用户名: 密码: 验证码:
伊通河底泥不同粒径有机无机复合体对氨氮的吸附—解吸特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的底泥污染,现在是世界范围内的一个重要的环境问题。通过以底泥作为研究对象,对氨氮在底泥中的吸附-解吸行为的研究进展进行较系统的阐述,通过实验研究揭示从底泥中提取的不同粒径有机无机复合体对氨氮的吸附-解吸的特征及影响因素。
     底泥不同粒径有机无机复合体对不同浓度氨氮溶液的吸附,在相同的环境条件下,能够反映有机无机复合体对氨氮吸附能力的强弱。有机无机复合体的粒径愈小,其吸附量愈大,粒径为0.001-0.005mm的有机无机复合体对氨氮的吸附量明显高于其它三个粒径。粒径为0.05-0.25mm的有机无机复合体对氨氮的吸附量最少,说明粒径愈大,其吸附能力愈弱,伊通河在不同河段的底泥有机无机复合体均呈现出此规律。
     有机质对不同粒径有机无机复合体吸附氨氮的影响,土壤中可变电荷主要来自有机质,而腐殖质中含有大量的负电荷,对土壤表面负电荷量有较大贡献,所以,粒径较小的复合体中含有较多的负电荷,它们对氨氮的吸附起了决定性作用。粒径愈小,有机质含量愈高,其负电荷对氨氮的吸附能力愈强。
     伊通河不同河段的有机无机复合体对氨氮的解吸量均随浓度的增加而升高,在浓度为0.001-0.005mol/1范围内,氨氮的解吸量升高的较快,浓度在0.005-0.026mol/1范围内,解吸量升高的较缓慢。在各个粒径中,粒径愈大,其解吸量愈高,即吸附量愈大的粒径,其解吸量愈低。粒径为0.05-0.25mm的复合体对氨氮的解吸量最多,且它们对氨氮的解吸量均呈现良好的线性关系。
     有机质是影响有机无机复合体对氨氮解吸的主要因素,有机质含量较低的有机无机复合体,其吸附结合能较小,而解吸率较高。
     伊通河不同河段底泥中有机无机复合体在不同pH值条件下,复合体对氨氮的吸附量均随pH值增加而逐渐升高,粒径为0.001-0.005mm复合体吸附量高于其它粒径,当pH值增加到8-12范围时,其对氨氮的吸附速率最快。在pH值条件下,不同粒径对氨氮的吸附均呈现较好的相关性,且复合体吸附速率的差异性与永久负电荷和可变负电荷关系较大。
     不同粒径有机复合体对氨氮的解吸量随pH值的增大而升高,粒径为0.001-0.005mm的复合体吸附量高,而解吸量较其它粒径要少很多,说明吸附性能较强的复合体其解吸性能较弱,所以,解吸量随着粒径的减小而降低。不同河段的底泥的复合体均呈现出上述的解吸规律。
     不同粒径有机无机复合体对于氨氮的吸附,其吸附等温线均以Freundlich型吸附等温线为最优,其次是Herry型吸附等温线,Langmuir型吸附等温线稍差,对于不同河段复合体的吸附等温线均呈现较好的拟合在氨氮吸附动力学实验中,四种方程拟合性的显著效果大小依次为,-级方程较为显,Elovich方程和双常数方程次之,扩散方程拟合性较差,所以一级方程为最优方程。
Sediment pollution of water was a major environmental problem in the world. The sediment was research ed as the object of ammonia nitrogen in the sediment of the adsorption-desorption behavior of a systematic exposition of the progress, ammonia nitrogen adsorption-desorption in different size sediments extracted organo-mineral complex of characteristics and influencing factors was revealed in experimental studies.
     Ammonia solution in different concentrations was adsorbed in organo-mineral complex of different size in the sediment, in the same environmental conditions, the organo-mineral complex on the strength of ammonia adsorption capacity was refleced.
