用户名: 密码: 验证码:
基于离散余弦变换的位场谱方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位场数据处理是重磁勘探的重要组成部分,是伴随着计算机科学、计算机数学及重力学、磁力学和重磁测量手段的提高而不断发展的,随着地质目标和解决问题精度的不断提高,提高位场数据处理精度和分辨率的新方法、新技术的开发成为物探工作者致力研究的一项重要课题。
     针对提高位场转换的计算精度,提出位场离散余弦变换(DCT)谱分析方法。利用余弦变换给出了重力位、磁位及磁场分量的余弦变换谱关系,推导出位场异常n阶导数以及异常解析延拓的余弦变换谱通式,建立了位场余弦变换谱分析及异常转换理论。以位场余弦变换谱分析和异常转换理论为基础,研究了基于DCT的重力归一化总梯度、归一化相位理论以及数值实现方法,并将研究方法应用于大庆探区外围盆地某剖面的重力异常数据处理中,证实了方法对识别断裂构造的有效性和可行性。以傅立叶(Fourier)变换理论和位场余弦变换谱分析理论为基础,从理论上详细分析了位场异常余弦变换谱分频原理,推导出基于DCT的匹配滤波公式,在数值上实现了异常分离的计算;在模型试验中将该技术与传统的匹配滤波法进行对比分析,证实了此法分离的异常具有较高的精度。以基于DCT的位场谱π/2相位偏移理论以及直立岩脉理论为基础,同时在小子域滤波技术的基础上,在理论及数值上实现“三方向小子域滤波”技术的分析过程,该法为断裂构造水平位置的识别提供了更丰富的信息。
     上述理论应用在黑龙江虎林盆地布格重力异常数据处理中,采用基于DCT的位场异常向上延拓以及基于DCT的位场谱分频方法对异常进行了分离,研究了盆地区域场及剩余场的特征,并利用获得的剩余异常反演盆地的基底深度;采用三方向小子域滤波技术对盆地断裂构造进行了圈定;在综合分析盆地重力场特征、基底特征及断裂构造特征的基础上,对盆地构造单元进行了划分,取得了较好的效果。
Potential field is the main research content of physical geography field, which reflects the changes of the earth’s crust structure and component from especial point of view and different sides. Potential field data processing is a important component part for gravity and magnetics prospecting, which is developing together with the ceaseless enhancement of computer science, computer mathematics, gravitology and magnetics and their measure methods. With the eternal enhancement of the geologic object and the precision of settling geologic question,the new methods and techniques that how to enhance data processing precision and resolution has been a important topic for persons who engage in geophysical prospecting.
     Spectrum analysis and filtering are important methods among geophysical prospecting data processing methods that have a great relation to the development of computer. With the development and perfect of computer technique and signal analysis theory, the methods of potential field data processing are not merely used Fourier spectrum analysis theory. At recent years, data processing technique has infiltrated through signal analysis theory, for instance, wavelet analysis, Hilbert transform, Hartley transform, which have improved the precision of data processing.
     Discrete cosine transform (DCT) excel non-sine transform in theoretical and applied value, and it has excellent capability, so it hold leading status in orthogonal transformation. DCT can avoid plural operation to real continuous function, and it has similar capability to Karhunen-Loève transform that can remove relativity and reserve superior energy of original signal. At potential field data processing, except author and collaborator have used DCT to gravity-magnetic anomaly derivate conversion, forward and inversion of density interface gravity anomaly, DCT spectrum frequency division of gravity-magnetic and DCT spectrum inversion of regular body gravity anomaly and the other relative components, at present, we have not found any correlative literature that used DCT to analyze spectrum of potential filed and to the process the data of gravity and magnetic anomaly.
     This paper take data processing method and technique that can determine geologic structure as central aim, take potential field spectrum analysis based on DCT as foundation and take improving data processing precision and resolution as cardinal line, we study and develop potential field data processing method and technique based on DCT.
