用户名: 密码: 验证码:
面向视频跟踪系统的关键算法和动态可重构硬件架构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,视频跟踪技术取得了显著的进展,并已在许多领域得到广泛应用。但是,目前的视频跟踪技术与实际需求仍有相当大的差距。论文从当前视频跟踪系统在实际应用中面临的问题出发,对视频跟踪系统涉及的一些关键算法及硬件实现平台进行了深入研究,重点研究了两个方面的问题:1)研究了视频跟踪系统所涉及的图像去噪声和目标跟踪算法,寻找消弱环境噪声、烟雾、遮挡等环境因素影响,提高跟踪精度的方法;2)研究视频跟踪涉及到的一些关键算法,根据算法研究分析、提取算法基本操作,建立面向视频跟踪系统的专用粗粒度的可重构硬件架构。本课题得到了国家自然科学基金项目“新一代图形处理系统芯片体系结构及关键技术研究(61136002)和“三维视频处理系统芯片动态可重构可编程体系结构研究(61272120)”的支持。
     作者在本文中完成的工作主要包括以下几方面:
     1、对图像去噪算法进行了较为系统的研究,在此基础上重点研究了基于Contourlet变换的图像去噪算法。利用非下采样Contourlet变换的平移不变性和Context模型能够实现对子带图像精细分类,并且具有较低的分类开销的特性,提出了一种结合非下采样Contourlet变换和Context模型的图像去噪算法。实验结果表明所提出的方法能够有效去除图像白噪声,与现有的一些小波域或Contourlet变换域去噪算法相比,在峰值信噪比和主观视觉效果方面均有改善。
     2、对视频跟踪算法进行了较为全面的研究,重点对卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波、以及标准粒子滤波等基于概率估计的跟踪算法进行了深入分析。在此基础上,为提高粒子滤波跟踪估计精度,提出一种新的结合RTS最优平滑的迭代EKF粒子滤波方法。算法主要基于RTS固定区间两步平滑算法的思路,在前向步骤中采用迭代扩展卡尔曼滤波获取非线性系统的最大后验概率估计,然后,从最后时间步开始,对滤波结果实施RTS固定区间平滑修正生成采样粒子,使其融入最新观测信息的同时更加符合系统真实状态的后验概率分布,对观测噪声具有较好的抑制能力,从而显著提高了跟踪稳定性及准确性。一维及二维模型的仿真结果验证了所提出算法的有效性。
     3、对视频跟踪算法中用到的图像去噪和跟踪算法进行了分析、提取了算法基本操作,并研究了适合视频跟踪应用的硬件特征。基于数据流模式和可重构技术提出了一种面向视频跟踪应用的粗粒度的可重构静态数据流硬件架构(Reconfigurable Static Data-flow hardware Architecture,RSDA),RSDA利用可重构硬件互联以及操作单元之间的硬件握手结构,克服了传统数据流实现方式的低效性,实现了架构的高度并行处理能力,并具有容易编程的特点。在Altera公司的FPGA上实现了所提结构,并与ASIC及一种优化了的GPU实现方法进行了性能对比。
     4、分析了所提RSDA结构的缺点,在保持所提RSDA结构的优点的前提下,采用将各种并行形式统一在一个单一结构中的思想,提出了一种更具使用灵活性和可编程性的可重构多态阵列处理器结构-PRMA,并对结构进行了初步的仿真分析。仿真结果表明PRMA能实现与RSDA相似的数据吞吐量,并有更好的可编程性。
Video tracking technique has made great progress and been applied widely in manyfields in recent years. However, the difference between current technique and the actualdemand is still very large. This paper researched deeply on some key algorithms andhardware implementation platform related to a video tracking system starting from theproblems faced in practical applications, emphasizing two aspects as follows:1). thefirst is algorithms related to image denoising and object tracking, for the goal ofweakening the environmental factors such as noise, smoky fog, occlusion and so onwhich may bring an unexpected influence on tracking accuracy;2). the second is toconstruct a coarse-grained reconfigurable hardware framework oriented to videotracking applications. This work is funded by the National Natural Science FoundationProject “The Research on New Generation of Graphics Chip System Structure and KeyTechnology”(Grant No.61136002) and “The Research of Dynamically Reconfigurableand Programmable Architecture for3D-Video SoC”(Grant No.61272120).
     The main achievements include the following contents:
     1. Based on the systematic and comprehensive work on the image denoisingalgorithms, the paper put the emphasis on denoising methods based on the contourlettransformation and put forward a new image-denoising algorithm by combining thegood property of shift-invariant of Non-subsampled Contourlet Transformations withcontext model, as a result the refined classification for sub-band images is realized atlow computation cost. The experimental results prove the validity of the proposedmethod in removing the white noise, comparing with some other algorithms in waveletand contourlet domain, the PSNR and subjective visual quality of the proposed methodare both improved.
     2. The systematic research and analysis on video tracking algorithms is presented,including some classic probability estimation algorithms such as Kalman Filter, EKF,UKF and Particle Filter(PF). To enhance the tracking accuracy, an improved PFalgorithm is proposed based on a new proposal distribution combining iterated-EKFwith RTS optimal smoothing. Firstly, Iterated EKF is used to acquire a maximumposterior estimate of the state in the nonlinear system, and then RTS fix-intervalsmoothing is applied to correct and produce the posterior samples. The new proposaldistribution can integrate the latest observation into system and approximate the trueposterior distribution reasonably well, achieving better stability against measurementnoise and enhancing tracking stability and accuracy. Simulations of one-dimension and two-dimension models prove that the proposed algorithm is effective.