     The size of organo-mineral complex was smaller, its adsorption capacity was greater, particle size of organo-mineral complex was 0.001-0.005mm, its adsorption amount of ammonia nitrogen was significantly higher than the other three particle sizes, particle size of organo-mineral complex was 0.05-0.25mm, its the adsorption of ammonia nitrogen was the least, indicating that particle size was larger, the adsorption capacity was weaker,the different sections of organo-mineral complex were shown the law in the sediment of Yitong River.
     Organic matter on adsorption ammonia nitrogen in different size of organo-mineral complex, the impact of variable charge in soils mainly from organic matter, and large amounts of negative charge was contained in humus, negative charge in the soil surface had a greater contribution, therefore, more negatively charged was contained in smaller particle size of the complex, they played a decisive role in the adsorption. Smaller size, higher organic matter content, the stronger of the adsorption capacity on the negative charge.
     Ammonia nitrogen desorption in different sections of organo-mineral complex was increased with increasing concentration inYitong river, at a concentration of 0.001-0.005mol/L range, the desorption amount of ammonia nitrogen was rised rapidly,at a concentration of 0.005-0.026mol/L range, desorption was rised more slowly. In each size, the size was larger, the desorption was higher, particle size of the larger adsorption capacity, the desorption was lower. The size of complex was 0.05-0.25mm,its desorption of ammonia nitrogen was the most, and desorption of ammonia nitrogen was showed a good linear relationship.
     Desorption of ammonia nitrogen was affectted by organic matter in complex, it was major factor.The content of organic matter was lower, the adsorption binding energy of complex was smaller than the rate of desorption was higher.
     At different conditions of pH values, organo-mineral complex of different sections in sediment of Yitong river, the adsorption of ammonia nitrogen in organo-mineral complex was higher with the gradually increased of pH value, particle size was 0.001-0.005mm in complex,its adsorption was higher than other particle size, when the pH value to the range of 8 to 12, the fastest adsorption rate of ammonia nitrogen. In pH, and the adsorption of ammonia nitrogen in different particle size of complex was showed a good correlation, and complex differences in adsorption rate and variable negative charge had the larger relationship between a permanent and negative charge.
     Desorption amount of ammonia nitrogen in different particle size of complex was increased with the increasing of pH value, particle size was 0.001-0.005mm in complex,its adsorption was the highest, but the desorption was much less than other particle size, the adsorption performance of complex was stronger,but its desorption performance was weaker, so the desorption was decreased with the decreasing of particle size. Different sections of the complex were shown above the desorption regularity in sediment.
     The adsorption of ammonia nitrogen in organo-mineral complex, the adsorption isotherms were Freundlich and adsorption isotherm model was the best, followed by adsorption isotherm was Herry-type, Langmuir isotherm type was less, good simulation was presented for different sections of organo-mineral complex.
     In the kinetic experiments of the adsorption, the four equations fit the dominant effect of the order, first-order equation was obvious, Elovich equation and dual constant equation was the second than first-order equation, diffusion equation was poor, so first-order equation was the optimal equation.
引文
[1]蒋剑敏,赵家骅.土壤学报,1964,12(4)411-420
    [2]熊毅.土壤通报,1979,(5):1-9
    [3]Nelson D W, Sommers L E. Total carbon, organic carbon, organic matter.In:Page AL. ed. Methods of Soil Analysis. Wis-consin, USA:Madison,1982.529-569
    [4]胡雪峰.上海市郊河流底泥氮磷释放规律的初步研究田.上海环境科学,2001,20(2):66-70
    [5]刘敏,侯立军,许世远,等.长江河口潮滩表层底泥对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406
    [6]Boatman C.D., Murray J.W. Modeling exchangeable NH4+ adsorption in marine sediments:Process and controls of adsorptin. Limnology and Oceanography[J],1982,1(27):99-110
    [7]金相灿,王圣瑞,姜霞.湖泊水-底泥界面三相结构模式的初步研究[J].环境科学研究,2004,17(增):1-5
    [8]Mingelgrin U.,Gerstl Z.J.,J.Environ.Qual,1983,12(1):102-117
    [9]Hedges J I,Keil R G.Sedimentary organic matter preservation:as-sessment and speculative synthesis[J].Marine Chemistry,1995,49:81-115
    [10]LundLJ,HomeAJ,WilliamsAE.Estimating denitrificationina largeconstruced wetland using stablenitrogen istope ratios [J].Ecological Engineering,2000:(14):65-78
    [11]Bicheline M.,Feliatra F.,Treguer P.,Vincendeau M.-A.,and Morvan J.1997,Nitrification rates, ammonium and nitrate distribution in upper layers of the water column and in sediments of the India sector of the Southern Ocean.Deep-Sea Research Ⅱ.44(5):1017-1032.
