. Dai, J. Rees Jones. Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds[J]. Transaction of the ASME, Journal of Mechanical Design,1999,121(3):375-382.
    [36]Parise J. J., Howell L., Magleby S. P.. Ortho-Planar Mechanisms[C/CD]//The 26th Biennial
    -Mechanisms and Robotics Conference, Baltimore,2000, New York, ASME 2000:40-13.
    [37]Lee C. C., Herv6 J. M.. Discontinuous Mobility of Four-link Mechanisms with Revolute, Prismatic and Cylindrical Pairs through the Group Algebraic Structure of the Displacement set. In:.8th International Conf. on the Theory of Machines and Mechanisms,2001, Czech Republic:Liberec, Elsemere,2001:5-7.
    [38]Carroll D. W., Magleby S. P.,Howell L.. Simplified Manufacturing through a Metamorphic Process for Compliant Orthoplanar Mechanisms[C/CD]//2003 ASME Design Engineering Technical Conference, Chicago,2003. New York:ASME,2003.
    [39]李端玲,戴建生,张启先,等.基于构态变换的变胞机构综合[J].机械工程学报,2002,38(7):12-16.
    [40]戴建生,丁希仑,邹慧君.变胞原理和变胞机构类型[J].机械工程学报,2005,41(6):7-12.
    [41]Liu C. H., Yang T. L.. Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways[C]//The 11th World Congress in Mechanism and Machine Science, Tianjing, China,2004. Beijing:China Machine Press,2004:1285-1288.
    [42]金国光,高峰,丁希仑.变胞机构的分类及其构态分析[J].机械科学与技术,2005,24(7):764-767.
    [43]王德伦,戴建生.变胞机构及其综合的理论基础[J].机械工程学报,2007,43(8):32-42.
    [44]张克涛,方跃法,房海蓉.基于变胞原理的一种探测车机构设计与分析[J].北京航空航天大学学 报,2007,33(7):838-841.
    [45]王德伦,崔磊,戴建生.变胞多指灵巧手分析[J].机械工程学报,2008,44(8):1-6.
    [46]张利萍,王德伦,戴建生.变胞机构的基因建模理论与构态进化分析[J].机械工程学报,2008,44(12):49-56.
    [47]崔磊,王德伦,戴建生.变胞多指灵巧手手掌尺度综合[J].大连理工大学学报,2009,49(3):380-386.
    [48]张利萍,王德伦,戴建生.变胞机构的基因进化综合理论[J].机械工程学报,2009,45(2):106-113.
    [49]唐国潮,金国光,吴艳荣,等.变胞机构结构设计方法探讨[J].机械设计与制造,2009(4):256-258.
    [50]卢伍鋆,蓝兆辉.描述变胞机构构态变化的改进邻接矩阵[J].机械传动,2009,33(6):25-26,34.
    [51]Jian S. Dai, John Rees Jones. Matrix Representation of Topological Changes in Metamorphic Mechanisms[J]. ASME Journal of Mechanical Design,2005,127:837-840.
    [52]Liping Zhang, Delun Wang, Jian S. Dai. Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms[J]. ASME Journal of Mechanical Design,2008,130:072303-1~ 072303-11.
    [53]Hong-Sen Yan, Chen-Hsiung Kang. Configuration Synthesis of Mechanisms with Variable Topologies [J]. Mechanism and Machine Theory,2009,44(5):896-911.
    [54]Liping Zhang, Jian S. Dai. Reconfiguration of Spatial Metamorphic Mechanisms[J]. ASME Journal of Mechanisms and Robotics,2009,1:011012-1-011012-8.
    [55]Dongmirig Gan, Jian S. Dai, Qizheng Liao. Constraint analysis on mobility change of a novel metamorphic parallel mechanism[J]. Mechanism and Machine Theory,2010,45,1864-1876.
    [56]邹慧君,颜鸿森.机械创新设计理论与方法[M].北京:高等教育出版社,2008.
