用户名: 密码: 验证码:
金川铜镍矿床铂族元素特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川矿床在铜镍硫化物矿床中具有特殊地位,近年来,众多的国内外地质学家对其进行了大量的研究。本文在系统地总结和提取前人的地质资料基础之上,通过野外地质观察、系统采样、室内光、薄片鉴定以及岩石学矿物学、岩石地球化学和铂族元素地球化学等方面进行系统的研究,取得了以下主要认识:
     (1)Ⅰ、Ⅱ号岩体较为相似的铂族元素配分模式,与主量元素、微量稀土元素等地球化学特征显示的信息一致,均表明二者具有相同的母岩浆成分,为同源岩浆演化的产物。
     (2)金川Ⅰ、Ⅱ号岩体岩石和矿石具有相似的PGE分配模式(Pt-Pd配分型),PPGE与IPGE分异明显,以PPGE (Pt、Pd)为主,IPGE (Ir、Os、Ru、Rh)含量较低。
     (3)PGE特征进一步佐证了金川成矿母岩浆为高镁拉斑玄武质岩浆。金川矿床成矿岩石及矿石Cu/Pd、Ni/Ir比值(岩石42.59×103,7.87×105;矿石152.71×103,3.62×106)远高于原始地幔的Cu/Pd、Ni/Ir(7.7×103;6.12×105)比值(McDonough and Sun,1995)这些特征表明原始岩浆在侵入岩浆房之前存在少量硫化物熔离作用。通过进一步模拟计算初步得出大约有0.013%的硫化物早期发生预先熔离。
     (4)主量、微量稀土以及铂族元素特征一致显示的橄榄石、辉石及铬铁矿的分离结晶作用为促使岩浆中的硫化物达到饱和而发生熔离提供了良好的条件;部分熔融程度低不应是金川铜镍矿床PGE亏损的原因,而少量硫化物预先熔离是造成金川母岩浆PGE亏损的主要控制因素。
     (5)通过对块状矿石成因的模拟计算,表明块状矿石主要由10%~40%分离结晶后的MSS冷却固结形成,这与其相对富IPGE而贫PPGE特征相吻合;富Cu、Pt和Pd的特富块状矿石和脉状矿石可能与固溶体结晶分离后富集Cu、Pt和Pd的残余硫化物熔体固结形成有关。
In past years, many Geologists that is at home and abroad have done a lot of research about Jinchuan deposit because of its special status in magmatic Ni-Cu-PGE sulfide deposits. Before writing paper, I try to summarize and extract the previous geological basic data systematically, do the field geological observations and collect the typical samples. The paper study on mineralogy, petrology, geochemistry and platinum group elements geochemistry of the Jinchuan nickel-copper sulfide deposit systematically and concluded the following points:
     (1) SegmentⅠand segmentⅡintrusions of Jinchuan have the Similar distribution patterns of platinum-group elements, and the geochemistry characteristic of major elements and trace element state clearly that they have the same primary magma composition.
     (2) The PGE distribution patterns of segmentⅠand segmentⅡintrusions belong to the Pt-Pd type, and the differentiation between IPGE and PPGE is clear, the high content in PPGE and low in IPGE.
     (3) The PGE characteristic support that the primary magma of Jinchuan is high MgO tholeiitic magma. The Cu/Pd, Ni/Ir ratio (rock 42.59×103,7.87×105; ore 152.71×103, 3.62×106) of rock and ore is much higher than the original mantle (Cu/Pd=7.7×103, Ni/Ir =6.12×105). All of these data suggest the basaltic magma had experienced minor suifide segregation, whose amount is about 0.013% attained by means of quantitative simulation, prior to emplacing the staging magma chamber.
     (4) The characteristic of major elements, trace element and platinum-group elements show that the fractional crystallization of Olivine, pyroxene and chromite provide suited conditions for the sulfide segregation. A small quantity of sulfide segregation is the main controlling factor lead to the lossing of PGE in primary magma of Jinchuan rather than the low degree of partial melting.
