用户名: 密码: 验证码:
飞机部件数字化调姿过程建模与仿真关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机装配是飞机制造过程中最重要、最复杂的环节之一,直接决定飞机产品的最终性能和质量。飞机部件或组件的空间定位问题是飞机装配中的共性关键问题,定位精度将直接影响飞机产品的气动外形、疲劳寿命与可靠性等。为了能够提高飞机部件姿态调整的质量与效率,目前先进的调姿技术正朝着数字化、自动化、柔性化的方向发展。本文以数字化调姿系统为研究对象,该调姿系统由飞机部件与三坐标数控定位器组成,对其逆运动学、工作空间、柔性多体动力学建模与仿真、含非理想运动关节调姿过程仿真与球头—球窝磨损建模等问题进行了深入的研究。主要研究内容包括:
     介绍了飞机装配技术的发展历史、应用背景与意义。比较详细地描述了建模与仿真技术的发展、现状及其在飞机装配中的应用。
     阐述了数字化调姿系统的调姿原理以及调姿系统的结构,分析了多种调姿系统结构类型的优缺点。提出了基于调姿机构逆运动学分析的轨迹规划方法,采用调姿机构正运动学法与网格搜索法分析了调姿机构的工作空间。描述了数字化调姿系统的硬件和软件集成方法。
     构建了调姿系统的柔性多体动力学模型。根据调姿机构自身特点将三坐标定位器的支撑杆视为柔性体,综合运用拉格朗日方程、虚功原理与拉格朗日乘子法建立调姿机构的柔性多体动力学模型,经数值求解得到调姿过程中飞机部件和定位器的受力情况。
     建立了两种典型非理想球铰关节的运动学与动力学模型。首先,分别基于Hertz接触理论与体积接触模型构建了含半球形球窝与含球带形球窝的球铰关节法向接触力模型;然后,结合改进的Coulomb摩擦力模型建立了球头与球窝关节的动力学模型;最后,建立了两种含非理想运动关节的调姿机构动力学模型,并使用多种运动路径对其进行仿真计算,分析了配合间隙、摩擦力、运动路径与球铰关节结构对调姿机构动态性能的影响,为结构设计与运动路径规划打下基础。
     构建了两种球铰关节的磨损计算模型。根据之前已经构建的非理想运动关节动力学模型计算出调姿过程中各个球头与球窝的接触力、接触点位置等信息;然后,结合Archard方程建立球头与球窝的磨损模型,为了能够获得接触表面的磨损分布情况,将磨损表面离散,分别借助Hertz接触理论与体积接触模型计算接触力的分布,并以离散后的单张曲面为单元分别计算与保存其磨损量;最后,针对四定位器的调姿机构,对其调姿过程进行仿真计算。该模型能够用于调姿机构的寿命预测,为调姿机构设计提供参考。
     总结了全文的研究内容,并对有待进一步研究的内容进行了展望。
Aircraft assembly is one of the most important and complicated part of aircraft manufacturing. The final performance and quality of aircraft depend on aircraft assembly. In the process of the assembly, the accuracy of pose of component or subassembly directly affects the aerodynamic shape, fatigue life and reliability of aircraft, which is a common and key issue in aircraft assembly. To improve the quality and efficiency of pose alignment, digital, automatous and flexible technologies are introduced. The research object in this dissertation is the digital alignment pose system which consists of an aircraft component and several three coordinate numerical control positioners. Several crucial technology issues on modeling and simulation of alignment process, such as the inverse kinematics, workspace, flexibly multi-body dynamic and kinematic modeling and simulation, simulation of alignment process with non-ideal kinematic joints and wearing modeling are studied and analyzed deeply.
     The development of aircraft assembly technology and key techniques of modern aircraft digital flexible assembly are introduced. Then, the development, current situation and the application of modeling and simulation in aircraft assembly are presented.
     The alignment principle of alignment pose system is described. The advantage and disadvantage of several structures of alignment pose systems are discussed. A trajectory planing method based on the inverse kinematics of alignment pose mechanism is proposed. The workspace problem of alignment pose mechanism is solved by utilizing forward kinematics and grid search method. The integration of hardware and software of digital alignment pose system is presented.