    [57].于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础[M].北京:机械工业出版社,2008.
    [58]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2008.
    [59]Beyer R. Technische Kinematik. Leipzig:Barth,1931.
    [60]Beyer R. Kinematische Getribe synthese. Springer-Verlag.1953.
    [61]李学荣.四连杆机构综合概论:第1册.北京人民教育出版社,1960.
    [62]杨廷立.机械系统基本理论.北京:机械工业出版社,1996.
    [63]曲继方,安子军,曲志刚.机构创新原理.北京:科学出版社,2001.
    [64]曹惟庆.连杆机构的分析与综合.第2版.北京:科学出版社,2002.
    [65]Suh C H, Radcliffe C W. Kinematics and Mechanisms Design. New York:John Wiley & Sons,1978.
    [66]Sandor G N, Erdman A. Advanced Mechanism:Analysis and Synthesis. New York. Prentice Hall, Inc. 1984.
    [67]张启先.空间机构的分析和综合.北京:机械工业出版社,1984.
    [68]祝毓琥,刘行远.空间连杆机构的分析与综合.北京:高等教育出版社,1986.
    [69]白师贤等.高等机构学.上海:科学技术出版社,1988.
    [70]杨廷立.机器人机构拓扑结构学.北京:机械工业出版社,2004.
    [71]Paul R P. Robot Manipulators. Cambridge:The MIT Press,1981.
    [72]李健,李剑峰,武桢圈等.冗余度机器人多关节故障的运动学容错性及其优化.机械工程学报, 2002,38(7):111-115
    [73]Hunt K H. Kinematic Geometry of Mechanisms. Oxford:Oxford University Press,1978.
    [74]Hunt K H. Structural Kinematics of In-Parallel-Actuated Robot-Arms. J. of Mech. Trans. And Aut. in Des.,1983,105:705-712.
    [75]Gao F, et al. New Kinematic Sructure for 2-,3-,4-, and 5-DOF Parallel Manipulator Design. Mechanism and Machine Theory,2002,37:1359-1411.
    [76]Tsai L W. The enumeration of a class of three-dof parallel manipulators. Tenth World Congress on the Theory of Machines and Mechanisms, Finland,1999,1123-1126.
    [77]Di Gregorio R and Parenti-Castelli V. Mobility analysis of 3-UPU parallel mechanism assembled for a pure translational motion[C]. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligence Mechatronics, AIM' 99, Atlanta(Georgia), pp.520-525.
    [78]Huang Z and Fang Y F. Kinematic characteristics analysis of 3-dof in Parallel actuated pyramid mechanisms[J]. Mechanism and Machine Theory,1996,31(8):1009-1018.
    [79]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [80]赵铁石.黄真.欠秩空间并联机器人输入选取的理论和应用.机械工程学报,2000,36(10):81-85.
    [81]Huang Z, Li Q C. Type Synthesis Principle of Minor-Mobility Parallel Manipulators. Science in China, 2002,45(3):241-248.
    [82]Li Q C, Huang Z, J M Herve, Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group Of Displacement. IEEE Trans. on Robotics and Automation 2004,20(2):173-180.
    [83]Huang Z and Li Q C. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators. International Journal of Robotics Research, 2002,21(2):131-145.
    [84]Huang Z, Li Q C. Type synthesis of symmetrical lower-mobility parallel mechanisms using constraint-synthesis method. The International Journal of Robotics Research,.2003,22(1):59-79.
    [85]Zhao T. S., Dai J. S. and Huang Z.. Geometric Analysis of Overconstrained Parallel Manipulators with three and four degree-of-freedom. JSME International Journal Series C,2002, Vol.45, No.3, pp.1-11.
    [86]李秦川.对称少自由度并联机器人型综合理论及新机型综合[D].秦皇岛:燕山大学,2003.
    [87]赵铁石.空间少自由度并联机器人机构分析与综合的理论研究[D].秦皇岛:燕山大学,2000.