     3. The general image pre-processing and tracking techniques are comprehensivelyanalyzed for extracting the basic operations in the algorithms, as well as the hardwarefeatures suitable for the applications in video tracking is elaborately researched. Basedon the data-flow module and reconfigurable technique, a new framework called asReconfigurable Static Data-flow hardware Architecture (RSDA) oriented tothe applications in video tracking is proposed. RSDA can overcome the inefficiency oftraditional data-flow mode by exploiting the hardware handshake structures betweenreconfigurable hardware connection and operation units, realizing high-level parallelprocessing ability and programming easily. The proposed framework is accomplished inFPGA of Altera, compared with ASIC and an optimized GPU realization method inprocessing performance.
     4. The disadvantages of the proposed RSDA is analyzed. In the precondition ofkeeping the merits of RSDA architecture, the paper brought out Polymorphousreconfigurable many-core architecture (PRMA) with better flexibility in practicalapplication, and some primary analysis and simulations are presented. The simulationresults show that the PRMA can achieve similar data throughput with RSDA, and hasbetter programmability.
引文
[1]夏瑜.视觉跟踪新方法及其应用研究[D].江南大学,2013.
    [2] Chen Chung-Chen, Yao Yi, Drira A, et al. Cooperative mapping of multiple PTZautomated surveillance systems[C].2009IEEE Conference on Computer VisionRecognition Workshops. Miami: IEEE Computer Society,2009:1078-1084.
    [3] Angella F, Reithler L, Gallesio F. Optimal Deployment of Cameras for VideoSurveillance Systems[C].2007IEEE Conference on Advanced Video and SignalBased Surveillance. London: IEEE Computer Society,2007:388-392.
    [4] Ko T. A Survey on Behavior Analysis in Video Surveillance for HomelandSecurity Applications[C].200837th IEEE Applied Imagery Pattern RecognitionWorkshop. Washington, DC: IEEE Computer Society,2008:1-8.
    [5] Zhao T and Nevada R., Tracking multiple humans in complex situations[J].IEEE Transactions On Pattern Analysis and Machine Intelligence,26(9):1208-1221,2004.
    [6] Wang J, Cohen M F. Very low frame-rate video streaming for face-to-faceteleconference[C] Proceedings of the Conference on Data CompressionConference,2005,:309-318.
    [7] Coifinan B, Beymer D, Mclauchlan P, Malik J.A real-time computer visionsystem for vehicle tracking and traffic surveillance[J]. Transportation ResearchPart C,6,271-288,1998.
    [8] Magee D.Tracking multiple vehicles using foreground, background and motionmodels[J].Image and Vsion Computing,2004,22,39:57-71.
    [9] Jung B, Sukhatme G S.Detecting moving objects using a single camera on amobile robot in an outdoor environment[C].In Proceedings of InternationalConference on Intelligent Autonomous Systems,2004,:980-987.
    [10] Griffiths S, Saunders J, Curtis A, et al. Obstacle and terrain avoidance forminiature aerial vehicles[J]. Advances in Unmanned Aerial Vehicles, IntelligentSvstems, Control and Automation: Science and Engineering,2007,33(3):213-244.
    [11] Zhao Qijie, Tu Dawei, Gao Darning, et al. Human-computer interaction modelsand their application in an eye-gaze input system. Proceedings of2004International Conference on Machine Learning and Cybernetics [C]. Shanghai:IEEE Computer Society,2004:2274-2278.
    [12] Vo N, Tran Q, Dinh T. B, et al. An Efficient Human-Computer InteractionFramework Using Shin Color Tracking and Gesture Recognition[C]. IEEE RIVFInternational Conference on Computing and Communication Technologies,Research, Innovation, and Vision for the Future, Hanoi: IE ComputerSociety,2010:1-6.
    [13] W Lu, J Ting, J J Little, and K P Murphy. Learning to Track and IdentifyPlayers from Broadcast Sports Videos[J]. Pattern Analysis and MachineIntelligence, IEEE Transactions on, vol.35, p.1704-1716,2013.
    [14] Sonka M, Hlavac V等.图像处理、分析与机器视觉(第3版).北京:清华大学出版社,2011.1:554-556.
    [15] Owens J D, Luebke D, Govindaraju N, et al. A survey of general-purposecomputation on graphics hardware [J]. Computer Graphics Forum,2007,26(1):80-113.
    [16] Barrachina S, Castillo M, D. Igual F, et al. Solving dense linear systems ongraphics processors [C]. Proceedings of the14th international Euro-Parconference on Parallel Processing.2008:739-748.
    [17] Gonzalez R C, Woods R E.阮秋琦,阮宇智译.数字图像处理(第二版)[M].北京:电子工业出版社,2003:3-5.
    [18] Gonzalez R C, Woods R E.阮秋琦,阮宇智译.数字图像处理(第二版)[M].北京:电子工业出版社.2003:175-194.
    [19] Sung J K, Yong H L. Center weighted median filters and their applications toimage enhancement [J]. IEEE Transactions on Circuits and Systems,1991,38(9):984-993.
