用户名: 密码: 验证码:
大开口高耸薄壁圆筒结构动力特性与性能设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大开口薄壁壳结构具有跨度大,自重轻,强度高,刚度较好等优点。但是由于此类结构和受力形式比较复杂,并且影响其动力特性的因素较多,尤其是地震作用下结构的动力响应存在诸多尚未解决的问题,使得对于大开口薄壁壳结构的抗震性能设计没有相应标准可循。
     本文对有较大矩形开口的薄壁壳结构进行了考虑流固耦合与不考虑流固耦合现象的结构有限元动力反应分析,研究了在不同的激励波加速度峰值和不同输入方向的前提下,薄壁壳结构开口位置、数量以及液面高度等对结构动力响应的影响,明确了该结构的最不利激励波输入角度。提出了对该结构进行结构计算的拟静力简化计算方法。同时对以此为背景的某电厂大型脱硫塔结构做了1:15缩小比例的振动台模型试验,并对大开口薄壁壳结构的性能设计提出了建议。取得的主要研究成果如下:
     (1)基于对某电厂大型脱硫塔结构原型结构进行简化后的薄壁壳结构多角度激励波加载数值模拟分析,研究了大开口薄壁壳结构的动力响应,明确了各种激励波作用下的结构加速度、结构顶部位移分布规律和结构的激励波最不利输入角度,推导出复杂薄壁壳结构的拟静力简化计算模式。
     (2)对某电厂大型脱硫塔结构开展了室内模拟地震的振动台模型试验,通过多角度,多激励波类型等参数的改变,明确了大开口薄壁壳结构的最不利激励波输入方向,验证了数值模拟计算的结果,为大开口薄壁壳结构的设计计算提供了大量合理并且有效的试验数据。
     (3)鉴于考虑结构-液体相互作用的重要性,明确了液体与结构相互作用下开口薄壁壳结构的加速度、顶部位移分布规律,以及不同液面高度等参数的变化对大开口薄壁壳结构动力反应的影响机理。通过研究大开口薄壁结构底部翘离现象,明确了由于结构内部的液体以附加质量的形式作用于薄壁壳结构,会在结构底部产生相应的附加倾覆弯矩,使得“壳振动”随着液体高度的增加而趋于严重。
     (4)探讨了大开口薄壁壳结构抗震性能设计模式,并综合本文的研究成果,对该类结构的性能设计问题提出了一些经济合理、简便易行的性能设计方法,以强化该类结构抗震性能多极化设计的理念。
The thin-walled shell structure has its major advantages on long-span,material weight, overall structural strength and rigidity. The structure form andload condition of cylindrical shells with large-openings are complex and theinfluence factors on the stability are various. But there are many problemsunsolved of the structure dynamic response under seismic. And it has nocorresponding standard of performance-based seismic design to be follwed for thethin-walled shell structure with large-openings.
     This research was studying the dynamic structural responses of thethin-walled shell structures with large rectangular openings. In terms of evaluatingthe impacts on the dynamic responses regarding the number and location of theserectangular openings, two types of seismic waves (i.e., long period and shortperiod) with different acceleration peaks and input directions were applied. Theworst case scenario for the input angle of the seismic wave was also analyzed.
     A simplified numerical method of pseudo-static structural calculation wasderived based on the analysis on the dynamic responses of the same structures,using the finite element method for the scenarios with and without fluid-solidcoupling. The confirmation modeling was completed with a1:15physical modelof a large-scale desulfurization tower using the shaking table method. Accordingto the analysis, the major tasks and founds are as follows:
     (1)The numerical modeling of the targeted desulfurization tower wassimplified under the principles of1) the weights are identical and2) the dynamiccharacteristics are similar. The modeling was completed by inputtingmulti-direction seismic waves and the peak acceleration, distribution pattern ofdisplacement on structure top under these waves were generated. Throughanalyzing the modeling results, the vulnerable locations of this type of structurescan be determined and the simplified numerical calculation method was derived.The worst case scenario of wave input angle was also obtained.