     1. setting up potential field DCT spectrum analysis theory
     Potential field spectrum analysis and conversion are important components of gravity-magnetic anomaly data processing, which include two sides, one is using the anomalies of observation surface to calculate it’s n degree derivatives, the other is using the anomalies of observation surface to calculate it’s above potential field anomalies and it’s n degree derivatives.
     A method of magnetic potential spectrum analysis based on the cosine transform is proposed in order to improve the calculating accuracy of magnetic anomalies diversion. We derived the relations of cosine transform spectrum among gravity potential, magnetic potential and field constituent and deduced the cosine transform spectrum formula of analytic continuation and potential n degree derivatives using the cosine transform, so set up potential field DCT spectrum analysis and conversion theory.
     The horizontal and vertical first derivatives of magnetic anomalies of an infinite cylinder are calculated by the cosine transform method at model experiment, in which the maximum errors of them are -0.28 nT/m and 0.47 nT/m respectively, and the percent errors are generally within -3.57%~3.27% and -1.94%~1.88% respectively except several data of boundary and part are bigger because of remains of Gibbus effect. The calculating curve and theoretical curve are approximately coincident, and there is no influence by effective magnetic dip angle in computing. But the errors with the Fourier transform method are -10.62 nT/m and -14.42nT/m, there is large departure between the calculating curve and theoretical curve and evident influence by effective magnetic dip angle in computing. It indicates that the calculating accuracy of magnetic anomalies derivatives calculated by cosine transform is higher than Fourier transform, and the computing stability is excellent. By the same token, magnetic anomaly upward continuation calculated by cosine transform has also higher accuracy.
     2. using DCT to calculate normalized full gradient of gravity anomalies and phase
     Normalized full gradient of gravity anomalies and phase can be used to find the location of source and inspect hydrocarbon structure because of its characteristic of“one less value between two high value”. Traditionally,В.М.Березкинmethod and Fourier transform were used primarily, but using DCT to calculate normalized full gradient of gravity anomalies and phase is a new method.
     This paper present gravity anomalies conversion formula based on DCT, in succession study GH field characteristics of these models that include infinite horizontal cylinder, symmetrical-density sphere-coronal and asymmetric-density oil storage sphere-coronal. These experiments have proved that the more is the depth, the smaller is the harmonic wave member, at the same time singular point Maximum move downwards and has linear attenuation. GH field contour line of asymmetric-density oil storage sphere-coronal has presented typical characteristic of“one less value between two high value”. GH field calculated by DCT has excellent stability and can enhance the depth of downward continuation. This paper present use DCT to calculate normalized full gradient of gravity anomalies and phase that are researched fracture in conversion of potential field. We research GH field and phase characteristics of typical infinite vertical step, finite vertical step and normal fault. These model experiments have proved that DCT is viable and valid, at the same time we gain these rules that estimate special location and horizontal distance of fracture. GH field has max. entrap and phase mutation in fracture location, and if structure have several fractures, then phase curves have mutations, and distance of two phase mutation can probably identify horizontal distance of fracture, and if we connect phase of different continuation depth that can reflect fracture trend. This method was used abnormal data processing of Xingkai-Hulin, and delineated 13 fracture according to it’s GH field characteristics.
     3. the frequency division method of gravity-magnetic anomaly cosine transform spectrum
     The paper put forward a frequency division method of matched filter based on discrete cosine transform in order to improve the accuracy and reliability for separating off gravity or magnetic anomalies. It is feasible to divide frequency of gravity-magnetic anomaly cosine transform spectrum using the matched filter method by analyzing the relation of amplitude spectrum between Fourier and cosine transform. The calculating formula of frequency division is obtained on the ground of characteristic analysis of anomaly cosine transform of vertical rectangular cylinder. In the experiment of double body (two rectangular cylinder), the biggest error of regional anomaly separated by Fourier transform is 12.71×10-6 ms-2, the mean square error is 5.63×10-6 ms-2 and the maximum percent error is 10.9%, and the errors of calculating points are all bigger than 9.3% besides 20km. But the anomalies divided by cosine transform are excellent to fit with academic anomalies of model and the relative errors are 1.65×10-6 ms-2, 0.067×10-6 ms-2 and 6.12% respectively, the bigger percent errors are only several data at the bounder of profile line and the calculating errors of the other points are all less than 3.0%. It is shown that the matched filter based on the cosine transform has higher precision.
