用户名: 密码: 验证码:
基于多尺度分析的组织光学性质测量方法和成像技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文关注生物组织光子学研究热点,将多尺度分析的现代数学分析方法与组织光学性质的测量和相衬显微镜、散斑、光学相干层析成像和光声成像不同尺度成像技术相结合,开展了初步的研究工作,取得了一些成果,主要包括以下三个方面的创新性内容:
     提出了一种新的描述组织光学散射性质测量模型:通过圆盘结构元素的多尺度数学形态学提取离体组织的颗粒数密度分布,发现组织颗粒数密度分布存在分形特征;并将实际测量获得的颗粒数密度分布与Mie散射理论相结合数值计算出完整的组织光学散射性质;此方法还适用于不同感兴趣区域和不同显微尺度下局域性的组织光学散射性质;然后将此方法用于诊断人体胃癌组织。最后,改进MC模拟算法,采用离散相函数能够更加准确地了解光在组织中传输情况。
     基于数学形态学和连续小波变换的多尺度分析理论发展了组织光学散射性质、吸收性质和布朗运动动态信息间接测量方法:发展光学相干层析成像在模拟组织液浅表区域深度功率谱可以近似为U字型二次方函数理论,并基于此提出了同时提取光学性质参数和布朗运动信息测量方法,采用连续小波变换获得U字型二次方函数近似条件,验证此方法的可行性,并将此方法应用于葡萄糖浓度的测量;利用散斑强度的自相关函数发展一种散斑形态平均粒度分析理论,描述平均粒度大小与组织光学散射系数成反比关系,在实验上采用数学形态学的粒度分析法简单地验证此方法的有效性;建立OCT散斑对比度测量组织光学散射系数的理论模型,理论模型表明,OCT散斑对比度是样品深度的线性函数,其线性斜率与散射系数成正比;利用光声信号对样品的边界敏感的性质,采用连续小波变换分别修正光声信号因率不同导致传输衰减不同的影响,发展了一种测量混浊介质中吸收异物的光学吸收系数方法,此方法可以应用于吸收增强的光热治疗肿瘤过程。
     采用数学形态学和小波的多尺度滤波方法提高成像质量:根据散斑AIRY斑的形态特征,采用圆盘结构元素的数学形态学多尺度滤波,有效地消除偏振相差成像的散斑;利用小波脊位置的信息减少散斑对OCT信号的影响;利用小波变换消除光声信号率外的噪声,提高信号的质量,使纵向单次采样的光声成像系统能够快速地获得样品信息,并将此光声成像系统应用于活体大鼠心肌急性缺血的监控过程。
This thesis is concerned about the hot issue on biological tissue photonics, and develops methods for measuring tissue optical properties and imaging techniques combining multi-scale analysis with different scaling imaging modes (phase-contrast microscopy, speckle, optical coherence tomography and photoacoustic imaging). Innovations in the main research include three aspects.
     A method combining mathematical morphology with Mie theory to simulate optical scattering in biological tissues is proposed:Multi-scale morphological granulometry is used to analyze the phase-contrast images of biological tissue and to estimate scatterer size distribution of the tissue samples. Using the fractal features of the size distribution, the optical parameters associated with light scattering in tissue are quantitatively estimated using Mie theory. In addition, the method could be extended to describe the local optical parameters. Furthermore, our results suggest that this unique method can be used to characterize biological tissues for disease diagnosis. Finally, the improved MC simulation algorithm, using the discrete phase function can be a more accurate picture of the light propagation in tissue.
     Some indirect methods are developed for measuring tissue optical scattering properties, absorption properties and the Brownian dynamics based on mathematical morphology and continous wavelet transform:an approximately U-quadratic theoretical model is proposed for simultaneous estimating the optical scattering coefficient and the Brownian diffusion coefficient of the superficial layer of tissue; a theoretical model is presented for average granulometric size of speckle in terms of scattering coefficient based on spatial correlation function of the backscattered intensity; a theoretical model for analyzing of speckle contrast of optical coherence tomography shows contrast ratio is a linear function of depth and the slope of this linear dependence is proportional to the scattering coefficient; a method using focusing photoacoustic imaging to quantify the target optical absorption coefficient is proposed. In this method, wavelet transform is used to extract the photoacoustic signals at specific acoustic frequencies, and correct them. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
     The methods using mathematical morphology and wavelet multi-scale filtering to improve image quality:since the shape of speckle is airy, we employ a morphological opening operation with a disc-shaped structuring element to suppress the speckle coarse grains, improving the quality of polarization-difference images; wavelet ridge transform is used to reduce the speckle of OCT signal; the wavelet analysis could improve PA signal-to-noise ratio (SNR) through choosing suitable scale, and make photoacoustic imaging system using longitudinal single sampling quickly obtain information of sample. The photoacoustic imaging is applied to identify the myocardium of rat in vivo.