    [88]Kong X. W., Gosselin C M. Type synthesis of 3T1R 4-DOF parallel manipulators based on Screw Theory[J]. IEEE Transactions on Robotics and Automation,2004,20(2):181-190.
    [89]Kong X. W., Gosselin C. M..Type synthesis of 3-DOF translational parallel manipulators based on Screw Theory[J].ASME Journal of Mechanical Design,2004,126:83-92.
    [90]Kong X. W., Gosselin C. M.. Type synthesis of 3-DOF spherical parallel manipulators based on Screw Theory. ASME Journal of Mechanical Design,2004,126:101-108.
    [91]Herve J M. Sparacino F. Structual synthesis of parallel robots generating spatial translation[C]. Proceedings of IEEE International Conference on Robotics and Automation,1991,808-813.
    [92]Herve J M. Analyze structurelle des m6canismes par groupe des deplacement [J]. Mechanisms and Machine Theory,1978,13:437-450.
    [93]Herve J M. The Lie group of rigid body displacement, a fundamental tool for mechanism design. Mechanism and Machine Theory,1999, vol.34, no.5, pp.719-730.
    [94]Herve J. M.. The planar-spherical kinematic bond:implementation in parallel mechanisms [J/OL], 2003.
    [95]Herve J M. Uncouple actuation of pan-tilt wrists[J]. IEEE Transaction on Robotics,2006,22(1): 56-64.
    [96]Huynh P, Herve J M. Equivalent kinematic chains of three degree-of-freedom tripod mechanisms with planar-spherical bonds[J]. ASME Journal of Mechanical Design,2005,127(1):95-102.
    [97]Li Q. C., Huang Z., Herve J. M.. Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie Group of displacement [J]. IEEE Transactions on Robotics and Automation,2004,20(2):173-180.
    [98]MENG Jian, LIU Guanfeng, LI Zexiang. A geometric theory for synthesis and analysis of sub 6-DOF parallel manipulators[J]. IEEE Transactions on Robotics,2007,23(4):625-649.
    [99]金琼,杨廷立,刘安心等.基于单开链单元的三平移一转动并联机器人机构型综合及机构分类.中国机械工程,2001,12(9):1038-1043.
    [100]Chebychev P. A.. Th6orie des mecanismes connus sous le nom de parallelogrammes[J]. Memoires presentesal_Academie imperiale dessciences de Saint-Petersbourg par divers savants,1854.
    [101]Grubler M..Allgemeine eigenschaften der zwanglaufigen ebenen kinematische kette:Ⅰ. Civilingenieur[J].1883,29(1):167-200.
    [102]Kutzbach K.. Mechanische leitungsverzweigung, ihre gesetze und anwendungen[J]. Maschinenbau, Der Bettrieb,1929,8(21):710-716.
    [103]Dobrovolski V. V.. Dynamic analysis of statically constraint mechanisms (in Russian)[J]. Akad Nauk SSSR, Trudy Sem, Teorii Masini Mekhanizmov,1949,30(8):252-259.
    [104]Hunt K. H., Phillips J. R.. Zur kinematic mechanischer verbindung fur raumliche bewegung[J]. Maschinenbau,1965,14(12):657-664.
    [105]Waldron K.J.. The constraint analysis of mechanisms[J]. J Mechanisms,1966,1(2):101-114.
    [106]Bagci C.. Degrees of freedom of motion in mechanisms [J]. Trans ASME J Eng Industry,1971, 93(2):140-148.
    [107]Freudenstein F., Alizade R.. On the degree-of-freedom of mechanisms with variable general constraint[J]. In:Proceedings of 4th World Congress on Theory of Machines and Mechanisms. Newcastle:Tyne,1975.
    [108]Herve J. M.. Analyse structurelle des mecanismes par groupe des deplacements[J]. Mech Mach Theory,1978,13(4):437-450.
    [109]Gogu G. Mobility of mechanisms:A critical review[J]. Mech Mach Theory,2005,40(9): 1068-1097.