     (2)The physical modeling was carried out with a1:15reduced scale model to the large-scale desulfurization tower using shaking table method. The modelingdata were generated with applying2types, multi-direction seismic waves withdifferent liquid surface elevations in the structure. The modeling simulationoutputs confirmed the calculation results using the numerical method, regardingthe worst wave input direction. Furthermore, the physical modeling provided anumerous of useful data for the structure calculation regarding the impacts of theconcentration rate of the liquid contained in the structure.
     (3)In terms of deriving the peak acceleration distribution patterns,displacements on the structure top and impact behavior on the responses (i.e., thedynamic responses of thin-walled shell structure) caused by liquid-solid couplinginteraction during earthquakes, the dynamic responses were analyzed with andwithout liquid-solid coupling using the two numerical models (the prototypedesulfurization tower and simplified thin-walled shell structure). The researchfocused more on peak acceleration alteration along with the increase of the liquidsurface and concluded that the liquid vibration scope and its energy is extremelyincreased at the liquid surface area, and causes overturning momentum. Thisfound can determine the threshold of uplift phenomenon occurring. It alsoconfirmed that the liquid contained will create extra momentum at the structurebottom because the liquid is “pushing” the structure wall to gain the requiredacceleration force and this “shell vibration” will be more severe along with theincrease of the liquid depth. Therefore, it is critical to take the “liquid-solidcoupling” into account regarding the thin-wall structures with large-span opening.
     (4) The method of structure performance-based seismic design was studied.This research also provided some references and recommendations for the relatedengineering coding and similar structure design in the future, based on thenumerical model and physical model analysis on thin-wall shell structure withlarge opening. These recommendations include some design standards andparameters, such as the wall thickness, input angle of the seismic waves and somemethodology of calculation simplification.
引文
[1] Chandrasekarn, A.R.and P.C.Jain, Effective Live Load of Storage MaterialsUnder Dynamic Conditions, Indian Concrete Journal, Vol42, No.9,1968
    [2]柴田耕一等.钢制サィロの振动特性に关する研究《日本建筑学会论文报告集》第315号,昭和57年,p.37
    [3] Shimaoto, A., Vibration tests for Scale Models of Cylindrlcal Coal Storagesilos.3th W.C.E.E, Vo15, p.287
    [4]杉田捻等,模型石炭サィロの振动实验と解析,清水建设研究所报,38号,昭和58年,pl7
    [5]温德超.储液罐提离的实验研究和多重非线性祸合的三维静、动力分析
    [D].大连:大连理工大学博士学位论文,1991年10月
    [6]孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社,2005年9月
    [7] Niva A, Clough R W. Buckling of cylindrical liquid storage tanks underearthquake loading. Earthq Eng Struct Dyn.,1982,10:107-122
    [8] Haroun M A, Housner G W. Seismic damage of unanchored oil storagetanks. ASCE Publishment, May1981
    [9]邹道勤,邬瑞锋,曲乃泗.储罐在竖向地震下的动力和稳定分析[J].计算结构力学及其应用,1988,5(2):22-27
    [10]杨乃山,曲乃泗.层间储液的双层圆柱壳水弹性振动[J].地震工程与工程振动,1995,15(2):75-83
    [11] Sehmidt H., Binder B., Lange H. Postbuek. Strength Design of0pen Thinwalled Cylindrical Tanks Under Wind Load [J].Thin walled Structures,1998,31(l):203-220
    [12]杨富贵.开孔薄壁圆筒在轴向压缩载荷下中间层的应力分量表达式[J].天津工业大学学报,2001,20(4):60-61
    [13] Winterstetter Th. A., Schmidt H. Stability of Circular Cylindrical SteelShells Under Combined Loading [J]. Thin walled Structures,2002,40(10):893-909
    [14]吴连元.板壳稳定性理论[M].华中理工大学出版社,1996
    [15]叶献国,周锡元.建筑结构弹塑性反应简化分析方法的研究.国家自然科学基金“九五”重大项目:大型复杂结构的关键科学问题及设计理论论文集,361-370,大连理工大学出版社,1999
    [16]叶献国,周锡元.大型火电厂主厂房纵向框架-剪力墙结构的抗震性能研究.国家自然科学基金“九五”重大项目:大型复杂结构的关键科学问题及设计理论论文集,414-412,哈尔滨工业大学出版社,2001
    [17]路秀林,王者相.化工设备设计全书-塔设备[M].化学工业出版社,2004
    [18] UBC(1994): Uniform Building Code[S]. International Conference ofBuilding Officials(ICBO), Whittier, California,1994.