     4. a new technique for elaborate explanation of faulted structures: three-direction small subdomain filtering
     How to use gravity-magnetic field data to settle elaborate compartmentalization and explanation of geologic structures, the paper propose a new method of tree-direction small subdomain filtering. We analyze the offset technique, in which the phase of gravity anomalies of vertical dike displaceπ/2, and deduce theoretical formulas, in which planar gravity anomalies for characteristics of vertical dike are extruded and using the DCT method make their phases transformπ/2. It is shown in model experiments that the planar position of the most gradient for the displacement result where coordinates are transformed is the same as the projective position of fractured surface of vertical step. Using the conventional method of small subdomain filtering to check gravity gradient zones in offset processing results of each direction and to stand out boundary characteristic of three directional anomalies, so the numerical calculation of three-direction small subdomain filtering can be achieved, this method propose more abundant information for the identify of faulted structures horizontal position.
     Heilongjiang Hulin basin is one of the Daqing peripheral basins, it’s gravity field characteristics are important researching content.
     Author analyzed structural setting of Hulin basin areal geology, basic characteristics of Bouguer anomaly and compartmentalized region for gravity field, the prospect area were delineated four anomaly regions and ten anomaly zones. In order to study the distributing characteristics of faulted structures and deposit characteristics of this basin, author disposed Bouguer anomaly data of Heilongjiang Hulin basin using proposed method at this paper. We used potential anomaly upward continuation and potential spectrum frequency division to separate and analyze anomaly, studied regional and residual field characteristics of basin, validated method’s viable and veracious, at the same time obtained base depth of basin by inversion using obtained residual anomaly. In the application, we used the conventional small subdomain filtering and three–direction small subdonmain filtering to identify the fractures, the conventional small subdomain filtering can only check 11 faults, but the three-direction small subdonmain filtering can check 33 faults in Heilongjiang Hulin basin. It is shown that the technique of three-direction small subdonmain filtering can identify more information for planar location of fault structures. Simultaneity, we synthetically analyzed the characteristics of Bouguer anomaly sectorization, regional anomaly and residual anomaly, configuration of basal, configuration and distributing characteristics of faulted structure, finally, basin was delineated four first structural units and ten second structural units.
     Studying potential field data processing method and technique based on DCT have important significance at geology and physical geography. At first, in theory, we can develop and perfect current data processing theory and explanation technique, propose more actually theoretical simulation for gravity-magnetic exploration, and can has more solidly theoretic foundation for data processing inversion. Secondly, at practice, we can improve potential field anomaly data processing and explanation accuracy, which can let the topic more influence on physical geography exploration of my country. Therefore, it will has social economic benefit and realistic significance in the future.
引文
[1] 徐宝慈,李春华. 位场数据处理理论与问题. 长春: 吉林大学出版社,1995.
    [2] 王谦身,安玉林,张赤军等. 重力学. 北京: 地震出版社,2003,258~263.
    [3] 罗孝宽,郭绍雍. 应用地球物理教程——重力磁法.北京: 地质出版社,1991.
    [4] 陈善. 重力勘探. 北京: 地质出版社,1986.
    [5] 徐文耀. 地磁学. 北京: 地震出版社,2003.
    [6] 方俊编. 重力测量与地球形状学. 北京:科学出版社,1975.
    [7] 何绍基编. 重力测量学. 北京:测绘出版社,1957.
    [8] 王懋基. 中国重力勘探的新进展. 地球物理学报,1994,37(增刊 1): 353~360.