    [110]Rico J. M., Ravani B.. On mobility analysis of linkages using group theory[J]. Trans ASME J Mech Design,2003,125(1):70-80.
    [111]Rico J. M., Gallardo J., Ravani B.. Lie algebra and the mobility of kinematic chains[J]. J Robotic Systems,2003,20(8):477-499.
    [112]Alizade R,Bayram C.Structural synthesis of parallel manipulators[J].Mechanism and Machine Theory,2004,39(8):857-870.
    [113]Zhao Jing-Shan, Zhou Kai, Feng Zhi-Jing. A theory of degrees of freedom for mechanisms[J]. Mechanism and Machine Theory,2004,39(6):621-643.
    [114]Jing-Shan Zhao,Kai Zhou and etc,A New Method to Study the Degree of Freedom of Spatial Parallel Mechanisms,The International Journal of Advanced Manufacturing Technology, Vol.23, No.3-4,2004, pp.288-294.
    [115]Kong X. W., Gosselin C. M.. Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain[C]. In:ASME conference, MECH-85337. Orlando: ASME,2005.
    [116]Gogu G.. Chebychev-Grubler-Kutzbach's criterion for mobility calculation of multi-loop mechanisms revisited via theory of linear-transformations[J]. European J Mechanics-A/Solids,2005, 24(3):427-441.
    [117]Shukla G., Whitney D. E.. The path method for analyzing mobility and constraint of mechanisms and assemblies[J]. IEEE Trans AutomSci Eng,2005,2(2):184-192.
    [118]Yang T L,Sun D J.A general formula of degree-of-freedom for parallel mechanisms and its application[C]//Proceeding of 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, Pennsylvania, USA,2006: 349-358.
    [119]Yang T L,Sun D J.A general formula of degree of freedom for parallel mechanisms[C]//Proceeding of 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Brooklyn,New York, USA,2008:1379-1390.
    [120]Wampler C,Larson B T,Erdman A G.A new mobility formula for spatial mechanisms[C]//Proceeding of 2007 International Design-Engineering Technical Conferences and Computers and Information in Engineering Conference,Las Vegas, Nevada, USA,2007:561-570.
    [121]Muller A.Generic mobility of rigid body mechanisms[J].Mechanism and. Machine Theory,2009, 44(6):1240-1255.
    [122]Zhang Y T, Mu D J. New concept and new theory of mobility calculation for multi-loop mechanisms[J]. Science in China Series E:Technological Sciences,2010,53(6):1598-1604.
    [123]Huang Z., Li Q. C.. General methodology for type synthesis of lower-mobility symmetrical parallel manipulators and several novel manipulators[J]. Int J Rob Research,2002,21(2):131-146.
    [124]Huang Z., Xia P.. The mobility analysis of some classical mechanism and recent parallel robots[C]. In:ASME Conference, MECH-99109.Chicago:ASME,2006.
    [125]刘婧芳,朱思俊,曾达幸,等.包括2个新并联机构和一些反常机构的自由度分析[J].燕山大学学报,2006,30(6):487-494.
    [126]黄真,刘婧芳,曾达幸.基于约束螺旋理论的机构自由度分析的普遍方法[J].中国科学E辑:技术科学,2009,39(1):84-93.
    [127]黄真,刘婧芳,李艳文.150年机构自由度的通用公式问题[J].燕山大学学报,2011,35(1):1-14,39.
    [128]Huang Z.. Modeling formulation of 6-DOF multiloop parallel manipulators partl-kinematic influence matrix. The 4th IFToMM Conference on Mechanisms andCAD, Bucharest, Romania,1985, Ⅱ-1,155-162.
    [129]Thomas M., Tesar D.. Dynamic modeling of serial manipulator arms. Journal of Dynamics System Measurement and Control,1982,104(9):218-227.
    [130]黄真,孔宪文.具有冗余度空间并联机构的运动分析.机械工程学报,1995,31(3):44-50.