    [19] EC8(1994): Eurocode8–Design Provisions for Earthquake Resistance ofStructures[S]. ENV1998, CEN, Brussels,1994.
    [20] AU Recommendations for Loads on Buildings,1996
    [21] Australian Standard, Part4: Earthquake Loads,1994
    [22] D. Zendagui, M.K. Berrah, E. Kausel. Stochastic deamplification ofspatially varying seismic motions[J]. Soil Dynamics and EarthquakeEngineering,1999,(18):409-421.
    [23] Helmut F Bauer. Theory of Fluid Oscillation in a Circular Cylindrical RingTank Partially Filled With Liquid[M]. NASA TN557,1960
    [24] Kim, Thomas D. Postbuckled behavior of composite isogrid stiffened shellstructure [J]. Advanced Composite Materials: The Official Journal of theJapan Society of Composite Materials,2000,9(3):253-263
    [25] Hübner, A; Teng, J.G; Saal, H Buckling behaviour of large steel cylinderswith patterned welds [J]. International Journal of Pressure Vessels andPiping,2006,83:13-26
    [26] Teng J G, Lin. X. Fabrication of small models of large cylinders withextensive welding for bucking experiments[J]. Thin-Walled Structures,2005,43(7):1091-1114
    [27] Song, C.Y.; Teng, J.G; Rotter, J.M. Imperfection sensitivity of thin elasticcylindrical shells subject to partial axial compression [J]. InternationalJournal of Solids and Structures,2004,41(24-25):7155-7180
    [28] Mats Wallin, Ingemar Bjerle. A model for the absorption of sulphur dioxideinto a limestone slurry Stefan Olausson[J]. The Chemical EngineeringJourna,1993,51(1):99-108
    [29] MEIKAP B C, KUNDU G, BISWAS M N. Modeling of a novel multistagebubble column scrubber for flue gas desulfurization[J]. Chem Eng Journal,2002,(8):331-342
    [30] Mostafa Kheyrkhahan, Ralf Peek. Postbuckling analysis and imperfectionsensitivity of general shells by the finite element method[J]. InternationalJournal of Solids and Structures,1999,(36):2641-2681.
    [31] Tulong Zhu, Jindong Zhang, S.N. Atluri. A meshless numerical methodbased on the local boundary integral equation (LBIE) to solve linear andnon-linear boundary value problems[J]. Engineering Analysis withBoundary Elements,1999,(23):375-389.
    [32]熊渊博,龙述尧,胡德安.薄板屈曲分析的局部Petrov-Galerkin方法[J].工程力学,2006,23(1):23-27
    [33]龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518.
    [34]熊渊博,龙述尧.薄板的局部Petrov-Galerkin方法[J].应用数学和力学,2004,28(2):189-196
    [35] Atluri S N, Cho J Y, Kim H G. Analysis of thin beams, using the meshlesslocal Petrov-Galerkin method, with generalized moving least squaresinterpolations[J]. Comput. Mech,1999,24(2):334-347
    [36] Y. Yan, X.F. Peng, D.J. Lee. Transport and reaction characteristics in fluegas desulfurization[J]. International Journal of Thermal Sciences,2003,(42):943-949.