     The flexible multi-body dynamic model of alignment pose mechanism is constructed. In terms of the characteristic of alignment pose mechanism, the supporting poles of positioners are considered to be flexible for simulation, and the dynamic model of alignment pose mechanism is established by utilizing Lagrange equation, virtual work theory and Lagrange multipliers method. Then, the joint reaction forces of aircraft component and supporting poles are acquired by solving dynamic equation numerically.
     The kinematic and dynamic models of two typical types of non-ideal spherical joints are developed. Firstly, two normal force model of spherical joint with hemi-spherical and spherical segment sockets are constructed based on Hertz contact theory and volumetric contact model, respectively. Secondly, the dynamic models of two types of spherical joints are derived form the normal force model, which are combined with modified Coulomb friction law. Finally, simulations of alignment pose mechanism are carried out for typical moving trajectories. The influences of moving trajectory, friction, clearance and structure of spherical joint on the performance of mechanism are analyzed. The simulation results are also applicable to similar mechanism design, moving trajectory planning and kinematic joint wear forecasting.
     Wear model of the two types of spherical joints are developed. Firstly, the contact forces and positions of contact points are obtained by utilizing the dynamic models of non-ideal spherical joints proposed previously. Secondly, the Archard's equation is employed to model the wear of balls and sockets. To acquire the distribution of wear depth, the surfaces on the ball and socket are discretized for calculating and storing wear depth. Hertz contact theory and volumetric contact model are used to obtain the distribution of contact force in the two wearing models, respectively. Finally, process simulation of alignment mechanism with four positioners is carried out. This wear model is able to be applicable for life prediction and mechanical design of alignment mechanism.
     The whole work in this dissertation is summarized, and the future work is discussed.
引文
[1]阿比波夫.飞机制造工艺学[M].佘公藩,张钧,译.西安:西北工业大学出版社,1986.
    [2]巴布什金著.飞机结构装配方法.崔连信译[M].航空工业出版社,1990.
    [3]邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统,2007,13(7):1367-1373.
    [4]VOGEL G. Flying the Airbus A380[M]. Marlborough:Crowood Press,2009.
    [5]皮埃尔·斯帕克.空中客车——一个真实的故事[M].王芳,译.北京:航空工业出版社.
    [6]中国航空工业集团公司组织.新航空概论[M].北京:航空工业出版社,2010.
    [7]刘善国.先进飞机装配技术及其发展[J].航空制造技术,2006,(10):38-41.
    [8]高晓兵,陶华,丘宏俊.飞机无型架装配技术[J].航空制造技术,2007,(1):68-71.
    [9]李薇.数字化技术在飞机装配中的应用研究[J].航空制造技术,2004,(8):24-29.
    [10]何胜强.飞机数字化装配技术体系[J].航空制造技术,2010,(23):32-37.
    [11]于用,陶剑,范玉青.波音787飞机装配技术及其装配过程[J].航空制造技术,2009,(14):44-47.
    [12]邹方,薛汉杰,周万勇,许国康.飞机数字化柔性装配关键技术及其发展[J].航空制造技术,2006,(9):30-35.
    [13]邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统,2007,13(7):1367-1373.
    [14]邱益,郑国磊,饶有福等.飞机柔性装配工装智能化设计(FFixCAD)系统[J].航空制造技术,2010,(24):90-94.
    [15]郭恩明.国外飞机柔性装配技术[J].航空制造技术,2005,(9):28-32.
    [16]王巍,贺平,万良辉.飞机柔性装配技术研究[J].机械设计与制造,2006,(11):88-90.
    [17]范玉青.飞机数字化装配技术综述-飞机制造的一次革命性变革[J].航空制造技术,2006,(10):44-48.
    [18]范玉青,梅中义,陶剑.大型飞机数字化制造工程[M].航空工业出版社,2011.
    [19]张辉.飞机装配设备及供应商一览[J].航空制造技术,2008,(11):71-73.
    [20]郭洪杰.大型飞机柔性装配技术[J].航空制造技术,2010,(18):52-54.
    [21]朱明华,王文斌,李小强等.大型客机钣金数字化柔性精准成形技术[J].南京航空航天大学学报,2011,43(2):216-221.
    [22]Yan Y, Wan M, Wang H, etc. Design and optimization of press bend forming path for producing aircraft integral panels with compound curvatures[J]. Chinese Journal of Aeronautics, 23:274-282.
    [23]邹爱丽,王亮,李东升等.数字化测量技术及系统在飞机装配中的应用[J].航空制造技术,2011,(21):72-75.