    [12]Billen,G.1978.A budget of nitrogen recycling in North Sea sediments off the Belgian coast. CoastEstuarine and Coastal Marine Science.7:127-146
    [13]长江口潮滩底泥—水界面营养元素N的累积、迁移过程[D]华东师范大学,2004:1-4
    [14]宋金明,2000a.海洋底泥中的生物种群在生源物质循环中的功能.海洋科学,24(4):22-26.
    [15]宋金明,2000b.中国的海洋化学,北京,海洋出版社,1-210.
    [16]刘素美,张经,陈洪涛,2000,黄海和东海生源要素的化学海洋学,海洋环境科学,19(1):68-74.
    [17]Breyman V.M.T.,et al.Magnesium adsorption and ion exchange in marine sediments:A multi-component model.Geochim.Cosmchim.Acta,1990,54:3295-3313
    [18]吕晓霞.黄海底泥中氮的粒度结构及在生物地球化学循环中的作用[D].中国科学院研究生院(海洋研究所),2003:1-6
    [19]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应[D]华东师范大学,2004:7-12
    [20]De Bie, J.M.Starink,M.Boschker. H.etal. Nitrification in the Schelde estuary:Methodological aspects and factors influence its activity. FEMS Microbiology Ecology,2002(2):99-107
    [20]Fu Ji-ping and Zhang Jing-shen. Proc.Symosium on Paddy Soil.Science Press,Beijing.Springer-Verlag.Berlin Heidelberg New York,1981:262-268
    [21]Breyman V.M.T.,et al.Magnesium adsorption and ion exchange in marine sediments:A multi-component model. Geochim.Cosmchim. Acta,1990,54:3295-3313
    [22]Cammen,L.M.1982,Effect of particle size on organic content and microbial abundance within four marine sediments.Marine Ecology Progress Series,9:273-280
    [23]刘敏,侯立军,许世远,等.长江河口潮滩表层底泥对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406
    [24]Boatman C.D., Murray J.W. Modeling exchangeable NH4+adsorption in marine sediments:Process and controls of adsorptin. Limnology and Oceanography[J],1982,1(27):99-110
    [25]金相灿,王圣瑞,姜霞.湖泊水-底泥界面三相结构模式的初步研究[J].环境科学研究,2004,17(增):1-5
    [26]Meadows A.,Meadows P.S.,West F.J.C.,Murray J.M.H.,2000,Bioturbation,geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain,Arabian Sea.Deep-Sea Res. Ⅱ,47:259-280
    [27]Michael A.F.,Karl D.M.,Capone D.G.,2001,Element stoichiometry,New production and nitrogen fixation.Oceanography,14(4):68-77
    [28]龚春生.城市小型浅水湖泊内源污染及环保清淤深度研究[D].中国博士学位论文全文数据库,2007,(05):10-14
    [29]胡雪峰.上海市郊河流底泥氮磷释放规律的初步研究田.上海环境科学,2001,20(2):66-70
    [30]Seitzmger S.P.,1993,Denitrification and nitrification rates in aquatic sediments.Handbook of Methods in Aquatic Microbial Ecology,633-642
    [31]Hou Li jun, Liu Min, Jiang Haiyan, et al. Ammonium adsorption on tidal flat surface sediments from the Yangtze Estuary. Environmental Geology,2003, (45):72-78
    [32]胡智强,孙红文,谭嫒.湖泊底泥对N和P的吸附特性及影响因素研究.农业环境科学学报,2004,23(6):1212-1216
    [33]Stevevson, F J., et al., Nitrogenous constituents of deep sea sediments, Advances in Organic Geochemi, 1970.237-264
    [34]William F.James al.Impacts of sediment dewatering and rehydration on sediment nitrogen concentration and macrophyte growth [J].Can. J. Fish. Aquat.Sci.Vol.61,2004:528-546
    [35]吴丰昌,云贵高原湖泊底泥和水体氮、磷和硫的生物地球化学作用和生态环境效应[[J].地质地球化学,1996,(6):88-89
    [36]McBeth,I.G.Fixation of ammonia in soils,J.Agric.Res.1977,9:219-224
    [37]李庆逵.中国各主要土类固定硫铵的程度.土壤特刊乙种第四号,1938:1-7
    [38]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1977:481-490
    [39]李学垣主编,2001.土壤化学,北京:高等教育出版社.