    [37] KILL S, MICHELSEN M L, JOHANSEN K D. Experimental investigationand modeling of wet flue gas desulfurization pilot plant[J]. Ind Eng ChemRes,1998,37:2792-2806
    [38]刘爱萍,陈志平,郑津洋.矩形大开孔的补强结构设计[J].压力容器,2001,18(4):46-49
    [39]程昌钧,吕小安.开孔结构的稳定性分析及其应用[J].力学进展,1997,21(1):85-96
    [40]叶军,赵阳,俞激.初始几何缺陷对仓壁柱承钢筒仓稳定性能的影响[J].工程力学,2006,23(12)100-105
    [41] ENV1993-1-6. Eurocode3: Design of steel structures,part1-6:Generalrules:Supplementary rules for shell structures[S]. European Committee forStandardisation, Brussels,1999
    [42]袁尚平,王庆宇,张建武.平方非线性对屈曲薄板振动性能影响的研究[J].机械强度,2001,24(2):196-201
    [43]薛大为.板壳理论.北京:北京工业学院出版社,1988
    [44] Nayfeh AH. Introduction to perturbation techniques. NewYork: John Wiley&Sons.,1981
    [45] Afaneh.A.A, Ibrahim.R.A. Nonlinear response of an initially buckled beamwith1:1internal resonance to sinusoidal excitation. Nonlinear Dynamics,1993,(4):547-571
    [46] Clough, R. W. and Penzien J. Dynamic of Structures [M]. McGRAW-HillBook Company,1975
    [47][美]S.S.劳尔著,傅子智译.工程中的有限元[M].北京:科学出版社,1991
    [48]周健,李四娣,刘进喜等.矩形大开孔内压圆筒有限元应力强度分析[J].船舶与海洋工程研究专集,2001,(143):37-39
    [49]张亚欧,谷志飞,宋勇.ANSYS7.0有限元分析实用教程[M].北京:清华大学出版社,2004
    [50]易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,2002
    [51]周利剑,孙建刚,梁立孚.立式储罐与地基相互作用地震反应分析[J].世界地震工程,2005,21(3):152-158
    [52] Tang, Yu, Veletsos, Anestis S. Soil-structure interaction effects for laterallyexcited liquid-storage tanks [J]. American Society of Mechanical Engineers,Pressure Vessels and Piping Division (Publication) PVP. New York, N. Y.,1992,31-37
    [53]李明惠,时文忠,刘德宏等.大直径薄壁大开孔塔结构的有限元分析[J].压力容器,2005,22(2):14-17
    [54]许谋奎,马人乐.镇江电厂烟气脱硫吸收塔有限元计算分析[J].特种结构,2005,22(2):23-25
    [55] Shinozuka M, Deodatis, G. Response variability of stochastic finite elementsystems[J]. Journal of Engineering Mechanics, ASCE,1988,114(3):499-519
    [56]于国友,罗晓健,苗青.复杂结构损伤检测的分段小波变换法[J].工程力学,25(8):1-5
    [57] Liu,P.L., Der Kiureghian, A. Finite element reliability of geometricallynonlinear uncertain structures [J]. Journal of Engineering Mechanics,117(8):1806-1825
    [58] Grundmann H, Waubke. H. Non-linear stochastic dynamics of systems withrandom properties, a spectral approach combined with statisticallinearization. Int. J. Nonlinear Mechanic,1996,31(5):619-630
    [59] Wilfred D, Iwan, Ching-Tung Huang. On the dynamic response of non-linear with parameter uncertainties. Int. J. NonlinearMechanics,1996,31(5):631-645
    [60]李杰.随机结构系统分析与建模[M].北京,科学出版社,1996
    [61]刘红梅,金江,王海霞.塔式结构地震波响应仿真分析[J].南通大学学报(自然科学版),2006,5(4):25-28
    [62]马人乐,牟宗磊,何敏娟等.钢结构电视塔塔楼在竖向地震作用下的反应分析[J].特种结构,1998,15(2):42-45
    [63]张仲先,张耀庭.地震和风效应下高耸结构振动控制模拟塔设计[J].噪声与振动控制,1999,19(1):2-4
