用户名: 密码: 验证码:
芦岭煤矿10煤层顶板特征及回采覆岩破坏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层开采后将引起岩层移动与破断,并在岩层中形成采动裂隙,这种裂隙为瓦斯提供了流通通道,瓦斯积聚到一定浓度就会对煤正常安全生产造成影响。瓦斯防治一直是矿山安全生产工作的重中之重。
     预防瓦斯突出措施按作用范围来划分,有区域性措施和局部性措施,其中开采保护层是最有效、最经济的区域性预防瓦斯突出的技术措施。保护层开采后会引起被保护层应力释放,透气性增大,这样煤层中富集的吸附态的瓦斯就会被解放出来,瓦斯压力也将显著降低,这样就可以有效防止煤与瓦斯突出事故发生由“三带”理论可知,岩层在采动扰动条件下自下而上会产生冒落带、裂隙带、弯曲下沉带,其中瓦斯流通通道主要分布在裂隙带内,所以往往在裂隙带内设置瓦斯抽排巷拦截抽放巷上部煤层流入的瓦斯以及开采层采空区的瓦斯,因此在开采保护层的基础上配合瓦斯抽排巷将更为有效地抽排煤层解吸出来的瓦斯。
     芦岭煤矿位于安徽省宿州市东南20余公里处,该矿井年产原煤近230万吨。历年来瓦斯鉴定结果为突出矿,尤其是8煤层瓦斯涌出量大,煤与瓦斯突出危险性大。芦岭煤矿距离8煤层底板50m左右的10煤层是8煤层的下保护层。然而,10煤层在井田范围内为不稳定煤层,厚度变化较大,顶板岩性岩相变化大,煤层间距变化较大,这些都直接影响着10煤层开采覆岩变形及破坏特征,也必然影响着被保护煤层的渗透性及卸压程度。此外10煤层开采覆岩变形及破坏特征是10煤层开采上抽巷及上隅角瓦斯抽放孔的布置参数的选择的重要依据。因此研究10煤层开采覆岩变形及破坏特征对煤矿安全高效生产具有重要意义。
     本文结合研究区沉积环境和10煤层赋存条件,从矿井地质构造研究和10煤层顶底板岩石特征及组合特征入手,利用模糊综合评判方法对10煤层顶板进行工程地质分类分区。根据井下钻孔岩芯力学性质测定数据,将开采参数和地质构造作为边界条件,利用RFPA软件分析受采动影响下岩层的破断规律、破断形态、工作面推进过程中上覆岩层的来压特点、煤壁支承压力的变化规律、地层水平移动和垂直下沉变形特征,预测10煤层开采过程中不同区域相应顶板覆岩类型变形及破坏情况。
     本文最终将研究区顶板变形破坏类型在平面上分为4个区,并预测不同分区内顶板裂隙发育高度在20~60m不等。
The excavation of coal causes the deformation and destruction of overlying strata and creats fractures which offer channels of gas.The concentration of gas accumulate to some extent,as can induce an affect on the safety of coal mining work.How to avoid the destruction of gas is the most important part of coal mine safety production.
     According to the sphere of action,the measures of preventing of gas can be divided into regional and local measures.Excavtion of protecting strata is the most efficient and economic regional method compared to the other measures.The excavation of protecting strata can relieve the stress inside the proected strata and make it gas permeable,so that the adsorbed gas accumulated in the coal seam will be released and the pressure of gas can be reducted considerably,as can prevent gas outburst.As we all know from the "Three Area" Theory that during the exavation,there are caving zong,freatured zone and bentand susidised zone in the strata.The gas circulating channel mainly distribute in the freatured zone,where the gas exhaust laneway are usually installed to intercept the gas from the upper coal seam and the goaf of the mined bed.So the combination of protecting strata and gas exhaust laneway will be more effective in contracting the gas desorbed from the coal seam.
     Luling coal mine located about 20 kilometers away in the southeast of Suzhou in Anhui.Its output is up to 2,300,000 tons and it is identified as high-risk gas outbust coal mine,expecially in its 8th coal seam.The 10th coal seam which is about 50m away below the 8th coal seam is specified as the protecting strata.However, the spread of the 10th coal seam whose thcikness, the lithological character and petrofacies of its roof and the distance between 8th coal seam and it is variable is untable.The characteristics discussed above all affect the deformation and desruction of 10th coal seam and the permeablilty and the degree of pressure relief of protected strata.Moreover,the deformation and destruction characteristic of excavated strata is the foundation of identifying the installing parameters of upper gas drainage laneway and upper corner gas drainage hole.So the study on the deformation and destruction characteristic of overlying strata during the excavation of the 10th coal seam is very important to coal mine safe and efficient production.