    [20] Nieminen A, Heinonen P, Neuvo Y A new class of detail-preserving filters forimage processing [J]. IEEE Transactions on PAMI,1987,9(1):74-90.
    [21] Zhou W, David Z. Progressive switching median filter for the removal ofimpulse noise from highly corrupted images [J]. IEEE Transactions on Circuitsand Systems II: Analog and Digital Signal Processing,1999,46(1):78-80.
    [22] Thomas A N, Neal C Cx Median filters: some modifications and their properties[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1982,30(5):739-746.
    [23] Lin H M, Alan N W. Circuits and Systems, Median filters with adaptive length[J]. IEEE Transactions on1988,35(6):675-690.
    [24]陈大力.数字图像处理中去噪算法的研究[D].东北大学,2008.
    [25] Russo, F.A fuzzy approach to digital signal processing concepts and applications
    [A]. Instrumentation and Measurement Technology Conference,1992:640-645.
    [26] Peng S M, Lucke, L. Fuzzy filtering for mixed noise removal during imageprocessing[A]. Proceedings of the Third IEEE Conference on Fuzzy Systems,1994,1:89-93.
    [27] Peng S M, Lucke L. A hybrid filter for image enhancement [A]. Proceedings ofInternational Conference on Image Processing,1995,1:163-166.
    [28] Peng S M; Lucke L. Multi-level adaptive fuzzy filter for mixed noise removal
    [A].IEEE International Symposium on Circuits and Systems,1995,2:1524-1527.
    [29] Eng H L, Ma K K. Noise adaptive soft-switching median filter. IEEETransaction on Image Processing.2001,10(2):242-251
    [30] Taguchi A, Meguro M. Adaptive L-filters based on fuzzy rules [J]. IEEEInternationalSymposium on Circuits and Systems,1995,2:961-964.
    [31] Young S C, Krishnapuram R. A robust approach to image enhancement based onfuzzy logic [J]. IEEE Transactions on Image Processing,1997,6(6):808-825.
    [32] Zhou Y T, Chellappa R Image restoration using a neural network[J]. IEEE Trans.Acoust, Speech, Signal Processing,1988,36(7):1141-1151.
    [33] Paik J K, Katsaggelos A K. Image restoration using a modified Hopfieldnetwork[J]. IEEE Transactions Image Processing,1992,1(1):49-63.
    [34]王磊,戚飞虎,莫玉龙.精确复原退化图像的连续Hopfield网络研究[J].上海交通大学学报,1997,31(12):43-46.
    [35] Gacsadi A, Grava C, Straciuc O, et al. PDE-based medical images denoisingusing Cellular Neural Networks[C]. IEEE,2009, pp.1-4
    [36]刘勍.基于脉冲耦合神经网络的图像处理若干问题研究[D].西安电子科技大学,2011.
    [37] Yan Y, Guo B, Ni W. Image denoising: An approach based on wavelet neuralnetwork and improved median filtering[C]. IEEE,2006.
    [38] Liang S, Lu S, Chang J, et al. A novel two-stage impulse noise removaltechnique based on neural networks and fuzzy decision[J]. Fuzzy Systems, IEEETransactions on.2008,16(4):863-873.
    [39] Choubey A, Sinha G R, Choubey S. A hybrid filtering technique in medicalimage denoising: Blending of neural network and fuzzy inference[C]. IEEE,2011.
    [40] Gargouri A, Krid M, Masmoudi D S. New digital Pulse-Mode Neural Networkbased image denoising[C]. IEEE,2012.
    [41] Gargouri A, Masmoudi D S. Neural network based image denoising with pulsemode operations and hybrid on-chip learning algorithm[C]. IEEE,2013.
    [42] Gabor D. INFORMATION THEORY IN ELECTRON MICROSCOPY[J].Laboratory investigation; a journal of technical methods and pathology,1965,14:801.
    [43] Jain A K. Partial differential equations and finite-difference methods in imageprocessing, part1: Image representation[J]. Journal of optimization Theory andApplications.1977,23(1):65-91.
    [44] J. J. Koenderink. The structure of images[J]. Biological Cybernetics.1984,50(5):363-370.
    [45] A. P. Within. Scale space filtering[C]. Proceedings of the International JointConference on Artificial Intelligence,1983:1019-1021.
    [46] P. Perona, J. Malik. Scale-Space and Edge Detection Using AnisotropicDiffusion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
    [47] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removalalgorithms[J].Phys. D: Nonlinear Phenom,1992,60:259-268.
    [48] G Gilboa, N Sochen, Y Y Zeevi. Image enhancement and denoising by complexdiffusion processes[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2004,Vol.25, No.8:1020-1036.
    [49] G. Gilboa, Sochen, N. Zeevi, et al. Variational denoising of partly texturedimages by spatially varying constraints[J]. IEEE Tran on Image Processing,2006,15:2281-2289.
    [50] Chen Q, P. Montesinos, Sun Q S. Ramp preserving Perona-Malik model[J].Signal Processing,2010,90:1963-1975.
    [51] You, Y-L., Kaveh, M., Fourth-order partial differential equations for noiseremoval[J]. IEEE Transactions on Image Processing, Volume9, Issue10, Oct.2000, Page(s):1723-1730.
    [52]贾迪野,黄凤岗,苏菌,一种新的基于高阶非线性扩散的图像平滑方法,计算机学报,2005,05.
