用户名: 密码: 验证码:
“5.12”地震活动断裂水文地质特征及其对地下水系统划分的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以彭州市小鱼洞地区为例,通过氡气测量、直流充电法流速流向试验及渗水试验等手段,对“5.12”地震后小鱼洞活动断裂水文地质特征及活动断裂影响下的小鱼洞地区地下水流动系统进行了分析,研究结果表明:
     小鱼洞活动断裂带及上下两盘渗透系数及导水能力受断裂带影响均异常于原来相对均匀地下水含水(透水)介质;小鱼洞断裂及上下两盘渗透系数发生相对变化,断层的渗透系数及导水能力可能大于上下两盘,也可能小于上下两盘;小鱼洞断裂带并没有形成明显的阻水作用,上下盘之间、上下盘与断层之间、浅层地下水与深部地下水之间水力联系均较好;受小鱼洞活动断裂影响,断裂带中心位置及上下盘降雨入渗补给能力、断裂带及周围裂隙发育区地下水径流强度均发生变化;小鱼洞活动断裂改变了断裂带及其附近地下水补给、径流、排泄条件,进而改变了地下水系统的局部流场,小鱼洞断裂带起到集水廊道、导水通道的作用;
     “5.12”地震后,小鱼洞地下水流动系统存在区域地下水流动系统和局部地下水流动系统。区域地下水流动系统接受大气降水、灌溉水入渗垂向补给,以及山区基岩裂隙水侧向补给,然后以侧向近水平径流方式向河流运动;上游局部流动系统由降雨、灌溉水补给,在垂向入渗至含水层后,迅速运移直到小鱼洞断裂处,通过小鱼洞断裂的导水通道作用进入深部循环或者运移至下游;下游局部地下水流动系统,补给来源为大气降水和断裂带中水,运移至河流。总体来讲,小鱼洞地区地下水水系统相对完整,小鱼洞地区浅层地下水区域流动系统受地形的控制,主要由山前补给区向河流排泄区汇流,局部受断裂影响,形成新的补给与排泄通道。
A active fault was developed by Wenchuan earthquake in Xiaoyudong area at 12th May, 2008.Hydrogeological characteristics of the active fault and groundwater system affected by the active fault were analyzed by radon measurement test, the flow velocity of the electrical method means test and leakage test. And some conclusions were showed as follows:
     The active fault, whose permeability coefficient and hydraulic conductivity are different from the original groundwater aquifer media, is banded distribution. Permeability coefficients among the hanging wall and the footwall of the fault and the fault itself are changed by the fault. The fault permeability and conductivity of water capacity may be greater or smaller than the hanging wall and footwall. Fault in Xiaoyudong is not acting as a barrier to flow, but act as a pathway between hanging wall and footwall, between inner of the fault and the hanging wall and footwall, and between shallow groundwater and deep groundwater. However, the recharge ,flow, discharge of the groundwater in and near the fault, and finally the local groundwater flow characteristics are affected by the fault. Xiaoyudong active fault plays the role of catchment channel and pathway to flow.
     Affected by the fault after Wenchuan earthquake, groundwater system in Xiaoyudong can be divided into regional groundwater flow system and local groundwater flow systems. Regional groundwater flow system is recharged by atmospheric precipitation, vertical infiltration of irrigation, and the mountain bedrock fracture water, then the groundwater flow moves to the river horizontally. One of the local flow system is recharged by rainfall and irrigation, infiltrating vertically to the aquifer, then flow to the discharge area, the fault zone, and finally transports to deep circulation. Another local flow system is mainly recharged by the fault zone, rainfall and irrigation water, and discharges to the stream. Overall, the shallow groundwater flow system in Xiaoyudong area is affected by topography, it transports mainly from higher terrain to lower terrain, and then discharges into the river, a new recharge and drainage channel was developed in original groundwater system.
引文
[1]王根绪,程根伟.地震灾区重建中有关水文与水环境问题的若干思考[J].山地学报,2008, 26(4):385-389.
    [2]Person M, Raffensperger J, Ge S, Garven G. Basin-scale hydrological modeling[J]. Review of Geophysics. 1996, 34(1):61-68.
    [3]Ge S, Bekins B, Bredehoeft J, Brown K, Davis E E, Gorelick S M, Henry P, Kooi H, Moench A F, Ruppel C, Sauter M, Screaton E, Swart P K, Tokunaga T, Voss C I, Whitaker F. Fluid Flow in Sub-seafloor Processes and Future Ocean Drilling[J].EOS. 2003, 84(16):145-152.