引文
[1.1]李晖,生物组织光学模型:原理、测量技术及其应用,2000,浙江大学博士学位论文
    [1.2]谢树森,李晖,陆祖康,组织光学概要,物理27,599-604(1998)
    [1.3]Shusen Xie, A.E. Profio, and K-H Shu, Design of the optical phantom of tissue for photodynamic therapy research, Proc. SPIE 1616,246-251 (1991)
    [1.4]谢树森,黄禄华,黄梅珍,李峻亨,一种模拟生物组织的光学模型,中国激光医学杂志1,1-5(1992)
    [1.5]Li Hui, Lu Zukang, Lin Lei, Xie Shusen, light scattering properties of biotissue versus equivalent particle size distribution, Chinese physics letters 16,290-292 (1999)
    [1.6]D.Passos, J.C.Hebden, Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,J. Biomedical Opt.10,064036 (2005)
    [1.7]D.H. P. Schneiderheinze, T.R. Hillman, and D.D. Sampson, Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering, Opt. Expess 15,15002-15010 (2007)
    [1.8]W. Gong, K. Si and C.J.R. Sheppard, Modeling phase functions in biological tissue, Opt. Lett.33,1599-1501 (2008)
    [1.9]C. J. R. Sheppard, Fractal model of light scattering in biological tissue and cells, Opt. Lett.32,42-144 (2007)
    [1.10]M. Xu and R.R. Alfano, Fractal mechanisms of light scattering in biological tissue and cells, Opt. Lett.30,3051-3053 (2005)
    [1.11]M. Xu, M. Alrubaiee, and R.R. Alfano, Fracal mechanism of light scattering for tissue optical biopsy, Proc. SPLE 6091,6091E (2006)
    [1.12]Arridge S.R, Van Der Zee P, Delpy D.T and Cope M, Particle sizing in the Mie scattering region:singular-value analysis, Inverse Problems 5,671-689 (1989)
    [1.13]Changqing Li and Huabei Jiang, Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography, Appl. Opt.44,1838-1844 (2005)
    [1.14]李晖,谢树森,生物组织的可见光与近红外散射模型,光学学报19,1661-1666(1999)
    [1.15]Y. S. Fawzy and Haishan Zeng, Determination of scattering volume fraction and particle size distribution in the superficial layer of a turbid medium by using diffuse reflectance spectroscopy, Appl. Opt.45,3902-3912 (2006)
    [1.16]田支娟,刘迎,王利军,张小娟,高宗慧,Influence of high-order optical parameter of tissue on spatially resolved reflectance in the region close to the source, Chinese Optics Letter 4,105-107 (2006)
    [1.17]V.I. Haltrin, One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater, Appl. Opt.41,1022-1028 (2002)
    [1.18]Tao T. Wu, Jianan Y. Qu, and Min Xu, Unified Mie and fractal scattering by biological cells and subcellular structures, Opt. Lett.32,2324-2326 (2007)
    [1.19]M. Xu, T.T. Wu, J.Y. Qu, Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,J. Biomed. Opt.13,024015 (2008)
    [1.20]W. F. Cheong, S.A. Prahl, and A.J. Welch, A review of the optical properties of biological tissues, IEEE J. Quantum Electron.26,2166-2185 (1990)
    [1.21]J. M. Schmitt and G. Kumar, Turbulent nature of refractive-index variations in biological tissue, Opt. Lett.21,1310-1312 (1996)
    [1.22]H. Ding, Z. Wang, F. Nguyen, S.A. Boppart, and G. Popescu, Fourier transform light scattering of inhomogeneous and dynamic structures, Phy. Rev. Lett.101,238102 (2008)
    [1.23]H. Ding, F. Nguyen, S.A. Boppart, and G. Popescu, Optical properties of tissues quantified by Fourier-transform light scattering, Opt. Lett.34,1372-1374 (2009)
    [1.24]Z. Wang, H. Ding, G. Popescu, Scattering-phase theorem, Opt. Lett.36,1215-1217 (2011)
    [1.25]V.M. Kodach, D.J. Faber, J.van Marle, T.G. van Leeuwen, and J. Kalkman, Determination of the scattering anisotropy with optical coherence tomography, Opt. Express 19,6131 (2011)
    [1.26]F.J. van der Meer, D.J Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, and T.G. van Leeuwen, Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography, IEEE Transactions on Medical Imaging 24,1369-1376 (2005)
    [1.27]F.J. van der Meer, D.J. Faber, J. Perree, G. Pasterkamp, D.B. Sassoon, and T.G. van Leeuwen, Quantitative optical coherence tomography of arterial wall components, Laser in medical science 20,45-51 (2005)
    [1.28]D. Levitz, L. Thrane, M.H. Frosz, P.E. Andersen, C.B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P.R. Hansen, Determination of optical scattering properties of highly-scattering media in optical coherence tomography images, Opt. Express 12,249-259 (2004)
    [1.29]A. Kinnunen, R. Myllyla, T. Jokela, and S. Vainio, In vitro studies toward noninvasive glucose monitoring with optical coherence tomography, Appl.Opt.45, 2251-2260(2006)
    [1.30]R.V. Kuranov, V.V. Sapozhnikova, D.S. Prough, I. Cicenaite, and R.O. Esenaliev, In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography, Phys. Med. Biol 51,3885-3900 (2008)
    [1.31]D.J. Faber, and T.G. van Leeuwen, Are quantitative attenuation measurements of blood by optical coherence feasible? Opt. Lett.34,1435-1437 (2009)
    [1.32]Xuefang Li, Youwu He, Zhifang Li, and Hui Li, Noninvasive measurement of glucose concentration using OCT based on the extended Huygens-Fresnel principle, Proc. SPIE 6534,65340E (2007)
    [1.33]C.J. Pedersen, D. Huang, M.A. Shure, and A.M. Rollins, Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography, Opt. Lett.32,506-508 (2007)
    [1.34]A.S.G. Singh, C. Kolbitsch, T. Schmoll, and R.A. Leitgeb, Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans, Biomed. Opt. Express 1,1047-1059 (2010)
    [1.35]I.V. Larina, S. Ivers, S. Syed, M.E. Dickinson, and K.V. Larin, Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler Swept source OCT, Opt. Lett.34,986-988 (2009)
    [1.36]X. Xu, Y. Ahn, and Z. Chen, Feasibility of Doppler variance imaging for red blood cell aggregation characterization, J. Biomed. Opt.14,060507 (2009)
    [1.37]L. Yu, Z. Chen, Doppler variance imaging for three-dimensional retina and choroids angiography, J. Biomed. Opt.15,016029 (2010)
    [1.38]G. Liu, W. Qi, L. Yu, and Z. Chen, Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging, Opt. Express 19,3657-3666 (2011)
    [1.39]J. Kalkman, R. Sprik, and T.G. van Leeuwen, Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography, Phys. Rev. Lett.105, 198302(2010)
    [1.40]J. Kalkman, A.V. Bykov, D.J. Faber, and T.G. van Leeuwen, Multiple and dependent scattering effects in Doppler optical coherence tomography, Opt. Express 18, 3883-3892 (2010)
    [1.41]Z.F. Li, H. Li, J.J. Li, and X.N. Lin, Feasibility of glucose monitoring based on Brownian dynamics in time-domain optical coherence tomography, Laser Physics 21 (11), 1995-1998(2011)
    [1.42]J.D. Briers, G. Richards, and X.W. He, Capillary blood flow monitoring using laser speckle contrast analysis, J. Biomed. Opt.4,164-175 (1999)
    [1.43]P. Zakharov and A. Volker, Quantitative modeling of laser speckle imaging, Opt. Lett.31,3465-3467 (2006)
    [1.44]P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging, Opt. Lett.31,1824-1826 (2006)