     (5) The amount of 10% to 40% fractional crystallization of MSS cooled to form the massive ore by means of quantitative simulation. It is consistent with the massive ore characteristic rich in IPGE and poor in PPGE. The formation of other type of massive ore and veined ore which rich in Cu, Pt and Pd relate to the consolidation of the residual sulfide melts that experienced MSS fractional crystallization.
引文
[1]Arndt NT, Lesher C, Czamanske G. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits[J]. Economic Geology 100th Anniversary Volume,2005,34:5-24
    [2]Boynton WV. Cosmochemistry of the rare earth elements[J]. Meteorite Studies Dev. Geochem,1984, 2:63~114
    [3]Bezmen NI, Asif M, Brumann GE et al. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals[J]. Geochimica Et Cosmochimica Acta,1994,58(4):1251~1260
    [4]Barnes SJ, Lightfoot PC. Formation of magmatic nickel sulfide ore deposits and processses affecting their copper and platinum-group element contents[J]. Econ Geol 100th anniversary volume,2005: 179~213
    [5]Barnes SJ, Maier W. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. Dynamic processes in magmatic ore deposits and their application to mineral exploration. Geological Association of Canada, Short Course Notes,1999,13,69~106
    [6]Barnes SJ, Makovicky E, Karup-Moller S, et al. Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulfide solid solution and sulfideliquid and the implication for the formation of composition ally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfideliquid[J]. Can J Earth Sci,1997,34:366~374
    [7]Barnes SJ, Tang ZL. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu province, Peple's Republic of China. Economic Geology,1999,94(3):343~356
    [8]Barnes SJ, Cox RA, Zientek ML. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia. Contributions to Mineralogy and Petrology,152(2):187~200
    [9]Barnes SJ,Naldrett AJ, Gorton MP. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chem Geol,1985,53:303~323
    [10]Bockrath C, Ballhaus C, Holzheid A. Fractionation of the platinum-group elements during mantle melting[J]. Science,2004,305:1951~1953
    [11]Borisov A, Palme H. Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems[J]. Ame Mineral,2000,85(11-12):1665~1673
    [12]Brugmann GE, Naldrett AJ, Asif M, et al. Siderophile and chalcophile metalsas tracers of the evolution of the Siberian trap in the Noril'sk region, Russia[J]. Geochim Cosmochim Acta,1993,57: 2001~2018
    [13]Haughton DR, Roeder PI and Skinner BJ. Solubility of sulfur in mafic magmas[J]. Econ Geol,1974, 69:451~467
    [14]Chai G, Naldrett AJ. PGE mineralization of the Jinchuan Ni-Cu sulfide deposit NW China[J]. Econ Geol,1992a,87:1475~1497
    [15]Chai G, Naldrett AJ. Petrology and Geochemistry of Jinchuan Ultramafic Intrusion:Cumulate of a High-Mg Basaltic Magma[J]. J Petrol,1992b,33:277~303
    [16]Campbell IH, Naldrett AJ. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides[J]. Econ Geol,1979,74:1503-1505
    [17]Crocket JH. PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of Kilauea volcano, Hawaii[J]. Geochim Cosmochim Acta,2000,64:1791~1807
    [18]De Waal SA, Xu ZH. Emplacement of olivine-orthopyoxene-Cr-Spinel and sulfide-bearing magmas at Jinchuan, Western China[A]. Abstract for 9th international platinum symp. USA,2002.
    [19]De Waal SA,Xu ZH, Li CS et al. Emplacement of vicious mushes in the Jinchuan ultramafic Intrusion, Western China[J]. Canadian Mineralogist,2004,42:371~392.