    [53] Chen H Z, Song J P, Tai X C. A dual algorithm for minimization of the LLTmodel[J]. Adv.Comput. Math,2009,31:115-130.
    [54] S. Kim, H. Lim. Fourth-order partial differential equations for effective imagedenoising[J].Electron. J. Differential Equations, Conf.2009,17:107-121.
    [55]史宝丽,黄立宏.基于四阶偏微分方程的乘性噪声去噪模型[J].湖南大学学报,2011,38(7):83-87.
    [56] Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi. Image Recoveryvia Nonlocal Operators[J]. Journal of Scientific Computing,2010,42(2):185-197.
    [57] Zhang X Q, Tony F. Chan. Wavelet Inpainting by Nonlocal Total Variation[J].Inverse Problems and Imaging,2010,4(1):191-210.
    [58]林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报.2004,31(4):626-629.
    [59] Mallat S, Hwang W L. Singularity detection and processing with wavelets[J].IEEE Transactions on Information Theory,1992,38(2):617-643.
    [60] Ho C, Ling B, Tam P. Denoising by multiwavelet singularity detection[C].Proceedings of the2003International Conference on Neural Networks andSignal Processing.2003,616-619.
    [61] Zhong J, Ning R. Image denoising based on wavelets and multifractals forsingularity detection[J]. Image Processing, IEEE Transactions on.2005,14(10):1435-1447.
    [62] Xu Y, Weaver J B, Healy Jr D M, et al. Wavelet transform domain filters: aspatially selective noise filtration technique[J]. Image Processing, IEEETransactions on.1994,3(6):747-758.
    [63] Vidya V. Non-Decimated Wavelet shrinkage Algorithm for Image Denoisingbased on Inter-Scale Correlation[C], FGCNS,Hainan,China,2008:90-93.
    [64]王银峰,朱丽丽,何光宏,朱根琴.一种基于尺度相关的小波图像去噪方法[J].激光杂志,2008年,8(5):46-47.
    [65] Crouse M S, Baraniuk R G, Nowak R D. Hidden Markov modelsforwavelet-based signed processing[C]. Proceedings of Asilomar Conference onsignals, System&Computers,1997,2:1029-1035.
    [66] Fan q, Xia X G. Image denoising using a local contextual hidden Markov modelin the wavelet domain. IEEE Signal Processing Letters,2001,8(5):125-128.
    [67] Fan q, Xia X G. Improved hidden Markov models in the waveletdomain[J].IEEE Transactions on Signal Processing,2001,49(1):115-120.
    [68] Romberg J K, Choi H, Baraniuk R G. Bayesian tree-structured image modelingusing wavelet-domain hidden Markov models[J]. IEEE Transactions on ImageProcessing,2001,10(7):1056-1068.
    [69] Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J].Biometrika.1994,81(3):425-455.
    [70] Donoho D L, Johnstone I M. Adapting to unknown smoothness via waveletshrinkage[J]. Journal of the american statistical association.1995,90(432):1200-1224.
    [71] Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation forimage denoising[J]. IEEE Transactions on Image Processing.1998,7(1):82-90.
    [72] Chang S G, Yu B, Vetterli M. Image denoising via lossy compression andwavelet thresholding[C]. Proceedings of International Conference on ImageProcessing,1997,604-607.
    [73]赵治栋,潘敏,陈裕泉.小波收缩中统一阈值函数及其偏差,方差与风险分析[J].电子与信息学报.2005,27(4):536r-539r.
    [74] Gao H Y, Bruce A G. WaveShrink with semisoft shrinkage[M]. Mathsoft Inc.StaSci Research Report No.39,1995.
    [75] Bruce A G, Gao H Y. WaveShrink: shrinkage functions and thresholds.Proceedings of SPIE-The International Society for Optical Engineering.1995,2569:270-281.
    [76] J F Cai, E J Candes,Z Shen. A singular value thresholding algorithm formatrix completion[J].SIAM J. on Optimization.2008,Vo1.20(4):1956-1982.
    [77] Liu Zhou-feng,Cheng Yin. A wavelet image denoising method based onimproved threshold function[J].Journal of Zhongyuan University ofTechnology,2010,Vo1.2:12.
    [78]张维强,宋国乡.基于一种新的阈值函数的小波域信号去噪[J].西安电子科技大学学报.2004,Vo1.31(2):296-299.
    [79] Chang S G,,Yu B, Vetterli M. Spatially adaptive wavelet thresholding withcontext modeling for image denoising[J].IEEE Transactionson on ImageProcessing,2000,9(9):1522-1531.
    [80] Starck J, Candès E J, Donoho D L. The curvelet transform for imagedenoising[J]. Image Processing, IEEE Transactions on.2002,11(6):670-684.
    [81]曾业战,钱盛友,刘畅,等.非下采样Contourlet变换自适应图像去噪方法[J].计算机工程与应用,2010,46(10):157-159.
    [82]刘哲.基于非下采样轮廓小波变换的图像去噪[J].光电子.激光.2009,20(7):954-959.
    [83] Sveinsson J R, Benediktsson J A. Combined wavelet and contourlet denoising ofSAR images[C]. IGARSS2008. IEEE International,(3):1150-I1153.