    [4]吴慧山,林玉飞,白云生等.氡测量方法与应用[M].北京:原子能出版社,1995.
    [5]刘菁华.活断层上覆盖层中氡迁移的数值模拟及反演拟合[D].吉林:吉林大学,2006.
    [6]王晓丽.活断层上覆盖土壤层中氡气运移正演问题研究[D].吉林:吉林大学,2007.
    [7]贾化周等.地震地下水手册.北京:地震出版社,1995.
    [8]Israel H. and Bjornsson S. Radon (Rn-222) and thoron (Rn-220) in soil air over faults [J]. Z. Geophys, 1967, 33:48-64.
    [9]King C.-Y. Radon emanation on San Andreas fault [J]. Nature, 1978, 271:516-519.
    [10]King C.-Y. Gas geochemistry applied to earthquake prediction: an overview[J]. J. Geophys. Res, 1986, 91:12269-12281.
    [11]King C.-Y. (1990) Gas-geochemical approaches to earthquakeprediction, Proc. International Workshop on Radon Monitoring in Radioprotection, Environmental Radioactivity and Earth Sciences ITCP, Triest, Italy, 13-14 April 1989 (eds. L. Tommasino, G. Furlan, H. A. Khanand M. Monin), pp. 244-274. World Press, Singapore.
    [12]King C.-Y. Impulsive radon emanation on a creeping segment of the San Andreas fault California [J]. Pure Appl. Geophys, 1985, 122: 340-352.
    [13]King C.-Y., Zhang W. and King B. S. Radonanomalies on three kinds of faults in California [J]. Pure Appl. Geophys, 1994,141:111-124.
    [14]Chi-Yu King, Bi-Shia King and W. C. Evans, and Wei Zhang. Spatial radon anomalies on active faults in California [J]. Applied Geochemistry, 1996, 11:497-510.
    [15]Dikun A. V., Korobeynik V. M. and Yanitskiy . Some indications of existence of transcrustal gas flow [J]. Geochem. Int, 1975, 12: 73-78.
    [16]Voitov, G.I..Monitoring of atmospheric radon in soils of seismically active Central Asia [J]. Izv. RAN, Fizika Zemli, 1998a, No. 1: 27-38.
    [17]Voitov, G.I.. Predicted radium and radon fields of subsurface water-gas systems of Central Asia [J]. Izv. RAN, Fizika Zemli, 1998b, No. 7: 72-84.
    [18]Guerra, M., Lombardi, S.. Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy) [J]. Tectonophysics , 2001, 339:511-522.
    [19]Dehandshutter, B., Bobrov, V.A., Hus, R., Astakhov, N.E., Androsova, N.V.,Popov, Yu.P.. Radon anomalies as tracers of fault activity (West Sayan fault zone, northern part of Lake Teletskoye, Gorny Altai) [J].Geologiya i Geofizika (Russian Geology and Geophysics), 2002,43 (2):128-141.
    [20]Moussa, M.M., El Arabi, A.-G.M.. Soil radon survey for tracing active fault: a case study along Qena-Safaga road, Eastern Desert, Egypt [J]. Radiation Measurements, 2003, 37 (3):211-216.
    [21]Viek Walia, T.C. Su, C.C. Fu, et al.. Spatial variations ofradon and helium concentrations in soil-gas across the Shan-Chiao fault, NorthernTaiwan [J]. Radiation Measurements, 2005, 40: 513-516.
    [22]Inceoz, M., Baykara, O., Aksoy, E., Dogru, M.. Measurements of soil gas radon in active fault systems: A case study along the North and East Anatolian fault systems in Turkey [J]. Radiation Measurements, 2006, 41, 349–353.
    [23]许秋龙,王道,张洪斌等.应用断层气氡进行地震检测预报[J].内陆地震,1997,11(2):160-167.
    [24]王瑞平,王建新.阿克苏断层气氡资料映震能力及检验[J].内陆地震,2001,15(3):275-280.
    [25]陈恒龙,翟炳松,侍继成等,炎仔庐断裂带宿迁-泅洪段的土氡测量[A].汪成民,李宣瑚,魏柏林.断层气测量在地震科学中的应用[C].地质出版社,1991,131-135.
    [26]裘凯先,徐源.用α径迹法研究鲜水河地震断层土层中氡浓度变化[J].四川地震,1987,(03):13-20.
    [27]李志中,赵长英.大同侏罗系煤盆地遥感解译断层的氡气测量验证研究[J].同煤科技,1994,(03):22-26.