    [1.45]P. Zakharov, A.C. Volker, M.T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, Dynamic laser speckle imaging of cerebral blood flow, Opt. Express 17,13904-13917 (2009)
    [1.46]B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics, J. Biomed. Opt.11,041129 (2006)
    [1.47]C. Ayata, A.K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D.A. Boas, and M.A. Moskowitz, Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,J. Cerebral Blood Flow& Metabolism 24,744-755 (2004)
    [1.48]D.D. Duncan, and S.J. Kirkpatrick, Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A 25,2088-2094 (2008)
    [1.49]C.A. Thompson, K.J. Webb, and A.M. Weiner, Diffusive media characterization with laser speckle, Appl. Opt.36,3726-3734 (1997)
    [1.50]T.R. Hillman, S.G. Adie, V. Seemann, and J.J. Armstrong, Correlation of static speckle with sample properties in optical coherence tomography, Opt. Lett.31,190-192 (2006)
    [1.51]Y. Piederriere, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, G. Le Brun, Backscattered speckle size as a function of polarization:influence of particle size and concentration, Opt. Express 13,5030-5039 (2005)
    [1.52]Y. Piederriere, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, J. Lotrian, Scattering through fluids:speckle size measurement and monte carlo simulations close to and into the multiple scattering, Opt. Express 12,176-188 (2004)
    [1.53]E. Blotta, V. Ballarin, and H. Rabal, Decomposition of biospeckle signals through granulometric size distribution, Opt. Lett.34,1201-1203 (2009)
    [1.54]Y. Wang, and R. Wang, Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation, Phys. Med. Biol.53,6167-6177 (2008)
    [1.55]A.A. Oraevsky, S.L. Jacques, F.K. Tittel, Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress, Appl. Opt.36,402-415 (1997)
    [1.56]W. Xie, H. Li, Z. Li, and H. Liu, Measurement of optical properties of biological tissue based on scanning photoacoustic technology, Laser& Optoelectronics Progress 46, 103-107 (2009) (in chinese) DOI:10.3788/LOP20094612.0103
    [1.57]B.T. Cox, S.R. Arridge, K.P. Kostli, and P.C. Beard, Quantitative photoacoustic imaging:fitting a model of light transport to the initial pressure distribution, Proc. SPIE 5697,49-55 (2005)
    [1.58]B.T. Cox, S.R. Arridge, K.P. Kostli, and P.C. Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method, Appl. Opt.45,1866-1875 (2006)
    [1.59]J.C. Ranasinghesagara, Y. Jian, X. Chen, K. Mathewson, and R.J. Zemp, Photoacoustic technique for assessing optical scattering properties of turbid media, J. Biomed. Opt.14,040504 (2009)
    [1.60]R.O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Optoacoustic technique for noninvasive monitoring of blood oxygenation:a feasibility study, Appl Opt.41,4722-4731 (2002)
    [1.61]Jan Laufer, Clare Elwell, Dave Delpy and Paul Beard, In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution, Phys. Med. Biol.50,4409-4428 (2005)
    [1.62]Y.Y. Petrov, I.Y. Petrova, I.A. Patrikeev, R.O. Esenaliev, D.S. Prough, Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation:a pilot clinical test in the internal jugular vein, Opt. Lett.31,1827-1829 (2006)
    [1.63]Z. Yuan, and H. Jiang, Quantitative photoacoustic tomography:recovery of optical absorption coefficient maps of heterogeneous media, Appl. Phys. Lett.88,231101 (2006)
    [1.64]Z. Yuan, Q. Zhang, H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography, Opt. Express 14,6749-6754 (2006)
    [1.65]Z. Yuan, Q. Wang, and H. Jiang, Reconstruction of optical absorption coefficient maps of heterogeneous media by phtoacoustic tomography coupled with diffusion equation based regularized Newton method, Opt. Express 15,18076-18081 (2007)
    [1.66]Z. Yuan, and J. Jiang, Quantitative photoacoustic tomography, Phiols Transact A Math Phys. Eng. Sci.367,3043-3054 (2009)
    [1.67]Z. Guo, S. Hu, and L. V. Wang, Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in three-dimensional photoacoustic microscopy of biological tissue, Opt. Lett.35,2067-2069 (2010)
    [1.68]维基百科:http://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE %E9%95%9C
    [1.69]牛憨笨,陈丹妮,尹君,细胞内分子检测及成像技术研究,深圳大学学报(理工版)8,1-16(2011)
    [1.70]苏晓东,金坚石,谢晓亮,单分子水平的酶催化与基因表达研究,物理化学学报26,1976-1987(2010)
    [1.71]维基百科:http://zh.wikipedia.org/wiki/%E7%9B%B8%E8%A1%AC%E6%98%BE%E5%BE%AE %E6%8A%80%E6%9C%AF
    [1.72]Y Wang, K. Maslov, Y. Zhang, S. Hu, L. Yang, Y. Xia, J. Liu, and L.V. Wang, Fiber-laser-based photoacoustic microscopy and melanoma cell detection, J. Biomed. Opt. 16,011014(2011)
    [1.73]L. Song, K. Maslov, and L.V. Wang, Multifocal optical-resolution photoacoustic microscopy in vivo, Opt. Lett.36,1236-1238 (2011)
    [1.74]K. Wang, S.A. Ermilov, R. Su, H. Brecht, A.A. Oraevsky, M.A. Anastasio, An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography, IEEE Transactions on Medical imaging 30(2),203-214 (2011)
    [1.75]J. Laufer, E. Zhang, G. Raividh, and P. Beard, Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner, Appl. Opt.48, D299-D306 (2009)
    [1.76]国家自然基金基金委员科学基金网络信息系统:http://159.226.244.22/portal/proi search.asp,可查询。
    [1.77]徐晓辉,李晖,谢树森,聚焦光声鲜红斑痣诊断技术:模拟样品研究,光电子激光19,1566-1570(2008)
    [1.78]曾志平,谢文明,李莉,李志芳,李晖,陈树强,多种长焦区聚焦超声采集率的人体甲状腺光声成像,激光与光电子学进展49,021802(2012)
    [1.79]A. J. Einstein, Self-affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei, Phy Rev. Let.80(2),397-400 (1998)
    [1.80]Y. Gazit, Scale-invariant behavior and vascular network formation in normal and tumor Tissue, Phy. Rev. Let.75(12),2428-2431 (1995)
    [1.81]秦明新,心脏生理学中的分形,第四军医大学学报20(3),260-263(1999)
    [1.82]K. Bliznakova, A three-dimensional breast software phantom for mammography simulation, Phys. Med. Biol.48,3699-3719 (2003)
    [1.83]N. Bellomo, A. Bellouquid, M. Delitala, From the mathematical kinetic theory of active particles to multiscale modeling of complex biological system, Mathematical and Computer Modeling 47,687-698 (2008)
    [1.84]吴家睿,生物系统的复杂性与简单性,科学57(3),27-28(2005)
    [2.1]飞思科技产品研发中心,MALTAB6.5辅助小波分析与应用,电子工业出版社(2002)
    [2.2]G. Matheron, Random sets and integral geometry, Wiley, New York (1975)
    [2.3]J. Serra, Image analysis and mathematical morphology, Academic Press, London (1982)
    [2.4]H.J.A.M. Heijmans, and C. Ronse, The algebraic basis of mathematical morphology I. dilations and erosions, Computer vision, Graphics, and Image processing (CVGIP) 50, 245-295 (1990)
    [2.5]C. Ronse, and H.J.A.M. Heijmans, The algebraic basis of mathematical morphology Ⅱ. Openings and closings, Computer vision, Graphics, and Image processing (CVGIP) Image Understanding 54,74-97 (1991).