    [84] Song B, Xu L, Sun W. Image denoising using hybrid contourlet and bandelettransforms[C]. Fourth International Conference on Image and Graphics.2007,71-74.
    [85]金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪[J].计算机学报.2007,30(3):491-497.
    [86]沙宇恒,丛琳,孙强, et al.基于Contourlet域HMT模型的SAR图像相干斑抑制[J].红外与毫米波学报.2009,28(1):66-71.
    [87] Ding Q, Song H, Geng W, et al. Image Denoising Algorithm UsingNeighbourhood Characteristics and Cycle Spinning[C].2011SecondInternational Conference on Digital Manufacturing and Automation,2011,614-617.
    [88] Tri L Q B, Tai N N, Vinh T Q. Image denoising using block classification inContourlet domain[C].2013International Conference on AdvancedTechnologies for Communications (ATC),2013,671-675.
    [89] Eppler W M, Drius G. Two dimensional photographic autocorrelation ofletters[C]. Proceedings3rd London Symposium on Information Theory, Newpictures and alphabet York,1956:34-36.
    [90]甘明刚,陈杰,刘劲等.一种基于二帧差分和边缘信息的运动目标检测方法[J].电子与信息学报,2010,32(4):894-897.
    [91] Horn B K P, Schunck B G. Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
    [92] Huang Y, Zhuang S. Motion-partitioned adaptive block matching for videocompression[C]. Proceedings of International Conference on Image Processing,1995:554-557.
    [93] Beauchemin S S, Barron J L. The computation of optical flow[J]. ACMComputing Surveys (CSUR).1995,27(3):433-466.
    [94] Lucas B D, Kanade T. An iterative image registration technique with anapplication to stereo vision.[C]. Proceedings.of IJCAI,1981,:674-679.
    [95] Wu Y, Huang T S. Robust visual tracking by integrating multiple cues based onco-inference learning[J]. International Journal of Computer Vision.2004,58(1):55-71.
    [96] Mitra P, Murthy C, Pal S. Unsupervised feature selection using featuresimilarity[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(3):301-312.
    [97] Tissainayagam P, Suter D. Object tracking in image sequences using pointfeature[J]. Pattern Recognition,2005,38(1):105-113.
    [98] Comaniciu D, Meer P. Mean shift analysis and applications[C]. The Proceedingsof the Seventh IEEE International Conference on Computer Vision.1999,:1197-1203.
    [99] Shan C, Tan T, Wei Y. Real-time hand tracking using a mean shift embeddedparticle filter[J]. Pattern Recognition,2007,40(7):1958-1970.
    [100] Brasnett P, Mihayhova L, Bull D. Sequential Monte Carlo tracking by fusingmultiple cues in video sequences[J]. Image Vision Computing,2007,25(8):1217-1227.
    [101] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J].International journal of computer vision.1988,1(4):321-331.
    [102] Menet S, Saint-Marc P, Medioni G. B-snakes: Implementation and application tostereo[C]. proceedings of DARPA,1990,:726.
    [103] Cohen L D, Cohen I. Finite-element methods for active contour models andballoons for2-D and3-D images[J]. Pattern Analysis and Machine Intelligence,IEEE Transactions on.1993,15(11):1131-1147.
    [104] Figueiredo M A, Leitao J M, Jain A K. Adaptive B-splines and boundaryestimation[C]. Proceedings of1997IEEE Computer Society Conference onComputer Vision and Pattern Recognition.1997,:724-730.
    [105] Liang J, Mcinerney T, Terzopoulos D. United Snakes [C]. The Proceedings ofthe Seventh IEEE International Conference on Computer Vision.1999,:933-940.
    [106] Caselles V, Catté F, Coll T, et al. A geometric model for active contours inimage processing[J]. Numerische mathematik.1993,66(1):1-31.
    [107] Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: Alevel set approach[J]. Pattern Analysis and Machine Intelligence, IEEETransactions on.1995,17(2):158-175.
    [108] Kalman R E. A new approach to linear ASME-Journal of basic engineering,1960, filtering and prediction problems[J]. Transactions of the82:35-45.
    [109] Anders E N. A constrained extended Kalman Filter for target tracking [C].Proceedings of the IEEE International Conference of Radar, Philadelphia, USA,2004:12-127.
    [110] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
    [111]张俊根.粒子滤波及其在目标跟踪中的应用研究[D].西安电子科技大学,2011.
    [112] Estrin G, Bussell B, Turn R, et al. Parallel processing in a restructurablecomputer system[J]. Electronic Computers, IEEE Transactions on.1963(6):747-755.
    [113] Estrin G. Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V)structure computer[J]. IEEE Annals of the History of Computing.2002,24(4):3-9.
    [114] Dehon A, Wawrzynek J. Reconfigurable computing: what, why, and implic-ations for design automation[C]. Proceedings of the36th annual ACM/IEEEDesign Automation Conference,1999:610-615.
    [115]王侃文.领域专用可重构计算结构研究[D].复旦大学,2011.
    [116] Compton K, Hauck S. Recon-gurable computing: A survey of systems andsoftware [J]. ACM Computing Surveys,2002,34(2):171-210.
    [117] Oruklu E, Saniie J. Dynamically recon-gurable architecture design for ultrasonicimaging [J]. IEEE Transactions on Instrumentation and Measurement,2009,58(8):2856-2866.