    [20]Fleet ME, Crocket JH, Stone WE. Partition of platinum Group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt[J]. Geochim Cosmochim Acta,1996,60(13):2397~2412
    [21]Fleet ME, Chryssoulis SL, Stone WE, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system:Experiments on the fractional crystallization of sulfide melt[J]. Contrib Mineral Petrol,1993,115:36~44
    [22]Francis RD. Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygen abundance in Fe-S-0 on the ability of those liquids to partition metals from MORB and komatiitic magmas[J]. Chem Geol,1990,185:199~213
    [23]Green TH. Experimental studies of trace-element partitioning applicable to igneous petrogenesis Sedona 16 years lutes[J]. Chemical Geology,1994,117:1~36
    [24]Garuti G, Fershtater G, Bea F, et al. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the Central and Southern Urals:preliminary Results[J]. Tectonophysics,1997,276:181~194
    [25]Irvine TN. Crystallization sequences of the Muskox intrusion and other layered intrusions:II origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochim Cosmochim Acta,1975, 39:991~1020
    [26]Irvine TN, Keith DW and Tbdd SG.:The J-M platinum palladium reef:Ⅱ Origin by double difffusive convective magma mixing and implication for the Bushveld Complex[J]. Econ Geol,1983,78: 1287~1334
    [27]Keays, RR.The role of komatiitic and picritic magmatism and Ssaturation in the formation of the ore deposits[J].Lithos,1995,34,1~18
    [28]Keays RR, Nickel EH,Groves DI, et al. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralization[J]. Econ Geol,1982, 177:1535~1547
    [29]Keays RR, Lightfoot PC. Formation of Ni-Cu-platinum group element sulfide mineralization in the Sudbury impact melt sheet[J]. Miner Petrol.2004,82:217~258
    [30]Li CS, Naldrett AJ, Ripley EM. Critical Factors for the Formation of Nickel-Copper deposit in an evolved magma system:lessons from a comparison of the Pants Lake and Voisey'S Bay Sulfide Occurrences in Labrador, Canada[J]. Mniner Deposita,2001b,36(1):85~92
    [31]Li CS, Ripley EM. Formation of giant Ni-Cu sulfide deposits in dynamic magma conduits[C], Mineral Deposit Research:Meeting the Global Challenge, Beijing,2005a:27~28
    [32]Li CS, Ripley EM. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineral Deposita,2005b,40(2):218~230
    [33]Li CS, Xu ZH, de Waal SA, et al. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China:implications for ore genesis[J]. Mineral Deposita,2004,39:159~172
    [34]Lehmann J, Arndt N, Windley B et al. Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China[J]. Economic Geology,2007,102(1):75
    [35]Lumpkin GR. Physical, chemical characteristics of baddeleyite (monoclinic zirconia) in natural encironments:An overview and case study[J]. Journal of Nuclear Materials,1999,274(1-2):206~217
    [36]Lightfoot PC, Naldrett AJ. Geological and geochemical relationships in the Voisey's Bay intrusion, Nain Plutonic Suite, Labrador, Canada[A].In:Keays RR, Lesher CM, Lightfoot PC, Farrow CEG (eds) Dynamic processes in magmatic ore deposits and their application in mineral exploration[C]. Geol Assoc Can Short Course Notes,1999,13:1-30.
