用户名: 密码: 验证码:
基于热流固耦合注水地层及套管损坏分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油开采和钻井过程中,渗流、应力以及温度的相互耦合作用是影响油田开采的重要因素,三者的相互作用和相互关系构成了热流固耦合的基本关系。近年来,我国油田套损井数呈急剧上升趋势,像大庆油田、吉林油田和胜利油田等都发生了不同程度的套损。据统计,90 %以上的套损问题与现代地应力、流体压力和温度有直接或间接的关系,套管井损坏问题是提高原油产量以及降低成本的主要问题。因此研究注水地层流体压力和地应力以及温度对于防止套损具有重要的现实意义。注水地层在热—流—固耦合的过程中,温度、液体、岩层三者之间通过压强、位移、时间建立了一种耦合的关系。温度与流体压力导致岩层变形;岩层变形与流体渗流导致温度变化;岩层变形与温度导致储渗特性和孔隙流体压力的改变从而影响流体渗流。
     本文利用循序渐进的方法,从二维弹性和弹塑性以及三维弹性和弹塑性出发,综合研究注水地层在热流固耦合作用下的变形情况。将渗透率、孔隙度、密度等这些量看成是随时间和压强变化的物理量,在连续性方程、能量方程和运动方程的基础上,建立了热流固耦合的数学模型。即变形场和温度场耦合作用下的渗流场控制方程;渗流场和温度场作用下的变形方程;渗流场和变形场作用下的温度控制方程。在此基础上,推导了热流固耦合问题的弱解形式,并通过有限元软件,对二维和三维不同情况下热流固耦合注水地层的变形情况进行了模拟和仿真。仿真的结果表明:油田套管的变形与损坏和注水地层的热流固耦合作用有着密切的关系;由于在注水驱油过程中,在盖层与油层的交结面处地应力变化最大,因此在此处发生套损的概率最大;对于套管本身,射孔段是薄弱环节,也是地应力集中的所在,因此,此处也是易发生套管损坏。论文最后通过对套管模型变形的分析,提出了油田套管的设计缺陷以及防止套损的措施。
In oil exploration and drilling process,seepage, stress and temperature are the important factor influencing oilfields mining, whose interaction and the relationship between the thermal-hydrological-mechanical(THM) coupling constitute the basic relations. In recent years, the number of casing damage well is rising sharply, like daqing oilfield, jilin oilfield and shengli oilfield, etc have happened to the casing damage. According to statistics, 90% above of casing damage problem has a direct or indirect relation with modern geostress. Based on the research of the casing well, we know that the occurrence of casing damage has the a relation with rock, fluid and temperature interaction. So reserching the fluid pressure and stress and temperature of the water injection formation is quite important to prevent casing damage. So the water injection formation will be quite important in the process of THM coupling.
     In this paper, from 2-dimensional elasticity and plasticity and 3d elastic and elastoplastic, we research the formation in water comprehensivly. We see the permeability and porosity, density and so on as the physical quantities which change with the time and pressure. On the basis of the equation of continuity, energy equation and motion equation , we establish the mathematical model of THM coupling. Namely: the seepage control equations under the distortion field and temperature field; the deformation equation under the seepage field and temperature field; the temperature control equations under the seepage and distortion field. On this basis, the paper derives the form weak solution of THM coupling problem. We simulate and simulate the deformation of water injection formation for 2 dimension and 3 dimension. The results of simulation indicate, the casing deformation and damage have a close relationship with the water injection formation of THM coupling effect; In the process of water flooding, because the change of surface stress is the biggest near the cap rock and reservoir, therefore in the probability of casing damage happens here is the largest, so the probability of casing damage is the most. For casing itself, the perforating segment is the weak link and the concentration of geostress. Through the analysis of casing deformation, this paper proposes design flaws and preventing measures for casing damage.
引文
[1]薛世峰,仝兴华,岳伯谦等.地下流固耦合理论的研究进展及应用[J].石油大学学(自然科学版),2000,24(2):110~111.
    [2]吴会超,邬平波.基于流固耦合原理的罐车模态分析[J].铁道车辆,2010,48(10): 9~10.
    [3]刘晓旭,胡勇等.流固全耦合新模型研究[J].断块油气田,2006,13(3):45~46.
    [4]裴吉,袁寿其,袁建平等.流固耦合作用对离心泵内部流场影响的数值计算[J].农业机械学报,2009,40(12):108~109.
    [5] Jing L,Tsang C.F.,Stephansson O,.DECOVALEX-an inernational cooperative reserche project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J].Int.J.ROCK.Mech.Min.Sic.& Geomech. Abstr, 1995, 32(5):389-39.