    [24]梅中义,主三山,杨鹏.飞机数字化柔性装配中的数字测量技术[J].2011,(17):44-49.
    [25]郭洪杰,康晓峰,王亮等.飞机部件装配数字化柔性工装技术研究[J].航空制造技术,201 1,(22):94-97.
    [26]王亮,李冬升.飞机数字化装配柔性工装技术体系研究[J].航空制造技术,2012,(7):34-39.
    [27]王亮,李冬升,罗红宇等.飞机装配数控柔性多点工装技术及应用[J].北京航空航天大学,2010,36(5):540-544.
    [28]苗新刚,汪苏,怀其武等.基于多Agent技术的复杂结构件自动装配系统[J].中国机械工程,2011,22(12):1440-1443.
    [29]王念东.集成化虚拟装配理论、方法及其在飞机总体布置中的应用[南京航空航天大学博士论文].南京:南京航空航天大学,2009.
    [30]潘志毅.飞机装配工装智能设计关键技术研究与系统开发[南京航空航天大学博士论文].南京:南京航空航天大学,2008.
    [31]孙星.基于Petri网和eM-Plant的飞机装配线建模与仿真研究[南京航空航天大学硕士论文].南京:南京航空航天大学,2011.
    [32]冯廷廷.基于MBD的飞机装配工艺规划与仿真[南京航空航天大学硕士论文].南京:南京航空航天大学,2011.
    [33]张开富.飞机部件装配误差累计分析与容差优化方法研究[西北工业大学博士论文].西安:西北工业大学,2006.
    [34]邱晞,牟伟强,魏生民.基于层次分析法与粒子群算法的飞机装配公差多目标优化[J].2010,(16):66-72.
    [35]高晓兵,陶华,丘宏俊.飞机无型架装配技术[J].航空制造技术,2007,(1):68-71.
    [36]ZHANG K F, CHENG H, LI Y. Riveting Process Modeling and Simulating for Deformation Analysis of Aircraft's Thin-walled Sheet-metal Parts[J]. Chinese Journal of Aeronautics,2011,24:369-377.
    [37]张开富,曾佩杰,栾超等.空间多姿态下自动钻铆托架变形分析与调平方法[J].西北工业大学学报,2012,30(1):129-137.
    [38]邱晞,魏生民,程晖.基于空间扫略的飞机产品装配路径规划技术[J].北京航空航天大学学报,2010,36(6),676-680.
    [39]侯志霞,梁雪梅,周万勇等.飞机大部件自动对接集成控制技术研究[J].航空制造技术,2010,(23):93-96.
    [40]Lau K, Kochen R, Haight W. Laser tracking interferometer system for robot metrology[J]. Precision Engineering,1986,8(1):3-8.
    [41]Jiang H, Osawa S, Takatsuji T. High-performance laser tracker using an articulating mirror for the calibration of coordinate measuring machine[J]. Optical Engineering,2002,41(3): 632-637.
    [42]Douglas A H, Robert J S, Joseph M C, et al. Using Real-Time,6D Object Tracking to Assemble Large Aerospace Components [EB/OL]. The Boeing Company, New River Kinematics, Brunson Instrument Company.
    [43]Scott M, David S, Robert S, et al.747 Data Management System Development and Implementation [EB/OL]. Boeing Commercial Airplane Group, New River Kinematics.
    [44]王巍,黄宇,庄建平.激光跟踪仪在飞机装配工装制造中的应用[J].航空制造技术,2004,(12):81-84.
    [45]Metrology Division. Hardware guide of Leica laser tracker[M]. Leica Seosystem Ltd, 2005.
    [46]林颖,周海兴,陈波等.激光雷达测量数据的两种计算方法比较[J].厦门大学学报,2003,42(4):454-457.
    [47]谭锟.影响激光雷达测量精度的因素探讨.光电子技术与信息,2005,(5):11-15.
    [48]李清泉,李必军,陈静.激光雷达测量技术及其应用研究.武汉测绘科技大学学报,2000,25(5):387-392.
    [49]吴晓峰,张国雄.室内GPS测量系统及其在飞机装配中的应用[J].航空精密制造技术,2006,42(5):1-5.
    [50]Dedes G, Dempster A G. Indoor GPS positioning-challenges and opportunities[C]. Vehicular Technology Conference(VTC).2005:412-415.