    [28]王艳,李德成.库尔勒断层氡气观测及观测资料分析初探[J].内陆地震,1998,12(1):73-77.
    [29]李德成.库尔勒断层氡气观测誓言研究[J].内陆地震,1999,13(3):238-242.
    [30]刘西林,华爱军.地震监测预报研究[A].汪成民,李宣瑚,魏柏林.断层气测量在地震科学中的应用[C].地质出版社,1991,136-143.
    [31]张晚霞,向宏发,李如成.夏殿隐伏断裂土壤气氡分布特征的初步研究[J].西北地震学报,1995,17(2):46-50.
    [32]孙如波.五大连池火山区土氡分布特征与断裂关系的初探[J].东北地震研究,1997,13(03):73-77.
    [33]张骏,陈晓东,程谦恭等.温泉水库坝址区断裂活动性氡气测量成果分析评价[J].高原地震,1996,8(3):22-29.
    [34]孟广魁,何开明,班铁等.氡、汞测量用于断裂活动性和分段的研究[J].中国地震,1997,13(1):43-51.
    [35]黄戌辰.断层气氡灵敏度“穴位”的试验研究[J].华北地震科学,1997,15(4):50-56.
    [36]刘太平,史良骥.断层土壤氡观测方法的综合应用[J].四川地震,1998,(3):59-64.
    [37]刘江平,周斌,李庆红.氡(Rn)射气测量在胜利油田隐伏断裂研究中的应用[J].华北地震科学,2004,22(1):42-45.
    [38]张平安.东莞某工程场地隐伏断裂α卡氡气勘测技术应用[J].西部探矿工程,2006,(4):118-120.
    [39]吴华平,郭良田,常郁等.氡断层气测量在佛山西淋岗活断层探测中的应用研究[J].华南地震,2009,29(4):108-113.
    [40]任明甫.利用断层气(土气氡)探测琼北地区的断裂活动性[J].华南地震,2000,20(1):66-70.
    [41]张骏,高秀君,李侠等.霍州矿区隐伏断裂(带)活动性氡气测试成果解译分析[J].高原地震,2000,12(1):16-21.
    [42]张骏,李西建,邹艳琴等.北秦岭地带断裂活动性氡气测试成果分析评价[J].工程地质学报,2001,9(1):81-86.
    [43]王亮,赵均海,张骏等.氡测试技术在秦岭造山带隐伏断裂活动性研究中的应用[J].广西大学学报(自然科学版),2007,32(增刊):134-137.
    [44]李德成.自动测氡仪氡探头灵敏度对断层气氡测值的影响[J].内陆地震,2000,14(3):286-288.
    [45]李桂清,徐婉君,彭淑丽等.濮阳地震台断层土壤气采气率对氡观测结果影响的探讨[J].华北地震科学,2009,27(2):34-38.
    [46]李桂清,吴学瑜,刘兆友等.断层土壤气采气率对气氡观测结果影响的实验研究[J].华北地震科学,2010,28(2):32-36.
    [47]独仲德.几种地下水流向流速测定法的分析[J].地下水,1990,(8):165-168.
    [48]杨成田.专门水文地质学[M].北京:地质出版社,1981.
    [49]杨文升,郑继民,王健民等.用充电法测定地下水流向流速的试验结果[J].地球物理勘探,1958,(1):27-30.
    [50]罗时双.采用荧光素染色试验测定岩溶矿区地下水流向、流速[J].煤炭科学技术,1974,(5):35.
    [51]杜国平,郑喜莲,王律等.航空定向技术在地下水流速流向中的应用研究[J].南京航空航天大学学报,2000,32(4):483-486.
    [52]Hotzl H, Werner Editors A. Tracer hydrology. A. A. Balkema Publishers, 1992.
    [53]J.Malosze et al.. Nuclear Techniques in Groundwater Pollution Research, IEAE, Vienna, 1980.
    [54]郑汝宽,吴增新,王秉忱等.应用放射性示踪剂测定地下水流速与弥散系数[J].勘察科学技术,1985,(3):1-5.
    [55]DZ/T 0186-1997,直流充电法技术规程[S].
    [56]李玉葆,金实麟,杜晓军等.单孔流速流向测量技术在煤矿防治水中的初步应用[J].物探与化探,1993,17(1):76-77.
    [57]葛蔭萱.电测地下水流向和流速[J].中国水利,1956,(1):43-44.
    [58]葛蔭萱.用电位计测定地下水的流向和流速[J].中国地质,1956,(12):24-25.