    [40]TunneyJ.J, DetallierC.,1994.Pre Paration and eharae terizationof two distinetethyleneglye olderivatives of kaolinite.Clays clay min.,42(5):542-562
    [41]ValaerdaJ.L.etal.,2000.Enhanced thermal stability of AI-Pillared smectite modified with CeandLa.Clays Clay min,48(4):426-442.
    [42]Vali H.andHease R.,1990.Alkylammoniuon treatment of clay mineralsinultrathinseetions:Anew Method for HRTEM examination of expandablelayers.Amer.Mineral,75:1423-1450.
    [43]熊毅.土肥相融是培育肥沃土壤的基础.科学通报,1960(17),533-556
    [44]熊毅、陈家坊:提高镶肥力在农业生产中的重要意义.土集通报,1963(4),13-19
    [45]BordovsleiyO.K.,1965.Sources of organic matter in marine basine.MarineGeol.,30-31.
    [46]熊毅,1974c.土壤有机无机复合:111—有机化合物与粘粒的.土壤农化参考资料,4:1—14.
    [47]熊毅,陈家坊.土壤胶体(第三册)土壤胶体的性质.北京:科学出版社,1990.445-523.
    [48]魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,(01):56-63
    [49]翟丽华,刘鸿亮,徐红灯,等.浙江某农场土壤和沟渠底泥对氨氮的吸附研究[J].环境科学,2007,28(8):1768-1780.
    [50]朱兆良,文启孝主编.中国土壤氮素.南京:江苏科技出版社,1992:55-58
    [51]熊毅,陈家坊.土壤胶体(第三册)土壤胶体的性质[M].北京:科学出版社,1990.477-521
    [52]魏朝富,谢德体,李报国.土壤有机无机复合体的研究进展[J].地球科学进展,2003,18(3):221-227
    [53]Edwards A P,Bremner J M.Dispersion of soil particles by sonic vibra-tion[J].Journal ofSoil Sciences,1967,18:45-66.
    [54]Randall E W,Mathieu N,Powlson D S.Fertilization effect on organic matter in physically fractionated soils as studied by 13C NMR:Results from two long-term field experiments[J].European Journal of Soil Sci-ences,1995,46:557-565
    [55]崔桂芳,关连珠,孙琳,颜丽.有机质对棕壤表面电荷及NH4+吸附解吸的影响.土壤学报,2006,43(1):171-178
    [56]Martin R et al.J.Comparison of the titration and Ion adsorption methods for surface charge measurement in oxisols.Soil Sci.,1975,26:103-142
    [57]文启孝,等.土壤中的固定态铵[A].我国土壤氮素研究工作的现状与展望[M].北京:科学出版社,1986.34-35
    [58]李忠佩,等.黄淮海平原土壤中的固定态铵[J].土壤通报,1992,23(5):200-202
    [59]Drury C Fet al. Ammonium fixation, release, nitrification and immobilization in high-and low-fixing soils[J]. S.S.S.A.J.1991,55(1):121-130
    [60]樊小林,等.土娄土非代换性铵和冬小麦生长的关系[J].土壤通报,989,(6):249-251.