    [37]Li XH, Su L, Chung SL Li ZX, Liu Y, Song B and Liu DY. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit:Associated with the825 Ma south China mantle plume? [J]. Geochem. Geophys. Geosyst,2005,6(11):1029~1044
    [38]Magyarosi Z, Watkinson DH, Jones PC. Mineralogy of Ni-Cu-Platinum-Group element sulfide ore in the 800 and 810 orebodies, copper cliff south mine, and P-T-X conditions during the formation of the platinum-group minerals[J]. Economic Geology,2002,97(7):1471~1486
    [39]Naldrett AJ. Magmatic sulfide deposits[M]. New York:Oxford Univ Press,1989
    [40]Naldrett AJ. Magmatic sulfide deposit:geology, geochemistry and exploration[M]. New York: Springer-Berlin Heidelberg,2004:1~724
    [41]Naldrett AJ, Asif M, Krstic S, et al. The composition of mineralization at the Voisey's Bay Ni-Cu sulfide deposit, with special reference to platinum-group elements[J]. Econ Geol,2000a,95, 845~865
    [42]Naldrett AJ, Singh J, Krstic S, et al. The mineralogy of the Voisey's Bay Ni-Cu-Co deposit, Northern Labrador, Canada:Influence of oxidation state on textures and mineral compositions[J]. Econ Geol, 2000b,95:889~900
    [43]Naldrett AJ, Hoffman EL, Green AH, et al. The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au[J].Can Miniral,1979,17:403~415
    [44]Naldrett AJ, Kinnaird J, Stanley C, et al. Platinum-group elements in the cheomitites of the Bushveld complex:New evidence on how the PGE got there[J]. Northwestern Geology(Sup),2009,42: 138~139
    [45]Naldrett AJ. Fundamentals of Magmatic Sulfide deposit[A]. In:Li CS and Ripley(eds), New developments in magmatic Ni-Cu and PGE deposits[M]. Beijing:Geochemical Publishing House, 2009,1~26
    [46]Prichard HM, Fisher PC, McDonald I et al. Platinum-group minerals in the Jingchuan intrusion, NW China[A]. Hong kong SAR China:Proceedings of the IGCP 479 Hong Gong Workshop, Abstract Volume,2004,48~49.
    [47]Ripley EM, Sarkar A, Li CS. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Economic Geology,2005,100(7):1349~1361
    [48]Ripley EM, Lightfoot PC, Li CS et al. Sulfur isotopic studies of continental flood basalts in the Noril'sk region:Implications for the association between lavas and ore-bearing intrusions[J]. Geochimica et Cosmochimica Acta,2003,67(15):2805~2817.
    [49]Ross JR, Travis GA. The nickel sulfide deposits in western Australia in global perspective[J]. Econ Geol,1981,76:1291~1329
    [50]Roeder PL and Emslie RF. Olivine-liquid equilibrium[J]. Contrib Mineral Petrol,1970,29:275~289
    [51]Song XY, Zhou MF, Keays RR, et al. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implications for sulfide segregation[J]. Contrib Mineral Petrol,2006,152: 53~74
    [52]Song XY, Zhou, MF, Wang Y, and Qi L. Role of crustal contamination in the formation of the Jinchuan Ni-Cu-PGE deposit, NW China[J]:International Gelological Review.2006,38:1113~1132.
    [53]Song XY, Zhou MF, Tao Y, et al. Controls on the metal compositions of magmatic sulfide Deposits in the Emeishan Large Igneous Province, SW China[J]. Chem Geol,2008a,253:38~49
    [54]Song XY, Keays RR, Zhou MF, et al. Siderophile and Chalcophile Elemental Constraints on the Origin of the Jinchuan Ni-Cu-(PGE) Sulfide Deposit, NW China[J]. Geochim Cosmochim Acta, 2009,73:404~424
    [55]Su SG, Geng K,Tang ZL, Deng JF. Mineralization Characteristics of platinum group elements in Jinchuan Cu-Ni-PGE deposit[A]. Meeting the Global Challenge. Beijing:China Land publishing House.2005,35~39.
    [56]Su SG, Li CS, Zhou MF, Ripley EM et al. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China. Mineralium Deposita, 2008,43(5):609~622
    [57]Sun YL, Guan XY and Du AD. Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation[J]. Spectrochimica Acta part b-atomic spectroscopy,1998,53:1463~1467
    [58]Sun YL and Sun M. Nickel sulfide fire assay improved for pre-concentration of platinum groupelements in geological samples:a practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry [J]. The Analyst,2005,130:664~669
    [59]Tang ZL, Yan HQ, Jiao JG et al. Classification of magmatic sulfide deposits in China and mineralization of small intrusions [J]. Acta Geologica Sinica,2006,80(3):412~419.