    [2.6]D. Prodanov, H.K.P. Feirabend, Automated characterization of nerve fibers labeled fluorescently:determination of size, class and spatial distribution, Brain Research 1233, 35-50 (2008)
    [2.7]MATLAB HELP open function
    [2.8]Z. Zalevsky, I. Ouzieli, and D. Mendlovic, Wavelet-transform-based composite filters for invariant pattern recognition, Appl. Opt.35 (7),3141-3147(1996)
    [2.9]M.A. Choma, S. Yazdanfar, J.A. Izatt, Wavelet and model-based spectral analysis of color Doppler optical coherence tomography, Optics Communication 263,124-128 (2006)
    [2.10]J. Weng, J. Zhong. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform, Opt. Lett.30,2560-2562 (2005)
    [2.11]Benoit B.Mandelbrot, The Fractal Geometry of Nature, W.H.FREEMAN AND COMPANY, New York (1977)
    [2.12]张济忠,分形,清华大学出版社(1995)
    [2.13]孙小霞,分形原理及其原理,中国科学技术大学出版社(2003)
    [2.14]H.E. Schepers, J.H.G.M. van Beek, and J. B. Bassingthwaighte, Four methods to estimate the fractal dimension from self-affine signals, IEEE Eng. Med. Bio.11,57-6 (1992)
    [2.15]T. L. Lian, P. Radhakrishnan, B.S.D. Sagar, Morphological decomposition of sandstone pore-space:fractal power-laws, Chaos, Solitons and Fractal 19,339-346 (2004)
    [2.16]S.R. Arridge, P. Van Der Zee, D.T. Delpy and M. Cope, Particle sizing in the Mie scattering region:singular-value analysis, Inverse Problems 5,671-689 (1989)
    [2.17]D.H. P. Schneiderheinze, T.R. Hillman, and D.D. Sampson, Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering, Opt. Expess 15,15002-15010 (2007)
    [2.18]M. Xu and R.R. Alfano, Fractal mechanisms of light scattering in biological tissue and cells, Opt. Lett.30,3051-3053 (2005)
    [2.19]O. Carvalho, M. Benderitter, L. Roy, Noninvasive radiation burn diagnosis using speckle phenomenon with a fractal approach to processing, J. Biomed. Opt.15,027013 (2010)
    [2.20]Zhifang Li, Lingling Fan, Wenming Xie, and Hui Li, Morphological granulometric feature of speckled speckles for characterizing the scattering coefficient of tissue phantoms, IEEE, (2010)
    [2.21]M.D. Kulkarni, T.G. van Leeuwen, S.Yazdanfar, and J.A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography, Opt. Lett.23,1057-1059(1998)
    [2.22]Z.F. Li, H. Li, J.J. Li, and X.N. Lin, Feasibility of glucose monitoring based on Brownian dynamics in time-domain optical coherence tomography, Laser Physics 21 (11), 1995-1998(2011)
    [2.23]谭毅,邢达,王毅,曾亚光,尹邦政,超声换能器带宽对光声成像的影响,光学学报25,40-44(2005)
    [2.24]Zhifang Li, Hui Li, Wenming Xie, Characterization of photoacoustic signal using wavelet analysis, Proc. ofSPIE 7845,784501 (2010)
    [3.1]J.M. Schmitt and G.Kumar, Turbulent nature of refractive-index variations in biological tissue, Opt.Lett.21,1310-1312 (1996)
    [3.2]Y. Gazit, D.A. Berk, M. Leunig, M. Leunig, L.T. Baxter, and R.K. Jain, Scale-invariant behavior and vascular network formation in normal and tumor tissue, Phys. Rev. Lett.75,2428-2431 (1995)
    [3.3]A.J. Einstein, H-S Wu, and J. Gil, Self-affinity and Lacunarity of Chromatin Texrue in benign and malignant breast epithelial cell nuclei, Phys. Rev. Lett.80,397-400 (1998)
    [3.4]M. Xu and R. R. Alfano, Fractal mechanisms of light scattering in biological tissue and cells, Opt. Lett.30,3051-3053 (2005)
    [3.5]C. J. R. Sheppard, Fractal model of light scattering in biological tissue and cells, Opt. Lett.32,142-144 (2007)
    [3.6]T.T. Wu, J.Y. Qu, and M. Xu, Unified Mie and fractal scattering by biological cells and subcellular structures, Opt. Lett.32,2324-2326 (2007)
    [3.7]J. M. Schmitt and G. Kumar, Optical scattering properties of soft tissue:a discrete particle model, Appl. Opt.37,2788-2797 (1998)
    [3.8]B. G'el'ebart, E. Tinet, J. M. Tualle, Phase function simulation in tissue phantoms:a fractal approach, Pure Appl. Opt.5,377-388 (1996)
    [3.9]D. Passos, J. C. Hebden, P. N. Pinto, R. Guerra, Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution, J. Biomed. Opt.10,064036 (2005)
    [3.10]D.H. P. Schnciderheinze, T.R. Hillman, and D.D. Sampson, Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering, Opt. Expess 15,15002-15010 (2007)
    [3.11]W. Gong, K. Si, and C.J.R. Sheppard, Modeling phase functions in biological tissue, Opt. Lett.33,1599-1601 (2008)
    [3.12]S. Chamot, E. Migacheva, O. Seydoux, P. Marquet, and C. Depeursinge, Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers, Opt. Express 18,23664-23675 (2010)
    [3.13]H. Li, S. Xie, Z. Lu, L. Lin, A new model of the light scattering in biological tissue for visible and near infrared region, Acta Optica Sinica 19,1661-1666 (1999) (In Chinese)
    [3.14]J.F. Beek, P. Blokland, P. Posthumus, M. Aalders, J.W. Pickering, HJ.C.M. Sterenborg, and M.J.C. van Gemert, In vitro double-integrating-sphere optical properties of tissues between 630 and 1064nm, Phys. Med. Biol.42,2255-2261 (1997)
    [3.15]W. R. Chen, R. L. Adams, R. Carubelli and R. E. Nordquist, Laser-photosensitizer assisted immunotherapy:A novel modality in cancer treatment, Cancer Letters 115, 25-30(1997)
    [3.16]W. R. Chen, A. K. Singhal, H. Liu, and R. E. Nordquist, Laser immunotherapy induced antitumor immunity and its adoptive transfer, Cancer Research 61,459-461 (2001)