    [59]山西省农业建设厅农田水利局.利用充电法测定地下水的流速流向[J].中国农村水利水电,1960,(10):28.
    [60]王惠义,聂宏谦.对测地下水流速流向方法的讨论[J].勘察科学技术,1984,(3):47-52.
    [61]刘洪福,许惠义,程小平.应用充电等位线法在单孔中测试地下水流速流向上的经验[J].山西矿业学院学报,1991,9(2):146-149.
    [62]张道清,王润潮.环形自然电场法和充电法在确定地下水流速和流向中的应用[J].水文地质工程地质,1992,19(4):56-57.
    [63]王玉珏.水文物探方法测定地下水流速流向及其效果[J].西部探矿工程,2006,(3):124-125.
    [64]谷现平,聂新恕,周江等.利用高密度电法仪探测地下水流速流向[J].中国煤炭地质,2010,22(增刊):83-85.
    [65]A. C. Barnicoat, H. A. Sheldon, A. Ord. Faulting and fluid flow in porous rocks and sediments: implications for mineralisation and other processes [J]. Miner Deposita, 2009, 44:705-718.
    [66]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.
    [67]Heywood C E, Galloway D L, StorK S V. Ground displacement caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque. New Mexico, U S Geological Survey Water-Resources Investigations Report WRI 02-4235, 18.
    [68]Morrow C, Shi L Q, Byerlee J. Permeability of fault gouge under confining pressure and shear stress [J]. J Geophys Res, 1984, 89:3193-3200.
    [69]Seront B, Wong F T, Caine J S, Forster C B, Bruhn R L, Fredrich J T. Laboratory characterization of hydromechanical properties of a seismogenic mormal fault system [J]. Journal of Strucural Geology, 1998, 20(7):865-881.
    [70]Antonellini M A, Aydin A. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution [J]. AAPG Bulletin, 1995, 79:642-671.
    [71]Mozley P S, Goodwin L B. Patterns of cementation along a Cenozoic normal fault: a record of paleoflow orientations [J]. Geology, 1995, 23:539-542.
    [72]Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure [J].Geology, 1996, 24:1025-1028.
    [73]Heynekamp M R, Goodwin L B, Mozley P S, Haneberg W C. Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for fault-zone permeability and fluid flow. In: Haneberg W C, Mozley P S, Goodwin L B(eds). Faults and Subsurface Fluid Flow in the Shallow Crust [J]. AGU Geophysical Monograph, 1999, 113:27-50.
    [74]Randolph, L., Johnson, B.. Influence of faults of moderate displacement on groundwater flow in the Hickory sandstone aquifer in central Texas [J]. Geological Society of America Abstracts with Programs, 1989, 21:242.
    [75]Smith, L., Forster, C. B., and Evans, J. P.. Interaction of fault zones, fluid flow, and heat transfer at the basin scale, in Hydrogeology of permeability environments [J]. International Association of Hydrogeologists, 1990, 2: 41-67.
    [76]Scholz, C. H.. The mechanics of earthquakes and faulting [M].Cambridge: Cambridge University Press, 1990.
    [77]Caine, J. S., Forster, C. B., and Evans, J. P.. A classification scheme for permeability structures in fault zones [J]. Eos(Transactions, American Geophysical Union), 1993, 74:677.
    [78]Forster, C. B., Goddard, J. V., and Evans, J. P.. Permeability structure of a thrust fault, in The mechanical involvement of fluids in faulting [R]. U.S. Geological Survey Open-File Report 94-228, 1994, p. 216-223.
    [79]Antonellini, M., and Aydin, A.. Effect of faulting on fluid flow in porous sandstones: Petrophysicial properties [J]. American Association of Petroleum Geologists Bulletin, 1994, 78: 355-377.
    [80]Newman, J., and Mitra, G.. Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennessee [J]. Geological Society of America Bulletin, 1994, 106:1267-1280.
    [81]Goddard, J.V., and Evans, J. P.. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. [J]. Journal of Structural Geology, 1995, 17:533-547.
    [82]Peter S.Mozley, Laurel B.Goodwin. Patterns of cementation along a Cenozoic normal fault: A record of paleoflow orientations [J]. Geology,1995,23(6):539-542.
    [83]Roberts,J.L. Introduction to geological maps and structures [M]. Pergamon Press. Oxford. 1982.
    [84]钱红.四川断裂活动的区域性差异及其与区域地壳运动的关系[J].地震研究,1995,19(3):49-55.
    [85]李德荣,杨书安.试论不同力学性质的断裂构造的富水部位及富水性[J].地质科学,1978,(03):220-229.