    [60]Yang G, Du AD, Lu JR, Qu WJ, Chen J F. Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit [J]. Sci China (D),2005,48(10):1672~1677.
    [61]Zhang MJ, Sandra L. Kamo, Li CS et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita,2009
    [62]McDonough WW, Sun SS. The composition of the Earth[J]. Chem Geol,1995,120:223~253
    [63]陈毓川,赵逊,张之一.世纪之交的地球科学—重大地学领域进展[M].北京:地质出版社, 2000:1~69
    [64]陈浩琉,吴水波,傅德彬等.镍矿床[M].北京:地质出版社,1993
    [65]柴凤梅.新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究[D].北京:中国地质大学博士学位论文,2006,1~164
    [66]陈列锰,宋谢炎,Danyushevsky LV,等.金川岩体母岩浆成分及其分离结晶过程的熔浆热力学模拟[J].地质学报,2009,83(9):1302~1315
    [67]陈列锰.金川Ⅰ号岩体及其铜镍硫化物矿床特征和成因[D].中国科学院研究生院:博士学位论文,2009
    [68]甘肃省地质矿产局第六地质队,白家咀子硫化铜镍矿床地质[M].1984
    [69]高亚林.金川矿区地质特征、时空演化及深边部找矿研究[D].兰州大学:博士论文,2009
    [70]姜常义,钱壮志,夏明哲等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报,2009,25(4):738~748
    [71]焦建刚.甘肃龙首山地区小岩体成大矿深部过程[D].长安大学:博士论文,2007
    [72]金川公司任银昌等.金川铜镍二矿区矿产资源储量核实报告[R],2004
    [73]金川公司易立平等.金川铜镍一、三矿区矿产资源储量核实报告[R],2004
    [74]李文渊.中国铜镍硫化物矿床成矿系列与地球化学[M].西安:西安地图出版社,1996
    [75]李文渊,杨鹏飞.甘肃龙首山新元古代烧火筒群沉积特征及其构造意义[J].沉积学报,2004,22(1):142~146.
    [76]李献华,苏犁,宋彪等.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J].科学通报,2004,49(4):401~402
    [77]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998,1~264
    [78]李士彬,宋谢炎,胡瑞忠等.甘肃金川Ⅱ号岩体岩相学特征及分离结晶过程探讨[J].岩石学报,2007,23(10):2553~2560
    [79]梁有彬,朱文凤,宋国仁等.金川铜镍型铂族元素矿床地质地球化学特征[J].矿产与地质,1997,11(1):1~12
    [80]梁有彬,朱文凤,宋国仁等.金川铜镍硫化物矿床铂族元素的赋存状态及分布规律[J].地质与勘探,2000,(1):26~28
    [81]刘民武.中国几个镍矿床的地球化学比较研究[D].西北大学:博士论文,2003
    [82]钱壮志,王建中,姜常义等.喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义[J].岩石学报,2009,25(4):832~844
    [83]钱壮志,孙涛,汤中立等.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义[J].地质论评,2009,55(6):873~884
    [84]宋谢炎,李士彬,王玉往等.含矿岩浆通道对于岩浆铜镍硫化物矿床找矿工作的意义[J].矿物岩石地球化学通报,2005,(4):293~298
    [85]宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义.地学前缘,2009,16(4):287~305
    [86]苏尚国,周美夫,漆亮等.甘肃金川铜镍铂矿床铂钯富集体富集机理[J].矿床地质,2006,25(增刊)
    [87]苏尚国,沈存利,邓晋福等.铂族元素的地球化学行为及全球主要铂族金属矿床类型[J].现代地质,2007,21(2):361~270
    [88]苏尚国,汤中立,周岱.金川含矿超镁铁岩侵入体侵位序列[J].地学前缘,2010,17(2):118~126
    [89]孙赫,秦克章,李金祥等.地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束—以图拉尔根和香山铜镍矿为例[J].岩石学报,2008,24(5):1079~1086
    [90]汤中立.中国硫化镍矿床类型[J].地质学报,1987,27(4):350~369
    [91]汤中立.金川硫化物铜镍矿床成矿模式[C].第四届全国矿床会议资料,1989
    [92]汤中立.金川铜镍硫化矿床成矿模式[J].现代地质,1990,4(4):55~64.