     This paper considered sedimental environment of the studying area and the occurance condition of 10th coal seam,started with studying geologic structures and the characteristics of rock and combination of the overlying and underlying strata of 10th coal seam,divided the overlying strata of 10th coal seam into some engineering geologic zones through the fuzzy comprehensive envaluation method,took the excavating parameters and geologic structure as boundary conditions to analysis the desruction discipline and pattern,characteristic of pressure of overlying strata,regularity for change of coal wall support pressuer,deformation characteristics of strata horizontal movement and vertical subsidence through RFPA on the base of the determination of mechanic datas from drill cores,which comes from studied strata,finally predicted the deformation and destruction of relevant pattern of underlying strata in different zones.
     Finally, this paper divided the researching area into four parts in horizontal plane according the characteristic of the deformation of underlying strata and predict that the height of fracture zone developed in the underlying strata of different districts is between 20-60m.
引文
[1]张文江等.煤矿重大事故控制研究的现状和方向[J].山东科技大学学报(自然科学版),2006,25(1):6
    [2]淮北矿业集团芦岭煤矿发生特大瓦斯爆炸事故[J].煤炭企业管理,2003(5):22
    [3]严涛.开采下解放层的瓦斯处理[J].煤矿安全,2002,33(10):13
    [4]彭苏萍,孟召平.矿井工程地质理论与实践[M].第1版.北京:地质出版社,2002:228-229
    [5]钱鸣高,石平五.矿山压力与岩层控制[M].第1版.徐州:中国矿业大学出版社,2003:68-69
    [6]钱鸣高等.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225
    [7]钱鸣高,缪协兴.综放采场围岩-支架整体力学模型[J].煤.1998,7(6):1-5
    [8]钱鸣高等.综放工作面支架与围岩相互作用特点.见:煤炭工业技术委员会.2000年综采放顶煤与安全技术研讨会论文集.2000:6-18
    [9]茅献彪等.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39-41
    [10]李树刚.关键层破断前后覆岩离层裂隙当量面积计算[J].西安矿业学院学报,1999,19(4):289-290
    [11]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报(自然科学版),1999,22(6):80-84
    [12]茅献彪等.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4
    [13]缪协兴等.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理,1999(3):19
    [14]于胜文等.利用关键层控制宽条带开采地表下沉的实践研究[J].矿山测量,1999(4):9-10
    [15]侯忠杰.地表厚松散层浅理煤层组合关键层的稳定性分析[J].煤炭学报,2000,25(2):127-131
    [16]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-29
    [17]许家林等.关键层判别方法的计算机实现[J].矿山压力与顶板管理,2000(4):29-31
    [18]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126
    [19]侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001,26(6):611-615
    [20]吴成宏等.利用关键层稳定确定最大采宽的研究[J].山东煤炭科技,2001(2):35-36
    [21]浦海,缪协兴.采动覆岩中关键层运动对围岩支承压力分布的影响[J].岩石力学与工程学报,2002,21(增2):2366-2369
    [22]谢胜华,侯忠杰.浅理煤层组合关键层失稳临界突变分析[J].矿山压力与顶板管理,2002(1): 67-72
    [23]张秀琨,鲍杰.密集建筑物下采煤覆岩关键层判定及应用[J].安徽理工大学学报(自然科学版),2003,23(1):18-20
    [24]陈荣华等.相邻亚关键层破断对采场来压的影响分析[J].煤炭学报,2004,29(3):257-259
    [25]高明中.关键层破断与厚松散层地表沉陷耦合关系研究[J].安徽理工大学学报(自然科学版),2004,24(3):24-27
    [26]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层[J].岩石力学与工程学报,2004,23(11):1856-1860
    [27]许家林等.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791
    [28]余为等.短壁开采覆岩关键层的力学分析[J].安徽理工大学学报(自然科学版),2005(1):1-3
    [29]王磊.综放采场宏观应力壳与关键层的联系[J].矿业工程,2006,4(1):25-26
    [30]屈庆栋等.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报,2007,26(7):1478-1484