    [131]方跃法,黄真.三自由度3-RPS并联机器人机构的运动分析.机械科学与技术,1997,16(1):82-88.
    [132]夏富杰.空间并联机构运动分析的有限元法.机械科学与技术,1998,17(1):60-62.
    [133]黄田,李江.空间机构运动学的网络分析方法.天津大学学报,1995,28(5):600-604.
    [134]Murray R. M., Li Z. X., Sastry S. S.. A Mathematical Introduction to Robotic Manipulation. Florid, USA:CRC Press,1994:51-92.
    [135]李永刚.基于微分流形的全对称少自由度并联机构基础理论研究[D].天津:天津大学,2006.
    [136]刘海涛.少自由度机器人机构一体化建模理论、方法及工程应用[D].天津:天津大学,2010.
    [137]Weimin Li, Feng Gao, Jianjun Zhang. R-CUBE, a decoupled parallel manipulator only with revolute joints[J]. Mechanism and Machine Theory,2005,40(4):467-473.
    [138]吴孟丽,张大卫,赵兴玉.一种新型非对称并联机构的运动学分析[J].中国机械工程,2008,19(12):1424-1428.
    [139]刘善增,余跃庆,侣国宁等.3自由度并联机器人的运动学与动力学分析[J].机械工程学报,2009,45(8):11-16.
    [140]黄鹏,汪劲松,王立平等.3-PRS并联机构误差运动学分析及辨识[J].清华大学学报(自然科学版),2010,50(11):1811-1814,1819.
    [141]李秦川,孙晓东,陈巧红等.2-PRS-PRRU并联机构运动学与奇异分析[J].机械工程学报,2011,47(3):21-27.
    [142]李秦川,陈志,陈巧红等.[PP]S类并联机构无伴随运动的结构条件[J].机械工程学报,2010,46(15):31-35.
    [143]Xinjun Liu, Jinsong Wang, G. Pritschow. Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms[J]. Mechanism and Machine Theory,2006,41:145-169.
    [144]Si J. Zhu, Zhen Huang, Hua F. Ding. Forward/Reverse Velocity and Acceleration Analysis for a Class of Lower-Mobility Parallel Mechanisms [J]. Transaction of ASME, Journal of Mechanical Design,2007,129:390-396.
    [145]Hodjat Pendar, Maryam Mahnama, Hassan Zohoor. Singularity Analysis of Parallel Manipulators Using Constraint Plane Method[J]. Mechanism and Machine Theory,2011,46:33-43.
    [146]Guowu Wei, Jian S.Dai. Geometric and Kinematics Analysis of A Seven-bar Three-fixed-pivoted Compound-joint Mechanism[J]. Mechanism and Machine Theory,2010,45:170-184.
    [147]Mazen Zein, Philippe Wenger, Damien Chablat. Non-singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators [J]. Mechanism and Machine Theory,2008,43:480-490.