    [9] 王懋基,等. 中国重力勘探的发展与展望. 地球物理学报,1997,40(增刊): 292~297.
    [10] 许厚泽、王谦身等,中国重力测量与研究的进展. 地球物理学报,1994,37(增刊 1): 339~352.
    [11] 穆石敏,申宁华,孙运生. 区域地球物理数据处理方法及其应用. 吉林科学技术出版社,1990
    [12] 朱文孝,屠万生,刘天佑. 重磁资料电算处理与解释方法. 中国地质大学出版社,1989
    [13] 吴宣志,刘光海,薛光奇,等. 富里叶变换和位场谱分析方法及其应用. 北京: 测绘出版社,1987
    [14] 刘祥重著. 重磁异常波谱分析原理及应用. 重庆出版社,1993.
    [15] 胡广书. 数字信号处理. 北京: 清华大学出版社,2003.
    [16] 张贤达著. 现代信号处理. 北京: 清华大学出版社,2003.
    [17] 胡昌华,张军波,夏军,等. 基于MATLAB 的系统分析与设计—小波分析. 西安: 西安电子科技大学出版社,1999.
    [18] 胡宁. 东昆仑三维重力异常解释方法研究. 青海地质,1996, 5 (2): 33~42.
    [19] 李宗杰,杨林,王勤聪. 小波变换在位场数据处理中的应用. 石油物探, 1997, 36 (2): 86~93.
    [20] 李宗杰,杨林,王勤聪. 二维小波变换在位场数据处理中的应用试验研究. 石油物探. 1997, 36 (3): 70~78, 88.
    [21] Li Yaoguo ,Oldenburg D W. 利用小波变换快速反演大型磁数据. 袁桂琴译. 物探化探译丛,1998 (4): 23~28.
    [22] 何继善,温佩琳,肖兵,等. 小波分析在地球物理勘探中的应用. 中国有色金属学报,1997, 7 (4): 14~9.
    [23] 侯遵泽,杨文采,刘家琦. 中国大陆地壳密度差异多尺度反演. 地球物理学报,1998, 41 (5): 642~651.
    [24] 侯遵泽,杨文采. 中国重力异常的小波变换与多尺度分析. 地球物理学报, 1997, 40 (1): 85~95.
    [25] 罗利春. 用希尔伯特变换构造解析信号进行时频分析. 航天电子对抗, 2003, 44(3): 26~29.
    [26] 彭勇,周轶尘. 希尔伯特变换及解调方法的应用. 武汉交通科技大学学报,1996, 20(5): 544 – 548.
    [27] Nabighian Misac N. The analytic signal of two- dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpreta -tion. Goephysics, 1972, 37: 507~512
    [28] Stanley J M, Green R. Gravity gradients and the interpretation of the truncated plate. Geophysics,1976, 41: 1270~1276
    [29] Stanley J M. Simplified gravity interpretation by gradients – The geological contact. Geophysics, 1977, 42: 1230~1235
    [30] Mohan N L, Sundararajan N, Seshagiri Rao S V. Interpretation of some 2-D magnetic bodies using Hilbert transform. Goephysics. 1982, 47: 376~387
    [31] Sundararajan N, Mohan N L, Seshagiri Rao S V. Gravity interpretation of two dimensional fault structures using Hilbert transform. Geophys, 1983, 53: 34~41.
    [32] Mohan N L, Sundararajan N, Seshagiri Rao S V. Interpretation of some 2-D magnetic bodies using Hilbert transform. Goephysics . 1982, 47: 376~387
    [33] Sundararajan N, Srinivas Y. A modified Hilbert transform and its application to self potential interpretation. Journal of applied Geophysics, 1996, 36: 137~143
    [34] Cvetkovic Z, Popovic M V. New fast algorithms for the computation disctete cosine and sinetransform[J]. IEEE Trans. Signal Process. , 1992, 40(8): 2083~2086
    [35] Vladimír Britaňák. A unified discrete cosine and discrete sine transform computation. Signal Processing, 1995, 43: 333~339
    [36] Jain A K. A faster Karhunen-loeve transform for a class of stochastic processes. IEEE Trans Commun. , 1976, 24(Sept): 1023~1029.