    [118] DíAZ J, ROS E, CARRILLO R, et al. Real-time system for high-imageresolution disparity estimation. Image Processing[J]. IEEE Transactions on.2007,16(1):280-285.
    [119] BATLLE J, MARTI J, RIDAO P, et al. A new FPGA/DSP-based parallelarchitecture for real-time image processing[J]. Real-Time Imaging.2002,8(5):345-356.
    [120] EBELING C,CRONQLJIST D C,FRANKLIN P. RaPiD—ReconfigurablePipelined Datapath[C].//Proceedings of the6th International Workshop onField-Programmable Logic, Smart Applications, New Paradigms and Compilers.Springer LNCS,1996:126-135.
    [121] GOLDSTEIN S C, SCHMIT H, MoE M, et al. PipeRench: a coprocessor forstreaming multimedia acceleration[C] Proceedings of the26th annualinternational symposium on Computer architecture. Atlanta, Georgia, UnitedStates: IEEE Computer Society,1999:28-39.
    [122] Miller R, Prasanna-Kumar V K, Reisis D I, et al. Parallel computations onreconfigurable meshes[J].IEEETransactions on Computers.1993,42(6):678-692.
    [123] Hartenstein R, Herz M, Hoffmann T, et al.Using the KressArray forReconfigurable Computing[C]. Proceedings of Conference on ConfigurableComputing: Technology and Applications.1998, SPIE3526:150-161.
    [124] Mirsky E, Dehon A. MATRIX: A Reconfigurable Computing Architecture withConEgurable Instruction Distribution and Deployable Resources[C].4th IEEESymposium on FPGA-Based Custom Computing Machines.1997:157-166.
    [125] Waingold E, Taylor M, Srikrishna D, et al. Baring It All to Software: RawMachine[J]. IEEE Computer.1997,30(9):86一93.
    [126] Taylor M. Design Decisions in the Implementationof a Raw ArchitectureWorkstation [D].MS Dissertation. Massachusetts Institute of Technology,1999.
    [127] Marshall A, Stansfield T, Kostarnov I, et al. A Reconfigurable Arithmetic Arrayfor Multimedia Applications[C].Proceedings of7th ACM InternationalSymposium on Field-Programmable Gate Arrays.1999:135-143.
    [128] Nageldinger U. Coarse-Grained Reconfigurable Architecture Design SpaceExploration[D]. Ph.D Dissertation. University of Kaiserslautern, Germany,2001.
    [129] Lebedev I, Cheng S, Doupnik A, et al. MARC: A many-core approach toreconfigurable computing[C]. in Reconfigurable Computing and FPGAs(ReConFig),2010International Conference on,2010:7-12.
    [130] Myjak M J, Delgado-Frias J G. A medium-grain reconfigurable architecture forDSP: VLSI design, benchmark mapping, and performance[J]. IEEE transactionson very large scale integration (VLSI) systems.2008,16(1):14.
    [131]陆雯青.基于多类型运算单元的动态可重构基带处理架构与电路设计方法研究[D].复旦大学,2011.
    [132]王颖,周学功,游红俊, et al.支持动态可重构的软/硬件统一多线程编程模型[J].计算机辅助设计与图形学学报.2009(6):736-745.
    [133]王颖.嵌入式可重构计算系统的设计技术研究田[D].复旦大学博士学位论文,2009年4月.
    [134]朱敏,刘雷波,尹首一, et al. H.264计算密集型任务在可重构处理器上的映射[J].电路与系统学报.2013,18(2):366-370.
    [135]殷崇勇,尹首一,刘雷波, et al.可重构媒体处理器任务编译器的前端设计[J].北京邮电大学学报.2011,34(3):108-112.
    [136]殷崇勇,尹首一,魏少军.可重构媒体处理器配置信息优化生成技术[J].吉林大学学报:工学版.2012,42(004):1059-1065.
    [137]强倩,张嘉琛.面向视频处理的可重构计算阵列系统设计[J].微计算机信息.2010,31:41.
    [138]韩兴,蒋江,付宇卓, et al.动态可重构众核处理器仿真平台设计[J].上海交通大学学报.2013,1:10.
    [139]方琛,何卫锋,毛志刚.典型可重构架构的算法映射分析[J].微电子学与计算机.2013,30(008):160-164.
    [140]谢羽威,葛冰晶,绳伟光, et al.基于模板的粗粒度可重构处理器编译环境设计[J].微电子学与计算机.2013,30(007):37-41.
    [141]周光华.粗粒度可重构体系结构建模方法研究与实现[D].国防科学技术大学,2010.
    [142]孙兆伟,刘源,邢雷, et al.面向多任务的可重构星载计算机设计[J].系统工程与电子技术.2011,33(6):1407-1414.
    [143]周军,张强,于晓洲.利用层次任务图和多种群遗传算法的可重构计算任务划分[J].计算机辅助设计与图形学学报.2011,23(003):508-513.
    [144]孙康.可重构计算相关技术研究[D].浙江大学,2007.
    [145]赵启林,李冰,时美强, et al.面向视频处理的粗粒度可重构单元设计[J].微电子学与计算机.2010(5):82-86.
    [146] LIU Zhen-tao,Li Tao, Han Jun-Gang. A novel reconfigurable data-flowarchitecture for real time video processing[J] Journal of Shanghai JiaotongUniversity (Science), v18, n3, p348-359, June2013
    [147]王敏,王友仁,张砦, et al.三维结构可重构阵列在线自诊断与容错方法[J].仪器仪表学报.2013,34(3):650-656.