    [64]张洵安,姜节胜.电视塔三维非平稳随机地震响应特性[J].西北工业大学学报,2000,18(1):23-26
    [65]李春祥,黄金枝,金兢等.高层钢结构抗风抗震控制若干问题探讨[J].振动与冲击,2000,19(2):54-58
    [66]徐忠根,王翠坤,刘臣等.高耸钢结构模型模拟地震振动台试验研究[J].空间结构,2002,8(4):36-45
    [67]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,21(7):19-38
    [68] Hoskins, L.M.&Jacobsen, L.S. Water pressure in a tank caused by asimulated earthquake[J]. Bull.Seism.Soc.Am.1934,24:1-12
    [69] Housner, G.W. Dynamic Pressure on accelerated fluid containers [J]. Bull.Seism. Soc. Am.,1957,47(l):15-35
    [70] API Standard650,6th edition. Rev.3Welded steel tanks for oil storage [J].Ametican Petroleum Institute, Washington DC,1979
    [71] K.C. Biswala, S.K. Bhattacharyya, P.K. Sinha. Dynamic response analysisof a liquid-filled cylindrical tank with annular baffle[J]. Journal of Soundand Vibration,2004,(274):13-37
    [72] Edwards, N.W. A Procedure for dynamic analysis of thin walled liquidstorage tanks subjected to lateral ground motions [D]. Ph.D. Dissertation,University of Michigan,1969
    [73] Yu, B., Nash, W.A., Kirchhoff, R.H. NONLINEAR ANALYSIS OFSLOSHING IN CIRCULAR CYLINDRICAL TANKS BYPERTURBATION METHOD [J]. American Society of MechanicalEngineers, Pressure Vessels and Piping Division (Publication) PVP,1987,128:63-68.
    [74] Balendra, T.&Nash, W.A. Seismic analysis of a cylindrical liquid storagetank with a dome by the finite element method [J].80-C2/PVP-74, ASMECentury2PVP Conf., San Francisco, Calif.,1980
    [75] Veletsos, A.s. Seismic effects in flexible liquid storage tanks [J]. Proc.5thWCEE, Rome, Italy,1974, l:630-639
    [76] Veletsos, A.S.&Yang, J.Y. Dynamics of fixed-base liquid storage tanks [J].S-Japan Seminar for Earthq. Eng. Res. with Emphasis on Lifeline System,Tokyo, Japan,1976,317-341
    [77] Haroun, M.A. Vibration studies and tests of liquid storage tanks [J].Earthquake Engineering&Structural Dynamics,1983,11:179-206
    [78] Haroun, M.A.&Housner, G.W. Earthquake response of deformable liquidstorage tanks [J]. ASMEJ. APPl.Mech.,1981,48(2):411-418
    [79] Ousset, Y., Sayhi, M.N.&Marquand, D. Dynamical analysis of fluid filledcontainers[J].Proc.5th Int. Conf. on Pres. Ves. Tech., San Francisco, Calif.,1984,1:458-468
    [80] Hwang, L.T.&Ting, K. Boundary element method for fluid-structureinteraction problems in liquid storage tanks [J]. ASMEJ. Pres. Teeh.,1989,111:435-440
    [81] Lay, K.S.Seismic coupled modeling of axisymmetric tanks containing liquid[J]. ASCE J. Eng. Mech.,1993,119(9):1747-1761
    [82] Marchaj, T.J.Importance of vertical acceleration in the design of liquidcontaining tanks [J]. Proc.8th US National Conf. Eng., Stanford Calif.,1979,146-155