    [37] Jain A K. A faster Karhunen-loeve transform for a class of stochastic processes. IEEE Trans Commun. , 1976, 24(Sept): 1023~1029.
    [38] Ahmed N T, Natarajan T, Rao K R. Discrete cosine transform. IEEE Trans. Comput. , 1974, 23(1): 90~93.
    [39] Ahend N, Rao K R. Orthogonal transforms for Digital Signal Processing. New York: Springer,1975.
    [40] Rao K R, Yip P. Discrete Cosine Transfrom: Algorithms, Advantages and Applications. New York: Academic Press, 1990.
    [41] Dinstein I, Rose K, Heiman A. Variable block-size transform image coder[J]. IEEE Tans.Comm. , 1990, 38(11): 2073~2078.
    [42] Wang YZ, Wu RS. Seismic data compression by an adaptive local cosine/sine transform and its effects on migration GEOPHYS PROSPECT,2000, 48 (6): 1009~1031.
    [43] Averbuch, AZ, Meyer. F, Stromberg, JO, et al. Low bit-rate efficient compression for seismic data. IEEE T IMAGE PROCESS. 2001,10 (12): 1801~1814.
    [44] 张凤旭 张凤琴 孟令顺,等. 基于余弦变换的密度界面重力异常正反演研究. 石油地球物理勘探,2005, 40(5): 598~602.
    [45] 张凤旭,张凤琴,孟令顺,等. 基于离散余弦变换的磁位谱分析及磁异常导数计算方法. 地球物理学报,2006.
    [46] 张凤琴,刘财,张凤旭,范美宁,马淑艳. 规则体重力异常余弦变换谱特征及反演. 物探化探计算技术,2006,28(1), 29~32.
    [47] 张凤旭. 高精度重力异常数据处理方法、技术研究. 吉林大学博士学位论文,2006.
    [48] Parker R L. The rapid calculation of potential anomalies. Geophys. Jour. Roy. Astronomical Soc. , 1973, 31: 447~455.
    [49] Oldenberg D W. The inversion and interpretation of gravity anomalies. Geophysics, 1974, 39(4): 526~536.
    [50] 张凤琴, 张凤旭, 刘财, 等. 利用重力归一化总梯度及相位法研究断裂构造.吉林大学学报(地球科学版), 2005, 35(1): 123~127.
    [51] 王家林,王一新,万明浩,等. 用重力归一化总梯度法确定密度界面.石油地球物理勘探,1987,22(6):684~692.
    [52] 王宝仁,王芳. 归一化总梯度方法的计算新技术. 物探化探计算技术,1991,13(2):139-147.
    [53] 吴文鹏,管志宁. 三度体重力归一化总梯度的计算方法. 物化探计算技术,1996,18(1):47~66.
    [54] В. М. Березкин 别列兹金(著),陆克,刘文锦,焦恩富(译). 物探数据的总梯度解释法.地质出版社,1994.
    [55] 曹辉, 张光华. 综合物化探方法直接找油气的尝试[J].石油地球物理勘探, 1996, 31(4):546~551.
    [56] Talwani M, Worzel J L and Landisman M M. Rapid gravity calculation for two-dimensional bodies with application to the fracture zone. J. Geophy. Res., 1959, 64: 49~59.
    [57] 《重力勘探解释手册》编写组编著. 重力勘探资料解释手册. 地质出版社,1983,131~164.
    [58] 孟平,秦瞳,吴云海. 关于归一化总梯度异常多解性问题的研究.石油物探,2003,42(2),252~255.
    [59] 曾华霖,李小孟,姚长利,等. 改进的重力归一化总梯度法及其在胜利油区油气藏探测中的应用效果. 石油勘探与开发,1999,26(6),1~ 6.