    [6] Lewis R W.Scherfler B A.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M].Chichester Wiley,1998,230-270.
    [7] Mctigue D E,King S D.Coupled temerature/capillary potential variations in unsaturated siol[J].J.Eng.Mcch,1991,117(11):2475-2479.
    [8]薛强,梁冰,王起新.多场耦合理论在污染物运移过程中的应用[J].岩石力学与工程学报,2002,21(2):2318~2319.
    [9]刘干斌,郑荣跃,卢正.爆轰荷载作用下球空腔热流固耦合动力响应[J].岩土力学, 2010,31(39):19~921.
    [10]熊伟,田根林,黄立信等.变形介质多相流动流固耦合数学模型[J].水动力学研究与进展,2002,17(6):771~773.
    [11]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):270~273.
    [12]凌涛,何银达,吴云才等.东河1油田套损研究与防治[J].钻采工艺,2009,93~93.
    [13]许涛,殷桂琴,张公社.高压注水引起套损的机理研究[J].断块油气田,2007, 14(1):70~71.
    [14]王德良.中原油田套管损坏分析及预防[J].石油钻探技术,2003,3(12):37~38.
    [15]董平川,郎兆新,徐小贺.油井开采过程中油层变形的流固耦合分析[J].地质力学学报,2000,6(2):7~9.
    [16]韩建增.套管抗挤强度研究[J].2001,53~57.
    [17]李凯,孙可明,吴迪.热流固耦合作用下冻土路基变形规律研究[J].科学技术与工程,2009,9(24):7400~7401.
    [18]黄涛,杨立中.工程岩体地下水渗流-应力-温度耦合作用数学模型的研究[J].西南交通大学学报,1999,34(1):12~14.
    [19]许鹤华,张建.渗流场及其相关场耦合的数学模型[J].中国海上油气, 1999, 13(4):298~299.
    [20]唐世斌,唐春安,李连崇.准脆性介质热流固及损伤耦合效应的数值模型[J].水力学报,2010,41(10):1158~1159.
    [21]周江.岩体中渗流热应力耦合作用的理论研究[J].山西矿业学院学报,1995,13(1): 77~79.
    [22]杨桂通.弹性力学[M].北京:高等教育出版社,1998,34~40.
    [23]刘善利.饱和岩体热流固耦合模型研究[J].2000,23~25.
    [24]张洪济.热传导理论[M].北京:高等教育出版社,1992,13~16.
    [25]翟云芳.渗流力学[M].石油工业出版社,2003,13~22.
    [26]刘成仕,杨化通.多孔介质的胖分形渗流模型及其分形维数[J].大庆石油学院学报, 2000,24(1):113~115.
    [27]李璗,赵卫国.多裂缝渗流场的边界元解法[J].重庆大学学报, 2000,32: 58~61.
    [28]程时清,张盛宗.径向非均质油藏低速非达西渗流试井分析[J].重庆大学学报, 2000,S1:67~69.
    [29]刘月田,葛家理.各向异性圆形地层渗流的解析解[J].石油大学学报(自然科学版), 2000,13(2):67~71.
    [30]周娟,薛惠.裂缝油藏水驱油渗流机理[J].重庆大学学报,2000,23:19~22.
    [31]盛金昌,速宝玉.裂隙岩体随机渗流模型及数值分析[J].重庆大学学报,2000, 31(6):23~26.
    [32]赵永富,田恩龙,张国栋.达西定律与渗流控制[J].黑龙江水利技,2008,36(4): 65~67.
    [33]陈明祥.弹塑性力学[M].北京:科学出版社,2007,230~241.
    [34]刘建军,刘先贵等.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报, 2000,23(增刊):158~160.
    [35] Zienkiewicz O C and Shiomic T. Dynamic behavior of saturated porous media The general Biot formulation and its numerical solution. Int .J. Numer. Anal. Methods Geomech. 1985,8:71-96.
    [36] Gambolati G.Equation for One-Dimensional Vertical Flow of Groundwater I: The Rigorous Theory[J]. Water Resource Res. 1973, 9(4): 1002-1028.
    [37] Maganus Wangen. A finite element formulation in lagrangianco-ordinates for heat and fluid in compacting sedimentary basins.Int.J.Num.Anal Methods Geomech,1993, l17(3): 401-432.
    [38]翟云芳.渗流力学[M].北京:石油工业出版社,2003,13~20.
    [39]胡云进,速宝玉,詹美礼.裂隙岩体非饱和渗流研究综述[J].河南大学学报,2000, 28(l):40~46.
    [40]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000, 22(3):333~343.
    [41]王颖轶,张宏君,黄醒春等.高温作用下大理岩应力-应变全过程的试验研究[J].岩石力学与工程学报,2002,21(2):2346~2349.