    [51]Diggelen F V. Indoor GPS theory & implementation[C]. Position Location and Navigation Symposium.2002:240-247.
    [52]中国航空工业集团公司组织.新航空概论[M].北京:航空工业出版社,2010.
    [53]王黎明,冯潼能.数字化自动钻铆技术在飞机制造中的应用[J].航空制造技术,2008,(11):42-45.
    [54]Hartmann T J, Zieve P. Qualification of EMR for swaging collars on 787[C]. SAE, Aerofast.2005.
    [55]Electroimpact Corporation. A380 E4380 wing panel machinaes[EB/OL].2007-08-10. http://www.electroimpact.com/A380E4380/Overview.asp.
    [56]SAE International. Slug rivet machine installs 16 rivets per minute drill-rivet-shave[EB/OL].2009. http://papers.sae.org/2009-01-3155.
    [57]孙树栋.工业机器人技术基础.西安:西北工业大学出版社,2006.
    [58]刘极峰,易际明.机器人技术基础.北京:高等教育出版社,2006.
    [59]秦瑞祥,邹冀华.工业机器人在飞机数字化装配中的应用[J].航空制造技术,2010,(23):104-108.
    [60]Muis A, Ohnishi K. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing[J]. IEEE/ASME Transactions on Mechatronics,2005,10(4):404-410.
    [61]Lertpiriyasuwat V, Berg M C. Adaptive real-time estimation of end-effector position and orientation using precise measurements and end-effector position[J]. IEEE/ASME Trans Mechatronics,2006,11(3):304-319.
    [62]Olsen H B. A flexible robotic work cell for the assembly of airframe components[C].11th International Conference on Composite Materials(ICCM-11). IEEE Computer Society Press,1990: 1278-1283.
    [63]Vlieg R D. ONCE(One-sided Cell End effector) robotic drilling system[C]. SAE Aerospace Automated Fastening Conference & Exposition, October 1-3,2002.
    [64]Bord L, Fanteria D. Finite-element-based assessment of analytical methods for the design of fuselage frames[J]. Aerospace Engineering,2006,220:387-398.
    [65]Yorgun C, Dalc S, Altay G A. Finite element modeling of bolted steel connections designed by double channel[J]. Computers and Structures,2004,82:2563-2571.
    [66]Kim J, Yoon J C, Kang B S. Finite element analysis and modeling of structure with bolted joints[J]. Applied Mathematical Modelling,2007,31:895-911.
    [67]Schiehlen W. Multibody system dynamics:roots and perspectives[J]. Multibody System Dynamics.1997,1(2):49-188.
    [68]Roy B, Asada H H. Concurrent multi-link deployment of a gravity-assisted underactuated snake robot for aircraft assembly[C]. IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,2008:4061-4067.
    [69]Jayaweera N, Webb P. Adaptive robotic assembly of compliant aero-structure components[J]. Robotics and Computer-Integrated Manufacturing,2007,23(2):180-194.
    [70]Webb P, Eastwood S, Jayaweera N, et al. Automated aerostructure assembly [J]. Industrial Robot,2005,32(5):383-387.
    [71]Sadler J P, Sandor G N, A lumped parameter approach to vibration and stress analysis of elastic linkages[J]. Journal of Engineering for Industry,1973,95(2):549-557.
    [72]Sadler J P. On the analytical lumped-mass model of an elastic four-bar mechanism [J]. Journal of Engineering for Industry,1975,97(2):561-565.
    [73]Kerdjoudj M, Amirouche F M L. Implementation of the boundary element method in the dynamics of flexible bodies[J]. International Journal for Numerical Methods in Engineering,1996, 39(2):321-354.
    [74]Iura M, Kanaizuka J. Flexible translational joint analysis by meshless method[J]. International Journal of Solids and Structures,2001,37,5203-5217.
    [75]Jandrasits W G, Lowen G G. The elastic-dynamic behavior of a counter-weighted rocker link with an overhanging endmass in a four-bar linkage, Part I:Theory; Part II:Application and experiment[J]. Journal of Mechanical Design,1979,101(1):77-98.
    [76]Jasinski P W, Lee H C, andor G N. Stability and steadystate vibrations in a high-speed slider-crank mechanism[J]. Journal of Applied Mechanics,1970,37(4):1069-1076.
    [77]Imam I, Sandor G N. High speed mechanism design:A general analytical approach[J], Journal of Engineering for Industry,1975,97(2):609-628.