    [60] 肖一鸣,张林祥. 重力归一化总梯度法在寻找油气中的应用. 石油地球物理勘探,1984,第三期,247~ 254.
    [61] Thomas, J. B. An introduction to statistical communicat- ion theory. New York: John-Wiley and sons, Inc. 1969
    [62] 刘保华,张维冈,孟恩. 重力异常垂向一阶导数的一种简便算法. 青岛海洋大学学报,1995,25(2):233~238.
    [63] 汪炳柱. 用样条函数法求重力异常二阶垂向导数和向上延拓计算. 石油地球物理勘探,1996,31(3):415~422.
    [64] Jack M A. Grant A C. Collins J H. The theory, design and applications of surface acoustic wave Fourier -transform processors, Proc. IEEE, 1980, 68(4): 450~468.
    [65] Klauder J R. Price A C. Darlington W J. et al. The theory and design of chirp radars. The Bell Systems Techn. J. , 1960, 39: 745~808.
    [66] Rahman M S. Fourier analysis of full-wave rectified matched filter output of a modified chirp-matched filter spectrum analyzer for envelope detection. Signal Processing, 1997, 63: 91~100.
    [67] Pawlowski L B. Preferential continuo for potential field anomaly enhancement. Geophysics, 1995, 6: 390~398.
    [68] Pedersen L B. Relations between potential fields and some equivalent sources. Geophysics, 1991, 56: 961~971.
    [69] Syberg F J R. A Fourier method for the regional residual problem of potential fields. Geophysical Prospecting, 1972, 20: 47~75.
    [70] E. O. 布赖姆(著), 柳群(译),快速傅立叶变换. 上海出版社,1979,165~295.
    [71] Gunn P J. Linear transformations of Gravity and Magnetic Fields. Geophysical Prospecting, 1975, 23: 300~312
    [72] Baranov V. A new method for the interpretation of aero-magnetic maps: pseudo gravimetric anomalies. Geophysics, 1957, 22: 359~383.
    [73] Dean W C. Frequency analysis for gravity and magnetic interpregtation. Geophysics, 1958, 23: 97~127.
    [74] Gunn P J. Application of wiener filters to transformations of gravity and magnetic filed. Geophys. Prospecting. 1972. 20: 860~871. [44] Bhattacharyya B. K. Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics. 1966, 31: 97~121.
    [75] Spector A, Grant F S. Statistical models for interpreting aeromagnitic data. Geophysics, 1970, 35: 293~302.
    [76] Grauch V J S, Cordell L. Limitations of determining density of magnetic boundaries from the horizontal gradient of gravity of pseudogravigty data. 1987, 52: 118~121.
    [77] Hammer S, Anzoleaga R. Exploring for stratigraphic traps with gravity gradients. Geophysics. 1975, 40: 256~268.
    [78] Lourenco J S, Morrison H F. Vector magnetic anomalies derived from measurements of a single component of the field. Geophysics, 1971, 38:359~368.
    [79] Montana, C, Mickus K L, Peeples W J. Program to calculate the gravitational field and gravity gradient tensor due to right rectangular prisms. Computers and Geosciences, 1992, 18: 587~602.
    [80] Stanley J M, Green R. Gravity gradients and interpretation of the truncated pale. Geophysics, 1976, 41: 1370~1376.
    [81] Vasco D W. Resolution and variance operators of gravity and gravity gradiometry. Geophysics, 1989, 54, 889~899.
    [82] Vasco D W, Taylor C. Inversion of airborne gravity gradient data, southwestern Oklahoma. Geophysics, 1991, 54:90~101.
    [83] Blakely R J, Simpson R W. Locating edges of source bodies from magnetic or gravity anomalies. Geophysics. 1986, 51: 1494~1498.
    [84] Lourenco J. S. , Morrison H. F. , Vector magnetic anomalises derived from measurements of single component of the field. Geophysics 1973, 38, 395~368
    [85] Bhaskara Rao D. Modeling of sedimentary basins from gravity anomalies with variable density contrast. Geophys. Jour. Roy. Astronomical Soc., 1986, 84(1): 207~212.