    [93]汤中立.超大型岩浆硫化物矿床的类型及地质对比意义[J].甘肃地质学报,1991,1(1):24~47.
    [94]汤中立,杨杰东,徐士进等.金川含矿超镁铁岩的Sm-Nb法定年[J].科学通报,1992,37(10):918~920
    [95]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995
    [96]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,36(3):237~243.
    [97]汤中立S.J.Barnes.岩浆硫化物矿床成矿机制[M],北京:地质出版社,1998,
    [98]汤中立,白云来.华北板块西南边缘大型-超大型矿床的地质构造背景[J].甘肃地质学报,2000,9(1):1~15
    [99]汤中立.超大型Ni-Cu(Pt)岩浆矿床的划分与找矿[J].地质与勘探,2002,38(3):1~7.
    [100]汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,4(6):9~12.
    [101]汤中立,白云来,徐章华等.华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学[M].北京:地质出版社,2002.
    [102]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J].地学前缘,2004,11(1):113~119.
    [103]汤中立,闫海卿,焦建刚等.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质.2006,25(1):1~8.
    [104]汤中立,钱壮志,姜常义等.中国超大型镍铜铂岩浆硫化物矿床预测[M].北京:地质出版社.2006.
    [105]田毓龙,武栓军,孟蓉等.金川超镁铁质岩体LA-ICPMS锆石U-Pb年龄[J].矿物学报,2007,27(2):211~217
    [106]王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[J].中华人民共和国地质矿产部地质专报,北京:地质出版社,1991,253~276
    [107]王瑞廷.煎茶岭与金川镍矿床成矿作用比较研究[D].西北大学博士论文,2002
    [108]王瑞廷,毛景文,赫英等.金川超大型铜镍硫化物矿床的铂族元素地球化学特征[J].大地构造与成矿学,2004,28(3):279~286
    [109]王瑞廷,毛景文,任小华等.煎茶岭与金川硫化镍矿床的铂族元素地球化学特征对比及其意义[J].矿床地质,2005,(4):462~470
    [110]王生伟,孙晓明,石贵勇,等.云南白马寨铜镍硫化物矿床铂族元素地球化学及其对矿床成因的制约[J].地质学报,2006,80(9):1474~1486
    [111]徐章华,汤中立.金川铜镍(含PGE)岩浆硫化物矿床母岩浆成分的估计[J].现代地质,1998,12(4):225~229.
    [112]解广轰,汪方亮,范彩云等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学(D辑),1998,28(增):31~36
    [113]修群业,陆松年,于海峰等.龙首山岩群主体划归古元古代的同位素年龄证据[J].前寒武纪研究进展,2002,25(2):93~96.
    [114]修群业,于海峰,李铨等.龙首山岩群成岩时代探讨[J].地质学报,2004,78(3):366~373.
    [115]杨合群,汤中立,苏犁等.金川硫化铜镍矿床成矿岩浆性质和源区特征讨论[J].甘肃地质学报,1997,6(1):44~52
    [116]杨合群.金川硫化铜镍矿床硫同位素地球化学[J].西北地质,1998,31(2):20~23
    [117]杨刚,杜安道,卢记仁等.金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J].中国科学,2005,35(3):241~245
    [118]朱训.中国矿情(第二卷)[N].北京:科学出版社,1999
    [119]朱文凤,梁有彬.金川铜镍硫化物矿床铂族元素的赋存状态及分布规律[J].地质与勘探,2000,36(1):26~28
    [120]张宗清,杜安道,唐索寒等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报,2004,78(3):359~365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700