    [83]蔡国琰,曲乃泗,赖国璋.贮液罐结构水弹性抗震分析[J].大连工学院学报,1979,(3):86-100
    [84]仇伟德,蔡强康.地震作用下刚性旋转壳贮液罐液体的动力响应[J].地震工程与工程振动,1983,3(1):72-87
    [85]陈冠卿.垂直地震载荷在液体储罐设计中的重要性-关于“象腿”现象的成因[J].油气储运,1982,1(4):24-29
    [86]曹志远,张佑启.结构和内部流体相互作用问题的半解析方法[J].应用数学和力学,1985,6(1):1-8
    [87]王翎羽,何玉敖,陈冠卿.储液罐在地震作用下的“象足”失稳分析[J].天津大学学报,1992,(4):78-85
    [88]孟振虎,高锡祺.园柱形储液罐垂直地面运动分析[J].江苏石油化工学院学报,1995,7(2):1-6
    [89]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99
    [90]张云峰,周利剑.立式储罐动力反应谱分析[J].世界地震工程,2005,21(1):55-60
    [91]薛素铎,赵均,高向宇.建筑抗震设计[M].北京:科学出版社,2003,92-94
    [92]冯云田,李明端.复杂结构的弹性地震反应分析[J].地震工程与工程振动,1991,11(12):77-86
    [93] Lopez O A. The critical angle of seismic incidence and the maximumstructural response [J].Earthquake Engineering and Structure Dynamic,1997,26:881-894
    [94]林道锦.复杂梁桥空间地震反应分析[D].上海:同济大学桥梁工程系,2000.
    [95]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题[J].同济大学学报,2003,31(6):631-636
    [96]冯鹏,叶列平,黄羽立.受弯构件的变形性与新的性能指标的研究[J].工程力学,2005,22(6):28-36
    [97] Patrick X W Zou. Flexural Behavior and Deformability of Fiber ReinforcedPolymer Prestressed Concrete Beams [J]. Journal of Composites forConstruction,2003,7(4):275-284
    [98] Naaman A E and Jeong S M. Structural ductility of concrete beamsprestressed with FRPtendons[A]. Non-metallic (FRP) reinforcement forconcretes structures, Taerwe, L. ed., E.&FN Spoon, London,1995,379-401
    [99]杨林,常永平,周锡元等.FPS隔震体系振动台试验与有限元模型对比分析[J].建筑结构学报,2008,29(4):66-72
    [100]门进杰,史庆轩,周琦.钢筋混凝土框架结构模型振动台试验及抗震性能对比[J].建筑结构,2008,38(5):41-44
    [101]樊坷,李振宝,夏兵等.国家体育馆屋盖模型模拟地震振动台试验研究[J].北京工业大学学报,2008,34(2):159-166
    [102]陈国兴,左熹,庄海洋等.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程振动,2008,28(1):157-164
    [103]王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值-主要国家抗震规范比较[J].建筑科学,1999,15(5):36-39
    [104]徐光兴,姚令侃,高召宁等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632
    [105]樊珂,李振宝,闫维明.拱桥多点动力响应振动台模型试验与理论分析[J].铁道科学与工程学报,2007,4(6):19-24
    [106]赖伟,王君杰,韦晓等.桥墩地震动水效应的水下振动台试验研究[J].地震工程与工程振动,2006,26(6):164-171
    [107]张纪刚,吴斌,欧进萍.海洋平台结构SMA阻尼隔振振动台试验与分析[J].地震工程与工程振动,2007,27(6):241-247
    [108]祁皑.层间隔震技术评述[J].地震工程与工程振动,2004,24(6):114-120.
    [109]郑国琛,祁皑,阎维明.加层减震结构振动台试验分析[J].地震工程与工程振动,2007,27(2):164-170
    [110]王亚勇.我国2000年抗震设计模式展望[J].建筑结构,1999,29(6):13-19
    [111] Chandler A M, Lam N T K. Performance-Based Design in EarthquakeEngineering: A Multi-Disciplinary Review. Engineering Structures,2001,23:1525-1543
    [112] Park Y J, Ang A H. Seismic damage model for reinforced concrete[J].Journal of structural engineering. ASCE,1985,(4):722-739
    [113] Fajfar P, Gaspersic P. The N2method: the seismic damage analysis of RCbuilding[J]. Earthquake Enging Struct. Dyn,1996,25:31-46.