    [3.17]W. R. Chen, J. W. Ritchey, K. E. Bartels, H. Liu, and R. E. Nordquist, Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats, Cancer Research 62,4295-4299 (2002)
    [3.18]W. R. Chen, R. Carubelli, H. Liu, and R. E. Nordquist, Laser Immunotherapy:A Novel Treatment Modality for Metastatic Tumors, Molecular Biotechnology 25,37-43 (2003)
    [3.19]K. Le, X. Li, D. Figueroa, R.A. Tower, P. Garteiser, D. Saunders, N. Smith, H. Liu, T. Hode, R. E. Nordquist, W.R. Chen, Assessment of thermal effects of interstitial laser phottheraphy on mammary tumors using proton resonance frequency method, J. Biomed. Opt.16(12),128001(2011)
    [3.20]M. F. Naylor, W. R. Chen, T. K. Teague, L. Perry, and R. E. Nordquist, In Situ Photo Immunotherapy:A Tumor-Directed Treatment Modality for Melanoma, British Journal of Dermatology 155,1287-1292 (2006)
    [3.21]X. Li, M. F. Naylor, R. E. Nordquist, T. K. Teague, C. A. Howard, C. Murray, and W. R. Chen, In Situ Photoimmunotherapy for Late-stage Melanoma Patients:a Preliminary Study, Cancer Biology and Therapy 10(11),1077-1214 (2010)
    [3.22]X. Li, G. L. Ferrel, M. C. Guerra, T. Hode, J. A. Lunn, O. Adalsteinsson, R. E. Nordquist, H. Liu, and W. R. Chen, Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients, Photochemical& Photobiological Sciences 10,817-821 (2011)
    [3.23]D.C. Knill, D. Field and D. Kersten, Human discrimination of fractal images, J. Opt.Soc.Am.A7,1113-1123(1990)
    [3.24]H.E. Schepers, J.H.G.M. van Beek, and J. B. Bassingthwaighte, Four methods to estimate the fractal dimension from self-affine signals, IEEE Eng. Med. Biol.11,57-64 (1992)
    [3.25]S.-C. Cheng and Y.-M. Huang, A novel approach to diagnose diabetes based on the fractal characteristics of retinal images, IEEE Transactions on Information Technology in Biomedicine 7,163-170(2003)
    [3.26]I.H. Parkinson and N.L Fazzalari, Methodological principles for fractal analysis of trabecular bone, Journal of Microscopy 198,134-142 (2000)
    [3.27]S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and lambda mode, Opt. Express 14,7810-7820 (2006)
    [3.28]S. Zhuo, X. Zhu, G. Wu, J. Chen, S. Xie, Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal, J. Biomed. Opt.16, 120501(2011)
    [3.29]D.J. Faber, F. J. van der Meer, M.C.G. Aalders, Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography, Opt. Express 12,4353-4365 (2004)
    [3.30]L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,J. Opt. Soc. Am. A 17, 484-490 (2000)
    [3.31]S. Zhuo, J. Chen, S. Xie, Z. Hong, and X. Jiang, Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals, J. Biomed. Opt.14,020503 (2009)
    [3.32]S. Zhuo, J. Chen, G. Wu, S. Xie, L. Zheng, X. Jiang, and X. Zhu, Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy, Appl. Phys. Lett.96,213704 (2010)
    [4.1]D.J. Faber, F. J. van der Meer, M.C.G. Aalders, Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography, Opt. Express 12,4353-4365 (2004)
    [4.2]L. Thrane, H.T. Yura, RE. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle, J. Opt. Soc. Am. A 17, 484-490 (2000)
    [4.3]R.O. Esenaliev, K.V. Larin, I.V. Larina, M. Motamedi, Noninvasive monitoring of glucose concentration with optical coherence tomography, Opt. Lett.26,992-994 (2001)
    [4.4]R.V. Kuranov, V.V. Sapozhnikova, D. S. Prough, I. Cicenaite, R.O. Esenaliev, In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography, Phys. Med. Biol.51,3885-3900 (2006)
    [4.5]Z. Chen, T.E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J.C. van Gemert, and J. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Opt. Lett.22,1119-1121 (1997)
    [4.6]A.S.G Singh, C. Kolbitsch, T. Schmoll, and R.A. Leitgeb, Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,Biomed. Opt. Express 1,1047-1059 (2010)
    [4.7]I.V. Larina, S. Ivers, S. Syed, M.E. Dickinson, and K.V. Larin, Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT, Opt. Lett.34,986-988 (2009)
    [4.8]V. Westphal, S. Yazdanfar, A.M. Rollins, and J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography, Opt. Lett.27,34-36 (2002)
    [4.9]M.D. Kulkarni, T.G. van Leeuwen, S. Yazdanfar, and J.A. Izatt, Velocity estimation accuracy and frame rate limitations in color Doppler optical coherence tomography, Opt. Lett.23,1057-1059(1998)
    [4.10]Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, and J. S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow, Opt. Lett.25,1358-1360 (2000)
    [4.11]X. Xu, Y. Ahn, and Z. Chen, Feasibility of Doppler variance imaging for red blood cell aggregation characterization, J. Biomed. Opt.14,060507 (2009)
    [4.12]L. Yu, Z. Chen, Doppler variance imaging for three-dimensional retina and choroid angiography, J. Biomed. Opt.15,016029 (2010)
    [4.13]G. Liu, W. Qi, L. Yu, and Z. Chen, Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging, Opt. Express 19,3657-3666 (2011)
    [4.14]S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, J. Ko, Quick and easy measurement of particle size of Brownian particles and planktons in water using a self-mixing laser, Opt. Express 14,1044-1054 (2006)
    [4.15]Albert Einstein, Einstein's miraculous year:five papers that changed the face of physics, edited by John Stachel,USA:Princeton University Press,1998, part 1.