    [31]许家林等.深部开采覆岩关键层对地表沉陷的影响[J].煤炭学报,2007,32(7):686-690
    [32]张金才,郭鑫禾.煤层顶板采动影响的模拟试验[J].煤矿开采,1995,17(2):32-36
    [33]富强等.芦岭矿综放开采相似材料模型试验研究[J].煤矿现代化,1999(1):31-34
    [34]涂敏等.厚松散层及超薄覆岩放顶煤开采冒裂高度模拟研究[J].矿山压力与顶板管理,2002(2):92-94
    [35]别小勇等.煤层开采覆岩变形与破坏试验研究[J].矿业研究与开发,2005,25(2):27-30
    [36]郜进海等.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297
    [37]牛贵兰等.屯兰河下采煤导水裂缝带发育高度相似材料模拟研究[J].矿山测量,2005(4):63-65
    [38]任奋华等.河下开采覆岩破坏规律物理模拟研究[J1.中国矿业,2008,17(2):51-54
    [39]黄明利等.综放开采上覆岩层破坏过程数值分析.见:吴健.全国第二届放顶煤开采理论与实践研讨会论文集.1998:146-147
    [40]曹胜根等.综放支架工作阻力与端而顶板稳定性.见:吴健.99'厚煤层现代化开采技术国际专题研讨会论文集.北京:煤炭工业出版社,1999:142-150
    [41]彭苏萍,孟召平.长壁工作而顶底板稳定性数值模型计算分析[J].中国矿业大学学报,1999,28(1):41-45
    [42]谢兴华,高延法.基于数值计算的覆岩移动离层量计算方法[J].中国地质灾害与防治学报, 2002,13(3):48-51
    [43]陈佩佩等.基于人工神经网络技术的综放导水断裂带高度预计[J].煤炭学报,2005,30(4):438-442
    [44]丁德馨等.基于自适应神经模糊推理的导水裂缝带高度研究[J].采矿技术,2005,5(1):15-18
    [45]高品红等.煤层覆岩裂隙带高度预测的数值模拟—安全系数法[J].江西煤炭科技,2007(1):69-71
    [46]汪林等.厚、薄覆岩两带高度发育特征数值模拟研究[J].矿业安全与环保,2007,34(3):8-12
    [47]胡戈等.综放开采过断层顶板破坏规律数值模拟[J].矿业技术,2008,1-3
    [48]洪加明等.梅河三井放顶煤综采覆岩破坏观测成果分析[J].阜新矿业学院学报(自然科学版),1994,13(3):27-31
    [49]颜世杰等.三软深部地层开采覆岩导水裂缝带高度观测技术[J].山东煤炭科技,1995(2):20-24
    [50]成枢等.导水裂缝带高度的探测研究[J].矿山测量,1999(4):23-25
    [51]中宝宏,孔庆军.综放工作面覆岩破坏规律的观测研究[J].煤田地质与勘探,2000,28(5):42-44
    [52]康永华等.覆岩破坏的钻孔观测方法[J].煤炭科学技术,2002,30(12):26-28
    [53]张刚艳等.煤层开采裂缝的观测与分析[J].岩土力学,2003,24(增刊):414-417
    [54]邢延团等.井下仰孔注水测漏法探测导水裂隙带高度的研究[J].煤田地质与勘探,2004,32(增刊):186-190
    [55]杨思舜,方潮杰.利用测井方法研究采区离层裂隙带变化规律[J].矿业技术与管理,2006(28):55-56
    [56]付翔,吴俊松.高密度电法在工作面覆岩破坏探测中的应用[J].江西煤炭科技,2007(4):32-33
    [57]周科平等.顶板诱导崩落预裂钻孔裂隙发育监测与分析[J].岩石力学与工程学报,2007,26(5):1034-1040
    [58]徐智敏,孙亚军.综合探测技术在覆岩破坏观测中的应用研究[J].煤炭工程,2008(3):69-72
    [59]钱鸣高等,岩层控制的关键层理论[M],徐州.中国矿业大学出版社.2000年10月:12-31
    [60]陈浩等ArcGIS空间分析技术在地下水评价中的应用[J].水文地质工程地质,2007,34(4):112
    [61]贺贻源.模糊数学及其应用[M].天津:天津科学技术出版社,1983
    [62]张永泰,胡宝林,李全,童宏树.基于GIS的地质构造复杂程度综合评价—以皖北任楼煤矿7煤层为例[J].煤田地质与勘探,2006,34(3):16-18
    [63]邹友峰.条带开采地表沉陷预计新方法三维层状介质理论的研究[D].北京:中国矿业大学,1994
    [64]Kim Kunsoo, Yao Cunying. Effects of micromechanical property variation on fracture processes in simple tension [A].Daeman & Schultz. Rock Mechanic[C]. Balkema:Rotterdam,1995. 471-476.
    [65]Blair S C, Cook N G W. Analysis of comprehensive fracture in rock using statistical techniques:part1. A non-linear rule-based model [J].Int J Rock Mech Min Sci,1998,35 (7):837-848.
    [66]Blair S C, Cook N G W. Analysis of comprehensive fracture in rock using statistical techniques: part2. Effect of microscale heterogeneity on macroscopic deformation [J]. Int J Rock Mech Min Sci, 1998,35(7):849-861.
    [67]Liu Z,Myer L R, Cooker N G W. Numerical simulation of the effect of heterogeneities on macro-behavior of granular materials[A]. Siriwardane & Zaman. Computer Methods and Advances in Geomechanics[C]. Balkema:Rotterdam,1994.611-616.
    [68]Fairhurst C. Geomaterials and recent development in micro-machanical numerical models [J]. News Journal,1997,4(2):11-14
    [69]刘红元等.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报.23(2):202-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700