    [148]廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望[J].中国机械工程,1996,7(2):44-46
    [149]H.Wang, K.Williams. Effects of laminations on the vibrational behaviour of electrical machine stators[J]. Journal of Sound and Vibration,1997,202:703-715
    [150]J.Zajaczkowski. Stability of the rotation of a motor driven shaft above the critical speed[J]. Journal of Sound and Vibration,1998,209(5):857-865
    [151]C.Wang, J.C.S. Lai. Vibration analysis of an induction motor[J]. Journal of Sound and Vibration, 1999,224(4):733-756
    [152]D.Yu.Skubov, I.V. Shumakovich. Stability of the rotor of an induction motor in the magnetic field of the current windings[J]. Mechanics of Solids,1999,34:28-40
    [153]Arkkio, M.Antila, K.Pokki, A.Simon, E.Lantto. Electromagnetic force on a whirling cage rotor[A]. IEE Proceedings-Electric Power Applications[C],2000,147:353-360
    [154]A. Tenhunen, T.P.Holopainen, A.Arkkio. Impulse method to calculate the frequency response of the electromagnetic force on a whirling cage rotor[A]. IEE Proceedings-Electric Power Applications[C],2003,150:752-756
    [155]T.P.Holopainen, A.Tenhunen, E.Lantto, A.Arkkio. Numerical identification of electromagnetic force parameters for linearized rotordynamic model of cage induction motors[J]. Journal of Vibration and Acoustics,2004,126:384-390
    [156]Timo P. Holopainen, Asmo Tenhunen, Antero Arkkio. Electromechanical interaction in rotordynamics of cage induction motor[J]. Journal of Sound and Vibration,2005,284:733-755
    [157]钟掘,陈先霖.复杂机电系统耦合与解耦设计[J].中国机械工程,1999,10(9):1051-1054
    [158]钟掘,唐华平.高速轧机若干振动问题一复杂机电系统耦合动力学研究[J].振动、测试与诊断,2002,22(1):2-8
    [159]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,2002,33(5):522-525
    [160]He J J, Yu S Y, Zhong J. Modeling for driving systems of four-high rolling mill[J]. Trans. Nonferrous Met. Soc. China,2002,12(1):88-92.
    [161]Liou F W, Erdman A G Analysis of a High-Speed Flexible Four-Bar Linkage:Part II-Analytical and Experimental Results on the Apollo [J]. ASME J. Vibration, Acoustics, Stress, and Reliability in Design,1989,Vol. 111,No.1:42-47.
    [162]Liou F W, Arthur G, Erdman, Lin C S. Dynamic analysis of a motor-gear-mechanism system[J]. Mechanism and Machine Theory,1991,26(3):239-252
    [163]Ahmad Smaili, Murali Kopparapu, Muhammad Sannah. Elastodynamic response of a d. c. motor driven flexible mechanism system with compliant drive train components during start-up[J]. Mechanism and Machine Theory,1996,31(5):659-672
    [164]孟宪举,王哲,张策.电动机-连杆机构与连杆机构弹性动力分析比较.机械设计,2002,19(11):35-36.
    [165]蔡敢为,李兆军,王汝贵.连杆机构弹性振动理论研究[M].武汉:华中科技大学出版社,2012.
    [166]Gan-wei Cai, Ru-gui Wang, Zhao-jun Li. The dynamic equation and simulation of a linkage mechanism fabricated from three-dimensional braided composite materials [J]. JSME International Journal, Series C,2006,49(3):727-733.
    [167]Zhaojun Li, Ganwei Cai, Qibai Huang, Shiqing Liu. Analysis of nonlinear vibration of a motor-linkage mechanism system with composite links[J]. Journal of Sound and Vibration,2008, 311(3-5):924-940.
    [168]Cai Ganwei, Chang Pingping, Ma Cunzhi, et al. Dynamic analytic model of mechanism with Links Fabricated from Symmetric Laminates[J]. Journal of Center South University (English Edition), 2006,13(6):624-630.
    [169]李兆军.电动机—弹性连杆机构系统耦合动力学研究[D].武汉:华中科技大学,2006.
    [170]李兆军,蔡敢为,黄其柏.电动机-弹性连杆机构系统谐振机理研究[J].振动工程学报,2006,19(1):93-97.
    [171]蔡敢为,李兆军,常平平.电动机—弹性连杆机构系统的动态方程及其响应[J].固体力学学报,2005,26(4):398-404.
    [172]蔡敢为,钟掘,廖道训.三维编织复合材料构件的机构模态阻尼[J].中国机械工程,2000,11(5):481-484,501.
    [173]蔡敢为,李兆军,朱天燕,等.含对称叠层复合材料构件机构的非线性动态特性分析[J].中国机械工程,2008,19(19):2371-2375.
    [174]李兆军,蔡敢为,黄其柏.电动机-弹性连杆机构系统参激振动的耦合研究[J].中国机械工程,2005,16(22):2049-2051,2055.