    [4.16]D.A. Boas, K.K. Bizheva, A.M. Siegel, Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media, Opt. Lett.23, 319-321 (1998)
    [4.17]K.K. Bizheva, A.M. Siegel, D.A. Boas, Path-length-resolved dynamic light scattering in highly scattering random media:the transition to diffusing wave spectroscopy, Phys. Rev. E 58,7664-7667 (1998)
    [4.18]D.J. Pine, D.A. Weitz, J.X. Zhu, and E. Herbolzheimer, Diffusing-wave spectroscopy:dynamic light scattering in the multiple scattering limit, J. Phys. France 51, 2101-2127(1990)
    [4.19]http://en.wikipedia.org/wiki/Cauchy_distribution
    [4.20]http://en.wikipedia.org/wiki/U-quadratic distribution
    [4.21]Z. Li, H. Li, Y. He, S. Cai, and S. Xie, A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues, Phys.Med. Biol.53,5859-5866 (2008)
    [4.22]H. J. van Staveren, C.J.M. Moes, J. van Marle, S. A. Pahl, and M.J.C. van Gemert, Light scattering in Intralipid-10%in the wavelength range of 400-1100nm, Appl. Opt.30, 4507-4514(1991)
    [4.23]J.T. Olesberg, L. Liu, V. van Zee, M.A. Arnold, In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels, Anal. Chem.78,215-223 (2006)
    [4.24]B.H. Malik, G.L. Cot e, Characterizing dual wavelength polarimetry through the eye for monitoring glucose, Biomedical Optics Express,1,1247-1258 (2010)
    [4.25]D.A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N.C. Shah, M.R. Glucksberg, J.T. Walsh, R.P. van Duyne, Glucose sensing using near-infrared surface-enhanced Raman spectroscopy:gold surfaces,10-day stability, and improved accuracy, Anal.Chem. 77,4013-4019(2005):
    [4.26]R.J. McNichols, G.L. Cote, Optical glucose sensing in biological fluids:an overview, J. Biomed. Opt.5,5-16 (2000)
    [5.1]J.C. Dainty, Laser speckle and related phenomena,2~nd, Springer-Verlag,1984
    [5.2]Z.F. Li, H. Li, W.M. Xie, and L.L. Fan, Granulometric analysis of speckles for polarization-difference imaging in turbid media, Lasers engineering 21,255-263 (2011)
    [5.3]Zhifang Li, Hui Li, Yongwu He, Shoudong Cai, Shusen Xie, A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogeneous tissues, Phys. Med. Biol.53,5859-5866 (2008)
    [5.4]R.E. Nothdurft and G. Yao, Effects of turbid media optical properties on object visibility in subsurface polarization imaging, Appl. Opt.45,5532-5541 (2006)
    [5.5]I.J. Vaughn and B.G. Hoover, Noise reduction in a laser polarimeter based on discrete waveplate rotations, Opt. Express 16,2091-2108 (2008)
    [5.6]D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter, Opt. Lett.29,2878-2880 (2004)
    [5.7]P. Zakharov and A. Volker, Quantitative modeling of laser speckle imaging, Opt. Lett. 31,3465-3467 (2006)
    [5.8]P. Zakharov, A.C. Volker, M.T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, Dynamic laser speckle imaging of cerebral blood flow, Opt. Express 17,13904-13917 (2009)
    [5.9]C.A. Thompson, K.J. Webb, and A.M. Weiner, Diffusive media characterization with laser speckle, Appl. Opt.36,3726-3734 (1997)
    [5.10]Y. Piederriere, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, G. Le Brun, Backscattered speckle size as a function of polarization:influence of particle size and concentration, Opt. Express 13,5030-5039 (2005)
    [5.11]Y. Piederriere, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, J. Lotrian, Scattering through fluids:speckle size measurement and Monte Carlo simulations close to and into the multiple scattering, Opt. Express 12,176-188 (2004)
    [5.12]F. Zana, and J. C. Klein, Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation, IEEE Trans. Imag. Proc.10,1010-1019 (2001)
    [5.13]J.P. Thiran, B. Macq, Morphogical feature extraction for classification of digital images of cancerous tissues, IEEE Trans. Biomed. Eng.43,1011-1020 (1996)
    [5.14]F. Safa, and G. Flouzat, Speckle removal on radar imagery based on mathematical morphology, Signal Processing 16,319-333 (1989)
    [5.15]M.P. Rowe and E.N. Pugh, Polarization-difference imaging:a biologically inspired technique for observation through scattering media, Opt. Lett.20,608-610 (1995)
    [5.16]贺忠海,徐可钦,苏翼雄,透射光偏振度与散射次数关系的研究,光子学报34,547-549(2005)
    [5.17]K.M. Yoo, and R.R. Alfano, Time resolved depolarization of multiple backscattered light from random media, Phys. Lett. A 142,531-536 (1989)
    [5.18]H. Soltanian-Zadeh, J.P. Windham, and A.E. Yagle, A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration, IEEE Trans. Image Process A,147-161 (1995)
    [5.19]G. Cincotti, G. Loi, and M. Pappalardo, Frequency decomposition and compounding of ultrasound medical images with wavelet packets, IEEE Trans. Med. Imaging 20,764-771 (2001)
    [5.20]S. Guyot, M.C. Peron, and E. Delechelle, Spatial speckle characterization by Brownian motion analysis, Phys. Rev. E.70,046618-1-8 (2004)
    [5.21]刘新文,王惠南,钱志余,小波变换对OCT图像的降噪处理,光子学报35,935-939(2006)
    [5.22]李佳,王笑梅,OCT图像降噪混合滤波方法,计算机工程与设计32,1738-1741 (2011)
    [5.23]张雨东,戴云,史国华,一维小波变换在时域光学相干层析成像中的应用,中国激光35,1013-1016(2008)
    [5.24]M.A. Choma, S. Yazdanfar, J.A. Izatt, Wavelet and model-based spectral analysis of color Doppler optical coherence tomography, Optics Communications 263,124-128 (2006)