    [61]廖丽霞,胡红青,贺纪正.中南地区几种地带性土壤表面电荷特性与PH的关系.华中农业大学学报,2005年2月,第24卷第1期:29-32
    [62]李小刚,2000:甘肃景电灌区土壤团聚体特征研究.土壤学报.37(2):261-273
    [63]AI-KanamT, MaekenzleAF, BlenkhomH.Soilwaterang ammonia volatilization relationship with surface-applied nitrogen fertilizersolution[J].5011SeiSocAln,1991,55:1758-1769
    [64]刘永红,吴金明,董元彦.土壤表面电荷测定的两种方法之比较.士壤学报,2003,5(40):741-751
    [65]Ququette M, Hendershot W. Soil surface charge evaluation by back-titration:Ⅰ.Theory and method development. Soil Sci. Soc. Am. J.,1993,57:1202-1213
    [66]American Society of Agronomy. ASA. Chemistry in the Soil Environment. Special Publication Number 40,1981.45-61
    [67]史红星,刘会娟.无机矿质颗粒悬浮物对富营养化水体氨氮的吸附特性.环境科学,2005,26(5)68-80
    [68]Wang F.L, A lva A.K. Ammonium adsorption and desorption in sandy soils.Science Society of Am erica Journal,2000,64(5):1658-1667
    [69]Ququette M, Hendershot W. Soil surface charge evaluation by back-titration:Ⅰ.Theory and method development. Soil Sci. Soc. Am. J.,1993,57:1222-1228
    [70]BeruewsmaA. Uema.Physieat nade henlieal dasoprtionfion sinhteeleer tiealdouble Layeronh ematite. Collnlteri ceSei,1973,43-47
    [71]GsehllT, Stei mannC.Consurteetdwetinadsorfeffiuent Polishingo flagoons Res,1998,32(9):2635-2641
    [72]HingsotnF.J.nadohters.AnionAdsoprtionbyGohetietnadGibbsitel:TheORleofhteprotoninDetningAdsoprti on EnveloPes [J].5011Sei,1972,23:152-185
    [73]ShailGrayetal.ThenurtientassinlilativeePaacityofmaerlasasubsrtateineonsUrteetdwednadsystemsofrwastee rtatment[J].MatRes,2000,34(8):2178-2194
    [74]K.SkaadevnanadH.J.Bvaor.PhosPhate adsoprtion ehaar cteristies of soils slagsnad Zocliet to be used as Subsrtate sincons Urteted wetlnad sysetms[J].MatRes,1998,32(2):391-398
    [75]庞燕,金相灿,王圣瑞,等.长江中下游浅水湖泊底泥对磷的吸附特征-吸附等温线和吸附/解吸平衡质量浓度[J].环境科学研究,2004,17(增刊):16-25
    [76]Padmesha TVN,Vijayaraghavana K,Sekaranb G,et al.Batch and col-umn studies on biosorption of acid dyes on fresh water macroalga Azol-la filiculoides[J]. Journal of Hazardous Materials,2005,125(1-3):121-129
    [77]Wang S R,Jin X C,Pang Y,et al.The study on the effect of pH on phosphate sorption bydifferent trophic Lake sediments[J].J Colloid In-terfSci,2005,285:448-457.
    [78]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报,2004,2l(2):32-38.
    [79]庞燕,金相灿,王圣瑞,等.长江中下游浅水湖泊底泥对磷的吸附特征-吸附等温线和吸附/解吸平衡质量浓度[J].环境科学研究,2004,17(增刊):18-23.
    [80]RosenfeidJK.Ammoniumadsorptioninnear shore anoxic sediments[J].Limnol Oceanogr,1979,24:356-364.
    [81]Padmesha TVN,Vijayaraghavana K,Sekaranb G,et al.Batch and column studies on biosorption of acid dyes on fresh water macroalga Azol-la filiculoides[J].Journal of Hazardous Materials,2005,125(1-3):121-129
    [82]Wang S R,Jin X C,Pang Y,et al.The study on the effect of pH on phosphate sorption bydifferent trophic Lake sediments[J].J Colloid InterfSci,2005,285:448-457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700