    [175]李兆军,蔡敢为,常平平.电动机—复合材料连杆机构系统的动态响应[J].机械传动,2005,29(6):1-5.
    [176]李兆军,蔡敢为,黄其柏.机电系统在电磁力作用下的主共振分析[J].机械科学与技术,2006,25(12):1491-1494.
    [177]王汝贵.两自由度弹性连杆机构系统机电耦联动力学研究[D].南宁:广西大学,2008.
    [178]王汝贵,蔡敢为,鲁华.两自由度可控连杆机构系统机电耦联动态方程及其响应[J].机械强度,2007,29(3):356-364.
    [179]王汝贵,蔡敢为.两自由度可控连杆机构系统在电磁参数激励作用下的主共振分析[J].机械强度, 2009,31(2):203-207.
    [180]Ru-Gui Wang, Gan-Wei Cai, Xiao-Rong Zhou. An evolutionary analytic method of multi-DOF nonlinear coupling dynamic model for controllable close-chain linkage mechanism system[J]. Mathematical Problems in Engineering,2011.
    [181]Rugui Wang, Guanglin Shi, Ganwei Cai, Xiaorong Zhou. Combination resonance analysis of a multi-DOF controllable close-chain linkage mechanism system[J]. Journal of Vibroengineering,2012, 14(4):1701-1723.
    [182]胡俊峰,张宪民.两自由度高速并联机械手的弹性动力学分析[J].华南理工大学学报,‘2009,37(11):123-128.
    [183]赵景山,冯之敬,褚福磊.机器人机构自由度分析理论[M].北京:科学出版社,2009.
    [184]毛坤朋.一种新型平面三自由度可控机构及其控制研究[D].南宁:广西大学,2010.
    [185]张转.多自由度可控新型机械式挖掘机构的运动学和静力学研究[D].南宁:广西大学,2011.
    [186]吴笃超.多自由度可控机构新型机械式挖掘机控制系统研究[D].南宁:广西大学,2011.
    [187]王红州.基于螺旋理论的并联机构型综合与分析[D].南宁:广西大学,2012.
    [188]陈省身,陈维桓.微分几何讲义.北京:北京大学出版社,2001 [189] Boothby W.An introduction to differentiable manifolds and Riemannian geometry. New York: Academic,1975. [190] Griffis M.Crane C,Duffy J.Displacements that null forces.Proceedings of IEEE International Symposium on Intelligent Control. Arlington, VA,1991:110-115. [191] Liu G F,Li Z X.A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Transactions on Robotics and Automation,2002,18(4):574-587.[192] 周双林,姚燕安,郭为忠.混合输入五杆机构的奇异性分析[J].上海交通大学学报,2001,35(12):1817-1820,1833.[193] 潘宇晨,蔡敢为,张转,等.新型可控挖掘机构运动学建模与工作空间分析[J].广西大学学报,自然科学版,2013,4.[194] 闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001.[195] Thompson J M T, Stewart H B. Nonlinear dynamics and chaos[M]. New York:Wiley,1986: 127-193. [196] Yuchen Pan, Ganwei Cai, Hongzhou Wang. Simulation Study on a Controllable Mechanism Type Novel Planar 3-DOF Mechanical Excavator[J]. Advanced Materials Research,2011,338:754-757.[197] 陈渊,蔡敢为,李岩舟,王红州.开放式多自由度可控机构综合实验台的研制[J].装备制造技术,2011,9:1-2.
    [198]Yuchen Pan, Ganwei Cai, Zhuan Zhang. Kinematics and Kinetostatic Analysis of a New Type of Mechanical Excavator with Controllable Mechanism[J]. Applied Mechanics and Materials,2012,141: 334-338.
    [199]Yuchen Pan, Ganwei Cai, Jinling Zhang. Design of the Human-Machine Interface of the Control System of a Novel Controllable Mechanism Type Mechanical Excavator [J]. Lecture Notes in Electrical Engineering,2012,138(8):937-943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700