    [78]Liu C, Tian Q, Hu H Y. Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints[J]. Mechanism and Machine Theory,2012,52:106-129.
    [79]Tian F Y, Wu H T, Sun H L. The dynamics of open loop flexible robots system base on efficient recursive method[C]. International Conference on Measuring Technology and Mechatronics Automation,2009:148-151.
    [80]Sun H L, Wu H T, Shao B, et al. The finite segment method for recursive approach to flexible multibody dynamics[C]. Information and Computing Science, Second International Conference,2009:345-348.
    [81]Wang P F, Zhang L M, Zhao X M. Dynamic modeling, simulation and experiment of the delta robot[J]. Future Communication, Computing, Control and Management Lecture Notes in Electrical Engineering,2012,141:149-156.
    [82]Venanzi S, Castelli V P. A new technique for clearance influence analysis in spatial mechanisms[J]. Journal of Mechanical Design,2005,127(3):446-455.
    [83]Castelli V P, Venanzi S. Clearance influence analysis on mechanisms[J]. Mechanism and Machine Theory,2005,40(12):1316-1329.
    [84]Erkaya S, Uzmay I. Investigation on effect of joint clearance on dynamics of four-bar mechanism[J]. Nonlinear Dynamics,2009,58(1-2):179-198.
    [85]Erkaya S, Uzmay I. A neural-genetic (NN-GA) approach for optimising mechanisms having joints with clearance[J]. Multibody System Dynamics,2008(1),20:69-83.
    [86]Erkaya S, Uzmay I. Determining link parameters using genetic algorithm in mechanisms with joint clearance[J]. Mechanism and Machine Theory,2009,44(l):222-234.
    [87]Pisla D L, Itul T P, Pisla A, et al. Dynamics of a parallel platform for helicopter flight simulation considering friction[J]. Engineering Syrom,2009:365-378.
    [88]Grotjahn M, Heimann B, Abdellatif H. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control[J]. Multibody System Dynamics,2004, 11(3):273-294.
    [89]Shih L, Ravani B. Dynamic simulation of legged machines using a compliant joint model[J]. The International Journal of Robotics Research,1987, (6):33-45.
    [90]Abele E, Bauer J, Hemker T, et al. Comparison and validation of implementations of a flexible joint multibody dynamics system model for an industrial robot[J]. CIRP Journal of Manufacturing Science and Technology,2011,4(1):38-43.
    [91]Lee K M, Shah D K. Kinematic analysis of a three degrees of freedom in-parallel actuated manipulator[C]. IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 1987:345-350.
    [92]Goldsmith W. Impact:Thetheory and physical behavior of colliding solids[M]. Edward Arnold Publishers, London,1960.
    [93]Gilardi G, Sharf I. Literature survey of contact dynamics modeling[J], Mechanism and Machine Theory,2002,37(10):1213-1239.
    [94]Brach R M. Formulation of rigid body impact problems using generalized coefficients[J], International Journal of Engineering Science,1998,36(1):61-71.
    [95]Stronge W. J. Unraveling paradoxical theories for rigid body collisions[J].Journal of Applied Mechanics,1991,58(4):1049-1055.
    [96]Flores P, Ambrosio J. Revolute joints with clearance in multibody systems[J]. Computers and Structures,2004,82(17-19):1359-1369.
    [97]Flores P, Lankarani H M. Spatial rigid-multibody systems with lubricated spherical clearance joints:modeling and simulation[J]. Nonlinear Dynamics,2010,60(1-2):99-114.
    [98]时兵,金烨.面向虚拟样机的机构间隙旋转铰建模与动力学仿真[J].机械工程学报,2009,45(4),299-303.
    [99]吴国清,张晓峰等.两体磨料磨损的三维动态模拟[J].摩擦学学报,2000,20(5):360-364.
    [100]Dufrane K F, Kannel J W, McClockey T H. Wear of steam turbine journal bearings at low operating speeds[J]. Journal of Lubrication Technology,1983,105:313-317.
    [101]Gertzos K P, Nikolakopoulos P G, Chasalevris, et al. Wear identification in rotor-bearing systems by measurements of dynamic bearing characteristics[J]. Computers and Structures,2011, 89(1-2):55-66.
    [102]Flores P. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mehcanism and Machine,2009,44(6):1211-1222.