    [5.25]T. Yoshimura and K. Fujiwara, Statistical properties of doubly scattered image speckle, J. Opt. Soc. Am. A 9,91-95(1992)
    [5.26]L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle, J. Opt. Soc. Am. A 17, 484-490 (2000)
    [5.27]H.J. van Staveren, C.J.M. Moes, J. van Marie, S.A. Prahl and M.J.C. van Gemer, Light scattering in Intralipid-10%in the wavelength range of 400-1100nm, App.Opt.30, 4507-4514(1991)
    [5.28]T.R. Hillman, S.G. Adie, V.Seemann, J.J. Armstrong, S.L. Jacques, D.D. Sampson, Correlation of static speckle with sample properties in optical coherence tomography, Opt.Lett.31(2),190-192 (2006)
    [5.29]K.W. Gossage, T.S. Tkaczyk, J.J. Rodriguez, J.K. Barton, Texture analysis of optical coherence tomography images:feasibility for tissue classification, J.Biomed.Opt. 8(3),570-575 (2003)
    [5.30]K.W. Gpssage. CM. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, J.K. Barton, Texture analysis of speckle in optical coherence tomography images of tissue phantoms, Phys. Med. Biol.51,1563-1575 (2006)
    [5.31]A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasscr, Optical coherence tomography-principles and application, Rep.Prog.Phys.66239-303 (2003)
    [5.32]D.J. Faber, F.J. van der Meer, M.C.G. Aalders, Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography, Opt.Express 12,4353-4365 (2004)
    [5.33]Y. Pan, R. Birngruber, and R. Engelhardt, Contrast limits of coherence-gate imaging in scatterng media, App.Opt.36,2979-2983 (1997)
    [5.34]H. H. Arsenault and G. April Properties of speckle integrated with finite aperture and logarithmically transformed, J. Opt. Soc. Am.66,1160-1163 (1976)
    [6.1]S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller and A. A. Oraevsky, Laser optoacoustic imaging system for detection of breast cancer,J. Biomed. Opt.14,024007 (2009)
    [6.2]M. Xu, and L.V. Wang, Photoacoustic imaging in biomedicine, Rev. Scientific Instruments 77,041101 (2006)
    [6.3]X. Xu, H. Li, Photoacoustic imaging in biomedicine, Physics 37,111-119 (2008)
    [6.4]C. Li, and L.V. Wang, Photoacoustic tomography and sensing in biomedicine, Phys. Med. Biol.54, R59-R97 (2009)
    [6.5]J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang and Q. Zhu, Curved array photoacoustic tomographic system for small animal imaging, J. Biomed. Opt.13,024007 (2008)
    [6.6]Y. Wang, and R. Wang, Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation, Phys. Med. Biol.53,6167-6177 (2008)
    [6.7]A.A. Oraevsky, S.L. Jacques, F.K. Tittel, Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress, Appl. Opt.36,402-415 (1997)
    [6.8]W. Xie, H. Li, Z. Li, and H. Liu, Measurement of optical properties of biological tissue based on scanning photoacoustic technology, Laser& Optoelectronics Progress 46, 103-107 (2009) (in chinese) DOI:10.3788/LOP20094612.0103
    [6.9]B.T. Cox, S.R. Arridge, K.P Kostli, and PC. Beard, Quantitative photoacoustic imaging:fitting a model of light transport to the initial pressure distribution, Proc. SPIE 5697,49-55 (2005)
    [6.10]B.T. Cox, S.R. Arridge, K.P Kostli, and PC. Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,Appl. Opt.45,1866-1875(2006)
    [6.11]J.C. Ranasinghesagara, Y. Jian, X. Chen, K. Mathewson, and R.J. Zemp, Photoacoustic technique for assessing optical scattering properties of turbid media, J. Biomed. Opt.14,040504 (2009)
    [6.12]R.O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Optoacoustic technique for noninvasive monitoring of blood oxygenation:a feasibility study, Appl. Opt.41,4722-4731 (2002)
    [6.13]Jan Laufer, Clare Elwell, Dave Delpy and Paul Beard, In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution, Phys. Med. Biol.50,4409-4428 (2005)
    [6.14]Y.Y. Petrov, I.Y. Petrova, LA. Patrikeev, R.O. Esenaliev, D.S. Prough, Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation:a pilot clinical test in the internal jugular vein, Opt. Lett.31,1827-1829 (2006)
    [6.15]Z. Yuan, and H. Jiang, Quantitative photoacoustic tomography:recovery of optical absorption coefficient maps of heterogeneous media, Appl. Phys. Lett.88,231101 (2006)
    [6.16]Z. Yuan, Q. Zhang, H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography, Opt. Express 14,6749-6754 (2006)
    [6.17]Z. Yuan, Q. Wang, and H. Jiang, Reconstruction of optical absorption coefficient maps of heterogeneous media by phtoacoustic tomography coupled with diffusion equation based regularized Newton method, Opt. Express 15,18076-18081 (2007)
    [6.18]Z. Yuan, and J. Jiang, Quantitative photoacoustic tomography, Phiols Transact A Math Phys. Eng. Sci.367,3043-3054 (2009)
    [6.19]Z. Guo, S. Hu, and L. V. Wang, Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in three-dimensional photoacoustic microscopy of biological tissue, Opt. Lett.35 (12),2067-2069 (2010)
    [6.20]K.P. Kostli and P.C. Beard, Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response, Appl. Opt.42,1899-1908(2003)
    [6.21]J. Laufer, D. Delpy, C. Elwell and P. Beard, Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy, Phys. Med. Biol.52,141-168 (2007)
    [6.22]X.L. Dean-Ben, D. Razansky and V. Ntziachristos, Correction for acoustic attenuation effects in optoacoustic tomographic reconstructions, Proc. of SPIE 8090, 809014(2011)