    [114] Vidic T, Fajfar P. Consistent inelastic design spectra: strength anddisplacement[J]. Earthquake Enging Struct. Dyn,1994,23:507-521
    [115] Bozorgnia, Yousef; Bertero, Vitelmo V Damage spectra: Characteristicsand applications to seismic risk reduction [J]. Journal of StructuralEngineering,2003,129(10):1330-1340
    [116]梁兴文,邓明科,李晓文等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构,2006,36(7):15-20
    [117]李琪,顾荣蓉.基于位移的底部框架-抗震墙房屋抗震能力分析[J].世界地震工程,2006,22(2):64-67
    [118]刘鹏飞,刘伟庆,王曙光等.基于位移的减震结构设计方法研究[J].世界地震工程,2009,25(1):43-47
    [119]王东升,李宏男,赵颖华等.钢筋混凝土桥墩基于位移的抗震设计方法[J].土木工程学报,2006,39(10):80-86
    [120]王常峰,朱东生,陈兴冲.基于位移的隔震桥梁非迭代设计方法研究[J].世界地震工程,2005,21(3):35-39
    [121]黄建文.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J].土木工程学报,2005,38(4):84-90
    [122]田颖,钱嫁茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估[J].建筑结构,2001,31(7):53-59
    [123] Maffei J. Suggested improvements to performance-based seismicguidelines [C].12WCEE,2000
    [124]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑,2006,36(9):1-5
    [125]毛德培.钢结构[M].北京:中国铁道出版社,1999
    [126] Withum D. The Cylindrical stress with a circular hole under torsionIngenieur-Archiv, Vol.26,1985, pp.283-288
    [127]龙驭球,包世华.扁壳圆孔附近的应力集中[J].固体力学学报,1984,(4):481-494
    [128]陈国平,丁浩江,李文昌.应用曲壳单元求解壳体开孔问题[J].浙江大学学报,1986,20(2):14-23
    [129]徐秉汉,裴俊厚,朱邦俊.壳体开孔的理论与实验[M].北京:国防工业出版社,1987
    [130]刘友宏.压力容器壳体上矩形大开孔的间隙有限元分析[J].石油化工设备技术,2000,21(5):2-5
    [131]陈鲁,张其林,王丽娜.钢圆柱壳壳体大开孔的静力及有限元分析[J].第五届全国现代结构工程学术研讨会,工业建筑,2005年增刊:958-964
    [132]马春生,杜汇良,张金换等.薄壁扁球壳结构在撞击载荷下的变形控制方法研究[J].振动与冲击,2007,26(4):10-13
    [133]王元清,石永久,陈宏,等.现代轻钢结构建筑及其在我国的应用[J].建筑结构学报,2002,23(l):2-8.
    [134] Bushnell D. Buckling of shells-pitfalls for designers[J]. AIAA,1981,(9):1183~1196.
    [135]聂国隽,仲政.薄壁空间钢结构的非线性分析[J].同济大学学报,2004,32(3):357-361.
    [136] KWak H G, Kim D Y, Lee H W. Effect of Warping in GeometricNonlinear Analysis of Spatial Beam[J]. Joumal of Constructional SteelResearch,2001,57:729-751.
    [137] LEUNG A Y T. Nonlinear steady state vibration of frames by finiteelement method[J]. Joumal of Numerical Methods in Engineering,1989,28:1599-1618.
    [138]贺清龙,陈涛.性能设计中设防标准与设计参数的确定[J].施工技术,2008,37卷增,335-338
    [139]翁智远.圆柱薄壳容器的振动与屈曲[M].上海:上海科学技术出版社,2007,326-332
    [140]庞强,董湘怀,王鹏.基于有限元模拟的风力机塔架优化[J].机械设计与制造,2008,(8):1-3
    [141]张俊杰,林道锦,胡世德.反应谱法确定地震动最不利输入方向[J].世界地震工程,1999,15(4):38-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700