    [86]肖楠森.新构造裂隙水[J].水文地质工程地质,1981,8(4):22-25.
    [87]肖楠森.新构造分析及其在地下水勘查中的应用[M].北京:地质出版社,1986.
    [88]刘光亚.基岩蓄水构造[J].石家庄经济学院学报,1978,(01) :19-39.
    [89]刘光亚.基岩地下水[M].北京:地质出版社,1979.
    [90]廖资生.基岩裂隙水的富集规律[J].吉林大学学报(地球科学版),1976,(02):45-57.
    [91]廖资生.基岩裂隙水的一些基本理论问题[J].吉林大学学报(地球科学版),1978,(03):85-96.
    [92]中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009.
    [93]刘光亚.基岩蓄水构造的理论与实践[J].石家庄经济学院学报,1981,(04):50-56.
    [94]魏宏兴.枣庄地区构造断裂与地下水关系[J].煤田地质与勘探,1981,(02):25-29.
    [95]王荣富.帮水峪压扭性断裂地下水赋存特征[J].石家庄经济学院学报,1982,(04):77-80.
    [96]左建,孔庆瑞.下生木营子——车坊压性断裂地下水赋存特征[J] .沈阳农业大学学报,1986,17(04):49-52.
    [97]刘燕学.峰峰煤田煤层底板强度及断裂构造控水作用[J] .河北煤炭,1998,(03):19-20.
    [98]刘树林,李宗彦,杨建斌等.银家沟硫铁矿断裂构造控水分析与水害防治[J].地下水, 2009,31(04):139~141.
    [99]刘大野,刘民娟,唐学民等.平庄盆地NNE、EW向断裂构造对地下水的控制特征[J].中国煤田地质,2004,16(05):25-27.
    [100]尹会永,魏久传,李子林等.潘西煤矿断裂构造突水机制探讨[J].山东科技大学学报(自然科学版),2007,26(01):30-33.
    [101]李玉畅.旱平川断陷盆地控水构造及地下水赋存规律[J].中国煤田地质,2007,19(3):34-36.
    [102]罗立志,李景明,刘树根等.中国板块构造和含油气盆地分析[C].北京:石油工业出版社,2005.
    [103]R.A.弗里泽,J.A.彻里(吴静方译).地下水[M].北京:地震出版社,1987.
    [104]沈照理,刘光亚,孙世雄等.水文地质学[M].北京:科学出版社,1985.
    [105]任天培,彭定邦,周柔嘉等.水文地质学[M].北京:地质出版社,1986.
    [106]卢金凯.基岩裂隙水的野外调查方法[M].北京:地质出版社,1985.
    [107]庄培仁,常志忠.断裂构造研究[M].北京:地震出版社,1996.
    [108]地质矿产部水文地质工程地质技术方法研究队.水文地质手册[K].北京:地质出版社,1978.
    [109]王颂禹.试论断层分类[J].上海地质,1997,(02):50-53.
    [110]刘玉海.活断层工程地质分类及其评价[J].西安地质学院学报,1987,9(4) :40-47.
    [111]周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2007.
    [112]四川省地质局水文工程地质大队.1:20万区域水文地质普查报告(灌县幅)[R].成都:四川省地质局,1978.
    [113]四川省地质局第二区域地质测量队.1:20万区域地质普查报告(灌县幅)[R].成都:四川省地质局,1976.
    [114]中国地质环境监测院.5·12汶川地震典型地质灾害影像研究[M].北京:地质出版社,2009.
    [115]林茂炳,苟宗海,吴山等.龙门山地质考察指南[M].成都:成都科技大学出版社,1997.
    [116]张军龙,申旭辉,徐岳仁等.汶川8级大地震的地表破裂特征及分段[J].地震,2009,29(1):149-163.
    [117]徐锡伟.5.12汶川8.0级地震地表破裂图集[M].北京:地震出版社,2009.
    [118]中国地震局监测预报司.汶川8.0级地震科学研究报告[M].北京:地震出版社,2009.
    [119]罗艳.应用充电法评价地震活断层的水力学特征─以彭州市小鱼洞断裂为例[D].成都:成都理工大学,2010.
    [120]章晔,华荣洲,石柏慎.放射性方法勘察[M].北京:原子能出版社,1990.
    [121]贾文懿,唐红,方方等.放射性勘察工作手册[M].北京:地质出版社,1993.
    [122]陈立,张发旺,余秋生.宁南地区地下水系统划分方法研究[J].南水北调与水利科技,2007,5(5):97-99.
    [123]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700