    [148]罗塞.可重构计算系统体系结构研究与实现田].安徽:中国科学技术大学,2006.
    [149] Min L, Ting W. The nonsubsampled complex contourlet transform for imagedenoising[C]. IEEE,2010.
    [150] Eslami R, Radha H. Translation-invariant contourlet transform and itsapplication to image denoising[J]. IEEE Transactions on Image Processing.vol.15:3362-3374,2006.
    [151]刘镇弢,李涛,杜慧敏, et al.基于context模型的contourlet域图像去噪[J].计算机科学.2012,39(3):243-245.
    [152]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用:后小波分析理论与应用[M].西安电子科技大学出版社,2008.
    [153]杨粤涛.基于非采样Contourlet变换的图像融合[D].中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [154] Do M N, Vetterli M. Contourlets: a directional multiresolution imagerepresentation[C].IEEE,2002,:357–360.
    [155] Burt P, Adelson E. The Laplacian pyramid as a compact image code[J].Communications, IEEE Transactions on [legacy, pre-1988].1983,31(4):532-540.
    [156] Do M N. Directional multiresolution image representations[M]. Citeseer,2001.
    [157] Cunha A L Da, Zhou J, Do M N. The nonsubsampled contourlet transform:Theory, design, and applications[J] IEEE Transactions on Image Processing. vol.15:3089-3101,2006.
    [158] Mcclellan J H. The design of two-dimensional digital filters bytransformations[C]. in Proc.7th Annu. Princeton Conf. Information Sciencesand Systems.1973,:247-251.
    [159] Mitra S K, Sherwood R. Digital ladder networks[J]. Audio and Electroacoustics,IEEE Transactions on.1973,21(1):30-36.
    [160] Sweldens W. The lifting scheme: A custom-design construction of biorthogonalwavelets[J]. Applied and computational harmonic analysis.1996,3(2):186-200.
    [161] Mallat S G. A theory for multiresolution signal decomposition: The waveletrepresentation[J] IEEE Transactions on Pattern Analysis and MachineIntelligence.1989,vol.11:674-693.
    [162] Westerink P H, Biemond J, Boekee D E. An optimal bit allocation algorithm forsub-band coding[C].1988, vol.2:757-760.
    [163] Yoo Y, Ortega A, Yu B. Image sub-band coding using context-basedclassification and adaptive quantization[J]. IEEE Transactions on ImageProcessing.1999,vol.8:1702-1715.
    [164] Chrysafis C, Ortega A. Efficient context-based entropy coding for lossy waveletimage compression[C].in Proc. Data Compression Conf.,Snowbird, UT, Mar.1997.
    [165] Wu X. Lossless compression of continuous-tone images via context selection,quantization, and modeling[J]. IEEE Trans. Image Processing, May1997,vol.6:656–664,.
    [166] Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding withcontext modeling for image denoising[J]. IEEE Transactions on ImageProcessing,2000, vol.9:1522-1531.
    [167] Ruggeri F, Vidakovic B. A Bayesian decision theoretic approach to waveletthresholding[M]. preprint, Duke University, Durham, NC.
    [168] Chang S G, Yu B, Vetterli M. Image denoising via lossy compression andwavelet thresholding[J]. IEEE Transactions on Image Processing,2000,vol.9:1532–1546.
    [169] Donoho D L. De-noising by soft-thresholding[J]. Information Theory, IEEETransactions on.1995,41(3):613-627.
    [170] Portilla J, Strela V, Wainwright M, Simoncelli E P. Image Denoising using ScaleMixtures of Gaussians in the Wavelet Domain[J]. IEEE Transactions on ImageProcessing. vol12, no.11, pp.1338-1351, November2003.
    [171] Eslami R, Radha H. Translation-invariant contourlet transform and itsapplication to image denoising[J]. Image Processing, IEEE Transactions on.2006,15(11):3362-3374.
    [172] Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEE Proceedings F Radar andSignal Processing,1993,140(2):107-113.
    [173] Doucet A, Davy M. Part icle filtering fo r mult i2targett rack ing andsensormanagement[A]. The5th Int Conf on Information Fusion [C]. Annapolis,2002:4742481.
    [174] Hue C, Cadre J, Perez P. Sequential Monte Carlo methods for multiple targettracking and data fusion[J]. IEEE Trans on Signal Processing,2002,50(2):309-325.
    [175] Der Merwe R V, Doucet A.The Unscented Particle Filter [DB/OL].[2006-01-18].http://cslu.cse.ogi.edu/publications/ps/UPF_CSLU_talk.pdf.
    [176]曹蓓.粒子滤波改进算法及其应用研究[D].中国科学院研究生院(西安光学精密机械研究所),2012.
    [177]盛骤等,概率论与数理统计[M].北京:高等教育出版社,1989.
    [178] Kalman R E. A new approach to linear filtering and prediction problems[J].Journal of basic Engineering.1960,82(1):35-45.
    [179] Sunahara Y. An approximate method of state estimation for nonlinear dynamicalsystems[J]. Journal of Basic Engineering.1970,92(2):385-393.