    [103]Fialho J C, Fernades P R, Eca L, Folgado J. Computational hip joints simulator for wear and heat generation[J]. Journal of Biomechanics,2007,40(11):2358-66.
    [104]Hirani H, Verma M. Tribological study of friction in worn misaligned journal bearings under severe hydrodynamic lubrication[J]. Tribology International 2009,42(2):378-390
    [105]郭志敏.飞机机身数字化对接装配系统中若干关键技术研究[浙江大学博士论文].杭州:浙江大学,2010.
    [106]范子春.适用于三段大部件对接的柔性装配单元设计与研究[D].杭州:浙江大学,2008.
    [107]郭志敏,蒋君侠,柯映林.基于定位器支撑的飞机大部件调姿内力研究[J].浙大学 报,2009,45(9):1649-1654.
    [108]郭志敏,蒋君侠,柯映林.基于定位器飞机大部件调姿系统静刚度研究[J].浙大学报,2010,44(11):2077-2082.
    [109]俞慈君,飞机数字化装配精度场理论及应用关键技术研究[浙江大学博士论文].杭州:浙江大学,2010.
    [110]方强.飞机大部件调姿对合控制系统设计冈.杭州:浙江大学,2008.
    [111]张斌,柯映林,方强.一种大型刚体调姿系统的最优时间轨迹规划[J].机械工程学报,2008,44(8):248-252.
    [112]马骢.基于三坐标支撑机构的大型刚体调姿运动规划研究[浙江大学硕士论文].杭州:浙江大学,2008.
    [113]余进海.飞机大部件位姿调整控制系统设计与分析[浙江大学博士论文].杭州:浙江大学,2010.
    [114]余锋杰,柯映林,方强.基于飞机自动化对接装配实例的工艺选优[J].机械工程学报,2010,46(1),175-181.
    [115]余锋杰.飞机自动化对接装配数据管理与挖掘中的若干关键技术研究[浙江大学博士论文].杭州:浙江大学,2009.
    [116]余锋杰,王青,柯映林,等.飞机自动化装配过程数据集成与实现[J].浙大学报工学版,2009,43(2):207-212.
    [117]余锋杰,柯映林,方强.基于飞机自动化对接装配实例的工艺选优[J].机械工程学报,2010,46(1):175-181.
    [118]刘楚辉,姚宝国,柯映林.工业机器人切削加工离线编程研究[J].浙江大学学报,2010,44(3):426-431。
    [119]吴涛.工业机器人切削加工离线编程研究[浙江大学硕士论文].杭州:浙江大学,2008.
    [120]姚宝国.工业机器人多任务飞机辅助装配系统及其关键技术研究[R].杭州:浙江大学,2009.
    [121]曾鹏.基于工业机器人的机翼、垂尾测量点检测与打制系统设计[浙江大学硕士论文].杭州:浙江大学,2008.
    [122]董文铙.大型刚体调姿控制系统设计[浙江大学硕士论文].杭州:浙江大学,2007.
    [123]林丹辉.基于三坐标支撑单元的大型刚体调姿系统研究[浙江大学硕士论文].杭州:浙江大学,2007.
    [124]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [125]Zuo K C, Xie L Y, Zhang M, et al. Error modeling and accuracy analysis of a novel 3-DOF parallel machine tool[C]. Proceeding of the 6th world congress on intelligent control and automation,2006:8472-8476.
    [126]Tsai L W, Robot Analysis:The Mechanics of Serial and Parallel Manipulators[M], New York:Wiley-Interscience Publication,1999.
    [127]Mohamed M G, Duffy J. A direct determination of instantaneous kinematics of fully parallel robot manipulators[J]. ASME Journal of Mechanisms Transmissions and Automation in Design,1986,107:226-229.
    [128]Neumann K E, Robot, US Patent No.4732525, Mar.22,1988
    [129]Neumann K E, System and Method for Controlling a Robot, US Patent No.6301525, Oct.9,2001
    [130]Grubler M. Allgemeine eigenschaften der zwanglaufigen ebenen kinematische kette:I[J]. Civilingenieur,1883,29(1):167-200.
    [131]Le B N, Sangwine S J. Jacobin method for quaternion matrix singular value decomposition[J]. Applied Mathematics and Computation,2007,187(2):1265-1271.
    [132]Rathod C, Shabana A A. Rail geometry and Euler angles[J]. Journal of Computational and Nonlinear Dynamics,2006,1(3):264-268.