    [86] Cordell L, Henderson R G. Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics, 1968, 38(4):596~601.
    [87] Radhakrishna Murthy I V, Rama Rao P, Jagannadha Rao S. The density difference and generalized programs for two- and three-dimensional gravity modeling. Computer & Geosciences. 1990, 16(3): 277~287.
    [88] Salah L, El-Batroukh, Zentani A S. Gravity interpretation of Raguba field, Sirte Basin, Libbya. Geophysics, 1947, 12(1): 43~56.
    [89] Bhakara Rao D, Rameshbabu N, A rapid method for three-dimensional modeling of magnetic anomalies. Geophysics, 1991, 56(11): 1729~1737.
    [90] Nagendra R , Prasad P V S , Bhimasankaram V L S. Forward and invers computermodeling of a gravity field resulting from a density interface using Parker-Oldenberg method. Computers & geosciences, 1996, 22(3): 227~237
    [91] Reid A B, Allsop J M, Granser H, et al. Magnetic Interpretation in Three Dimensions Using Euler Deconvolution. Geophysics, 1990, 55(1): 80~91.
    [92] Valéria C F, Barbosa, Jo?o B C, Silva, et al. Stability Analysis and Improvement of Structural index estimation in Euler Deconvolution. Geophysics,1999, 64(1): 48~60.
    [93] Peters L J. The Direct Approach to Magnetic Interpretation and its Application. Geophysics,1949, 14: 290~320.
    [94] Briener S. Applications manual for portable magnetometers. GeoMetrics, Sunnyvale, CA. , 1973
    [95] Hartman R R, Tesbey D J, Friedberg J L. A system for rapid digital aero-magnetic interpretation: Geophysics, 1971, 36: 891~918.
    [96] Hood P. Gradient measurements in aeromagnetic surveying. Geophysics,1965, 30: 891~902.
    [97] Kuolomazine Th, Lamontagne Y, Nadeau A. New methods for the direct interpretation of magnetic anomalies caused by inclined dikes of infinite length. Geophysics, 1970, 35: 812~830.
    [98] Hsu S K. Imaging magnetic soures using Euler’s equation. Geophysical Prospecting, 2002, 50(1): 15~25.
    [99] Mushayandebvu M F, Van Driel P, Reid A B, et al. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics, 2001 66(1): 814~823.
    [100] Stavrev P Y. Euler deconvolution using differential similarity transformations of gravity of gravity or magnetic anomalies. Geophysical Prospecting, 1997, 45(2): 207~246.
    [101] Naudy H. Automatic determination of depth on aero-magnetic profiles: Geophysics,1971, 36: 717~722.
    [102] Thompson D T. EULDPH: A new Technique for Making Computer-assisted Depth Estimates from Magnetic data. Geophysics, 1982, 47(1): 31~37.
    [103] Daniela Gerovska, Marcos J, Araúzo-Bravo. Automatic Interpretation ofMagnetic Data Based on Euler Deconvolution With Unprescribed Structural Index. Computers & Geosciences, 2003, 29: 949~960.
    [104] 曹成润, 刘正宏, 王东坡. 黑龙江省东部虎林盆地断块构造特征及其运动学规律. 长春地质学院院报, 2001, 31(4): 340~344.
    [105] 黑龙江省地质矿产局编写. 黑龙江省区域地质志(地质专报—区域地质 第33 号). 北京: 地质出版社,1993.
    [106] 张凤旭, 孟令顺, 林泽付, 等. 黑龙江省虎林盆地重力异常、基底构造及油气远景区研究. 吉林大学学报:(地球科学版), 2004, 34(4): 552~556.
    [107] 大庆油田石油地质志编写组. 中国石油地质志: 卷 2,上册,大庆油田.北京: 石油工业出版社,1993: 746~752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700