    [180] Crisan D, Doucet A. A Survey of Convergence Results on Particle Filteringmethods for Practitioners [J]. IEEE Transaction on Signal Processing,2002,50(3):736-746.
    [181] Chen Z. Bayesian filtering: From Kalman filters to particle filters, and beyond[J].Statistics.2003,182(1):1-69.
    [182] Li Liangqun, Ji Hongbing, Luo Junhui. Iterated extended kalman particlefiltering. Journal of Xidian University,2007,34(2):233-238.
    [183] S.Sarkka. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions onAutomatic Control,2008,53(3):845-849.
    [184] Rauch, H.E.; Tung, F.; Striebel, C. T.(August1965).Maximum likelihoodestimates of linear dynamic systems".AIAA J.3(8):1445–1450.
    [185] Freitas J F G, Niranjan M, Gee A H, et al. Sequential Monte Carlo Methods toTrain Neural Network Models. Neural Computation,2000,12(4):955-993.
    [186] N. J Gordon, D. J Salmond, and A. F. M. Smith. Novel approach tononlinear/non-Gaussian Bayesian state estimation. IEE Proceedings on Radarand Signal Processing,1993,140(2):107-113.
    [187] Saifudin Razali, Keigo Watanabe, et. al. An Unscented Rauch-Tung-StriebelSmoother for a Bearing only Tracking Problem. International Conference onControl, Automation and Systems2010, Oct.27-30,2010.
    [188] Rowen C. Engineering the complex SOC: Fast, flexible design with congurableprocessors [M]. Beijing:China Machine Press,2005:11-20.
    [189] Compton K, Hauck S. Reconˉgurable computing: A survey of systems andsoftware [J]. ACM Computing Surveys,2002,34(2):171-210.
    [190] Oruklu E, Saniie J. Dynamically recongurable architecture design for ultrasonicimaging [J]. IEEE Transactions on Instrumentation and Measurement,2009,58(8):2856-2866.
    [191] DíAZ J, ROS E, CARRILLO R, et al. Real-time system for high-imageresolution disparity estimation. Image Processing[J]. IEEE Transactions on.2007,16(1):280-285.
    [192] Batlle J, Marti J, Ridao P, et al. A new FPGA/DSP-based parallel architecture forreal-time image processing [J]. Real-Time Imaging,2002,8(5):345-356.
    [193] Chen J C, Chien S Y. CRISP: Coarse-grained recongurable image streamprocessor for digital still cam-eras and camcorders [J]. IEEE Transactions onCir-cuits and Systems for Video Technology,2008,18(9):1223-1236.
    [194] Farrugia N, Mamalet F, Roux S, et al. Fast and robust face detection on aparallel optimized architecture implemented on FPGA [J]. IEEE Transactions onCircuits and Systems for Video Technology,2009,19(4):597-602.
    [195] Chattopadhyay A, Chen X, Ishebabi H, et al. High-level modelling andexploration of coarse-grained re-conˉgurable architectures [C]//Proceedings ofIEEE2008Design, Automation and Test in Europe. Munich, Germany: IEEE,2008:1334-1339.
    [196] Dennis J B, Misunas D P. A preliminary architecture for a basic data-flowprocessor [J]. ACM SIGARCH Computer Architecture News,1974,3(4):126-132.
    [197] Hicks J, Chiou D, Ahg B S, et al. Performance studies of ID on the Monsoondata-flow system [J]. Journal of Parallel and Distributed Computing,1993,18(3):273-300.
    [198] Dennis J B. Data flow supercomputers [J]. IEEE Computer,1980,13(11):48-56.
    [199] Veen A H. Dataflow machine architecture [J]. ACM Computing Surveys,1986,18(4):365-396.
    [200] Sanders J, Kandrot E. CUDA by example: An in-troduction to general-purposeGPU programming [M].Boston, MA: Addison-Wesley Professional,2010.
    [201] Chiussi F, Bakhru U, Brizio A, et al. A chipset for scalable QoS preservingprotocol-independent packet switch fabrics [C]//Proceedings of2001IEEEInterna-tional Solid-State Circuits Conference. San Jose, CA: IEEE,2001:448-500.
    [202] Hu C, Tang Y, Chen X, et al. Per-flow queueing by dynamic queue sharing [C]//Proceedings of26th IEEE International Conference on ComputerCommunications, in IEEE INFOCOM2007. Anchorage, AK: IEEE,2007:1613-1621.
    [203] Sweldens W. The lifting scheme: A new philosophy in biorthogonal waveletconstructions [J]. Wavelet Ap-plications in Signal and Image Processing,1995,3:68-79.
    [204] Cohen A, Daubechies I, Feauveau J C. Biorthog-onal bases of compactlysupported wavelets [J].Communications on Pure and Applied Mathematics,1992,45:485-560.
    [205] Van Der Laan W J, Jalba A C, Roerdink J B T M. Accelerating wavelet lifting ongraphics hardware using CUDA [J].IEEE Transactions on Parallel andDistributed Systems,2011,22(1):132-146.
    [206] Shen X. Evolution of MPP SoC architecture techniques[J]. Science in ChinaSeries F: Information Sciences.2008,51(6):756-764.
    [207] Brandon L D, Boyd C, Govindaraju N. Fast computation of general Fouriertransforms on GPUs[C].//Proc of2008IEEE International Conference onMultimedia and Expo. Hannover: IEEE,2008:5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700