    [42]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991, 69~94.
    [43]林睦曾.岩石热物理学及其应用[M].重庆:重庆大学出版社,1991.
    [44]肖建庄,宋志文,宋志文.混凝土导热系数试验与分析[J].建筑材料学报,2010,13(2):18~21.
    [45]邓朝晖.建筑材料导热系数的影响因素及测定方法[J].工程质量,2008,15~18.
    [46]原喜忠,李宁,赵秀云等.非饱和(冻)土导热系数预估模型研究[J].岩土力学, 2010,31(9):2690~2694.
    [47]李春辉,张金涛.导热系数测量系统的数值模拟[J].计量学报,2008,29(4): 321~323.
    [48]髙青,余传辉,马纯强等.地下土壤导热系数确定中影响因素分析[J].太阳能学报,2008,29(5):582~585.
    [49]肖衡林,吴雪洁,周锦华.岩土材料导热系数计算研究[J].路基工程,2007,54~56.
    [50] LIWenzhe,SUN Yong FU Tianzhi and ZHANG Hongqiong. Modeling and Kinematics Simulation of Hydro-mechanical Split Path Steering Device of Tracked Vehicle Based on CATIA. Journal of Northeast Agricultural University,2008,15(1):75-78.
    [51] MURPHY H D.Energy extraction from fractured geothermal reservoirs in low -permeability crystalline rock[J].J Geophys Res,1981,86(B8):7145-7158.
    [52] Rutqvist J,Borgesson L,chijimatsu M,et al.Thermohy-dromechancis of Partially saturated geological media:governing equations and formulation of four finite element models[J]. Int J Rock Mech Min Sci,2001,38(1):105-127.
    [53] CHEN S S.Out-of plane vibration and stability of curved tubes conveying of Applied Mechanics,1973,40:362-368.
    [54] Ghassemi A.Diek A.Poro-thermoelasticity for swelling shales[J].Journal of Petroleum Science and Engineeing,2002,34:123~135.
    [55]徐泽民,张塞,姚军辉.应力场与渗流耦合分析在油气预测中的应用[J].新疆石油地质,1996,17(3):207~210.
    [56]刘从彪,刘翔鹊.油藏三维地应力场数学模型的建立[J].石油勘探与开发,1994, 21(4):48~53.
    [57]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994, 13(4):299~308.
    [58] LARRY S.K,FUNG. A coupled geomechanic-multiphase flow model for analysis of insitu recovery in cohesionless oil ands[J], The Journal of Canadian Petroleum Technlogy, 1992,31(6): 56-67.
    [59]杜永军,杜良.注水地层的变形对套管损坏的影响[J].科学技术与工程,2008, 8(23):6213~6214.
    [60]周应麟,邱喜华.状岩层围岩隧道稳定性的探讨[J].地下空间与工程学报,2006, 2(2):346~347.
    [61]刘建中,刘小立,李正平等.套管变形的复合力学模型[J].石油学报,2001,22 (3): 75~80.
    [62]李彬,石丽萍,张成良.提高小套管井钻扫工艺技术[J].内蒙古石油化工,2010, 97~98.
    [63]陈明.普光气田套管变形原因分析及技术对策[J].特种油气藏,2010,17(6): 111~112.
    [64]潘志勇,宋生印,上官丰收.套管外表面均匀磨损和偏磨后的挤毁试验研究[J].石油机械,2010,38(2):4~5.
    [65] Clinedinst W O.A national expression for critical collapsing pressure of pipe under pressure[J].Drilling and production practice,1939.
    [66] Holmquist&Nadai J I..A theoetical &experimental approach to the problem of collapse deep-well casing.Drilling and production practice,1939.
    [67]萨尔奇索夫.关于套管的极限强度[J].石油经济,1961.
    [68]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997, 93~97.
    [69]陈华彬,唐凯,任国辉.超深井射孔管柱动态力学分析[J].测井技术,2010,34(5): 488~489.
    [70]窦益华,徐海军,姜学海等.射孔测试联作封隔器中心管损坏原因分析[J].石油机械,2007,35(9):114~115.
    [71]孙玉学,肖昌,解素伟.分层射孔调剖技术在大庆油田采油六厂的应用[J].科学技术与工程,2010,10(36):9067~9068.
    [72]王云,刘瑞莹,佘治成.利于储层保护的射孔工艺技术[J].特种油气藏,2010, 17(6):114~116.
    [73]汪享林,龚雪峰,马童辉.疏松砂岩油藏水平井不均匀射孔技术探讨[J].特种油气藏,2010,17(3):113~115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700