    [133]熊有伦,尹周平,熊蔡华.机器人操作[M].武汉:湖北科学技术出版社,2002.
    [134]Gosselin C M. Determination of the workspace of 6-DoF parallel manipulators[J]. Journal of Mechanical Design.1990,112:331-336.
    [135]Sen D, Mruthyunjaya T S. A centro-based characterization of sigularities in the workspace of planar closed-loop manipulators[J]. Mechanism and Machine Theory.1998, 33(8):1091-1104.
    [136]Khalil W, Ibrahim O. General Solution for the dynamic Modeling of Parallel Robots[J]. Journal of Intelligent and Robotic Systems,2007,49,19-37.
    [137]Antonio M. Dynamic modeling of a stewart platform using the generalized momentum approach[J]. Communication in Nonlinear Science and Numerical Simulation,2009,14, 3389-3401.
    [138]杨志永,黄田,倪雁冰.3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制[J].机械工程学报,2004,40(11),76-81.
    [139]吴宇列.并联机构奇异位形的微分几何理论以及冗余并联机构的研究[国防科学技术大学博士论文].2001.
    [140]Notash L, Kamalzadeh A. Inverse dynamic of wire-actuated parallel manipulators with a constraining linkage[J]. Mechanism and Machine Theory,2007,42(9),1103-1118.
    [141]赵燕,黄真.含过约束力偶的少自由度并联机构的受力分析[J].机械工程学报,2010,46(5):15-21.
    [142]郭志敏,蒋君侠,柯映林.一种精密三坐标POGO柱设计与精度研究[J].浙江大学学报:工学版,2009,43(9),1649-1654.
    [143]Zhang B, Yao B G,Ke Y L.A novel posture alignment system for aircraft wing assembly [J]. Journal of Zhejiang University-Science A,2009,10(11):1624-1630.
    [144]Wasfy T M, Noor A K. Computational strategies for flexible multibody systems [J]. Applied Mechanics Reviews,2003,56(6):553-613.
    [145]Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets [J]. IEEE Trans Pattern Anal Machine Intell,1987.9:698-700.
    [146]陆佑方,柔性多体系统动力学[M].北京:高等教育出版社,1996,181-242,329-353.
    [147]Dormand J R, Prince P J. A family of embedded Runge-Kutta formulae[J]. Journal of Computational and Applied Mathematics,1980 6(1):19-26.
    [148]Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering,1972, 1(1):1-6.
    [149]Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with clearances, Part 1:Formation of dynamic model. Journal of Engineering for Industry,1971,93(1),305-309.
    [150]Hunt K H, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics,1975,7(2):440-445.
    [151]Hertz H. On the contact of solids-On the contact of ridid elastic solids and on hardness (Translated by D. E. Jones and G.A.Schott)[J]. Miscellaneous Papers,1986,146-183.
    [152]黄平孟永钢徐华[M].高等教育出版社,2008,60-86.
    [153]Jones J R. Discussion:"Dynamics of high-speed cam-driven mechanisms-part 2: nonlinear system models"[J]. Journal of Engineering for Industry,1975,97(3):777-781.
    [154]Rooney G T, Deravi P. Coulomb friction in mechanism sliding joints[J]. Mechanism and Machine Theory,1982,17(3):207-211.
    [155]Pennestri E, Valentini P P, VITA L. Multibody dynamics simulation of planar linkages with Dahl friction[J]. Multibody System Dynamics,2007,17(4):321-347.
    [156]Gonthier Y. Contact dynamics modelling for robotic task simulation[D]. Waterloo, Ontario, Canada:University of Waterloo,2007.
    [157]Shoemake K. Animating rotation with quaternion curves[J]. Computer Graphics,1985, 19(3):245-254.
    [158]Yu J H, Fang Q, Ke Y L. Trajectory planning of multi-robot coordination platform for locating large subassembly[J]. International Journal of Modelling, Identification and Control,2009,6(4):357-366.
    [159]全永昕,施高义.摩擦磨损原理[M].杭州:浙江大学出版社,1988.
    [160]Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics,1953, 24(8):981-988.
    [161]Faraz A and Payandeh S. Towards approximate models of coulomb frictional moments in:(I) revolute pin joints and (II) spherical-socket ball joints[J]. Journal of Engineering Mathematics,2001,40(3):283-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700