    [6.23]Z. Guo, L. Li, and L. V. Wang, On the speckle-free nature of photoacoustic tomography, Medical Physics 36 (9),4084-4088 (2009)
    [6.24]Z. Li, H. Li, H. Chen, and W. Xie, In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer, J. Biomed. Opt.16, 076011 (2011)
    [6.25]H. J. van Staveren, C.J.M. Moes, J. van Marie, S. A. Pahl, and M.J.C. van Gemert, Light scattering in Intralipid-10%in the wavelength range of 400-1100nm, Appl. Opt.30, 4507-4514(1991)
    [6.26]C.S. Yelleswarapu and S.R. Kothapalli, Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient, Opt. Express 18,9020-9025 (2010)
    [6.27]V.M. Kodach, D.J. Faber, J. van Marie, T.G. van Leeuwen, and J. Kalkman, Determination of the scattering anisotropy with optical coherence tomography, Opt. Express 19,6131-6140 (2011)
    [6.28]W.R. Chen, R.L. Adams, S. Heaton, D.T. Dickey, K.E. Bartels, R.E. Nordquist, Chromophore-enhanced laser-tumor tissue photothermal interaction using 808 nm diode laser, Cancer Letters 88,15-9(1995)
    [6.29]W.R. Chen, R.L. Adams, K.E. Bartels, R.E. Nordquist, Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser, Cancer Letters 94,125-31 (1995)
    [6.30]W.R. Chen, R.L. Adams, A.K. Higgins, K.E. Bartels, R.E. Nordquist, Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: An in vivo efficacy study, Cancer Letters 98,169-73 (1996)
    [6.31]L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences SA 100,13549-54 (2003)
    [6.32]L.V. Wang, R. E. Nordquist and W.R. Chen, Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple beam delivery:a Monte Carlo study, Appl Opt.36,8286-8291 (1997)
    [6.33]J.J. Crochet, S.C. Gnyawali, Y. Chen, B.C. Lemley, L.V. Wang, and W.R. Chen, Temperature Distribution in Selective Laser-Tissue Interaction, J. Biomed. Opt.11, 034031,1-10(2006)
    [6.34]M.L. Li, L.V. Wang, A study of reconstruction in photoacoustic tomography with a focused transducer, Proc. of SPIE 6437,64371E-1 (2007)
    [6.35]L.M Zeng, D. Xing, H.M. Gu, D.W. Ynag, S.H. Yang, L.Z. Xiang, High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet, Med. Phys.34,556-563 (2007)
    [6.36]T. Lu, J.Y. Jiang, Y.X. Su, Z.Y. Song, J.Q. Yao, R.K. Wang, Signal processing using wavelet transform in photoacoustic tomography, Proc. of SPIE 6439,64390L-1 (2007)
    [6.37]S.H. Holan, J.A. Viator, Automated wavelet denoising of photoacoustic signals for burn depth image reconstruction, Proc. of SPIE 6437,643719-1 (2007)
    [6.38]Y.G. Zeng, D. Xing, H.B. Fu, Y. Wang, Signal process of photoacoustic tomography, Chinese Journal of Lasers 32,97-100 (2005) in chinese
    [6.39]L.Z. Xiang, D. Xing, H.M. Gu, D.W. Yang, S.H. Yang, L.M. Zeng, Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction technique, Acta Physica Sinica 56,3911-3916(2007) in chinese
    [6.40]X.H. Xu, H. Li, Scanning photoacoustic mammography with a focused transducer featuring extended focal zone, Acta Physica Sinica 57,4623-4628 (2008) in Chinese
    [6.41]A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, Optical properties of circulating human blood in the wavelength range 400-2500nm, J. Biomed. Opt.4,36-46 (1999)
    [6.42]W.J. Rogers, H.G. McDaniel, L.R. Smith, J.A. Mantle, R.O. Russel, Jr and C.E. Rackley, Correlation of angiographic estimates of myocardial infarct size and accumulated release of creatine kinase MB isoenzyme in man, Circulation 56,199-205 (1977)
    [6.43]K. Ytrehus, Models of myocardia ischemia, Drug Discovery Today:Disease Models 3,263-271 (2006)
    [6.44]S. Sato, M. Ogura, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Obara, M. Kikuchi, and H. Ashida, Nanosecond, high-intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near-infrared wavelengths:In-vitro study, Lasers in Surgery and Medicine 29,464-473 (2001)
    [6.45]J.A. Viator, S.L. Jacques, and S.A. Prahl, Depth profiling of absorbing soft materials using photoacoustic methods, IEEE Journal of Selected Topics in Quantum Electronics 5,989-996 (1999)
    [6.46]M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L.V. Wang, Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels, Phys. Med. Biol.52,1349-1361 (2007)
    [6.47]X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of brain, Nat.biotechnol.21(7),803-806 (2003)
    [6.48]Y. Ti, P. Chen, W.C. Lin, In vivo characterization of myocardial infarction using fluorescence and diffuse reflectance spectroscopy, J. Biomed. Opt.15,037009 (2010)
    [6.49]F.H. Bernet, D. Reineke, H.R. Zerkowski, and D. Baykut, Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy, J. Cardiotho.Surg.1,12-17 (2006)
    [6.50]A. Nakayama, F. del Monte, R.J. Hajjar, and J.V. Frangioni, functional near-infrared fluorescence imaging for cardiac surgery and targeted gene therapy, Mol. Imag.1,365-377 (2002)
    [6.51]J. Chen, C. Tung, J.R. Allport, S. Chen,R. Weissleder, P.L.Huang, Near-Infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction, Circulation 111,1800-1805 (2005)
    [6.52]J.V. Frangioni,In vivo near-infrared fluorescence imaging, Curr.Opin. Chem. Biol. 7,626-634 (2003)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700