用户名: 密码: 验证码:
药物检测中同步荧光光谱法的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分析法以其灵敏度高、选择性好、取样量少、仪器设备简单等特点,近年来被广泛应用于制剂和生物体液中药物的痕量分析。而同步荧光光谱法采用同时扫描激发和发射两个单色器波长的方法,使其不但继承了常规荧光法灵敏度高的优点,同时克服了常规荧光法在分析复杂混合物中遇到光谱重叠和不易分辨的困难,所得图谱更加窄化,避免了瑞利散射和拉曼散射的干扰,在实际样品,如尿样、血样的测定中有效避免了荧光内源性物质的干扰,成为解决多组分荧光物质同时测定的良好手段。与导数技术的联用,增强了对特征光谱精细结构的分辨能力,使得同步荧光法在多组分混合样品的分析中得到广泛应用。
     本论文主要探讨了恒波长同步荧光法在药物分析中的应用,全文由综述和研究报告两部分组成。综述部分对同步荧光分析法的特点及分类,恒波长同步荧光法、恒能量同步荧光法、可变角同步荧光法、恒基体同步荧光法的理论基础,以及导数技术的特点进行了评述,主要针对近十年来恒波长同步荧光法在药物分析中的应用进行了总结。研究报告分为同步荧光分析新方法的研究和荧光分析新方法的研究两大部分。第一部分利用同步荧光法避免了尿样中内源性物质的背景干扰,建立了不经分离直接测定尿样中吡罗昔康及氯波必利的新方法;同时基于药物自身荧光,通过选择合适的波长差(Δλ),分别同时测定了混合样品中盐酸氟桂利嗪/盐酸普萘洛尔和地巴唑/西比灵的含量。第二部分基于Ce(Ⅳ)与药物的氧化还原反应,建立了还原性药物美洛昔康和左旋多巴荧光分析的新方法。本研究工作对于药代动力学研究及临床上药物的测定具有一定的应用价值,具体研究内容如下:
     1研究了吡罗昔康的荧光特性。实验发现,吡罗昔康自身荧光较弱,但经浓硫酸酸性降解,KMnO_4氧化后具有强荧光,结合一阶导数同步扫描技术,提出了同步荧光法测定尿样中吡罗昔康的新方法。方法线性范围为4.0×10~(-9)~2.4×10~(-6)g/mL,检出限为3.8×10~(-9)g/mL,相对标准偏差为0.54%(n=5, c=1.6×10~(-7)g/mL)。
     2研究了氯波必利的荧光特性。实验发现,氯波必利自身具有荧光,甲醛溶液的加入可使其荧光强度显著增强。在pH为6.60的Britton-Robinson(BR)缓冲介质中,以波长差Δλ=30nm进行同步荧光扫描,可消除人体尿液中内源性荧光物质的背景干扰,其同步特征峰的强度与氯波必利的浓度呈线性关系,建立了直接测定尿样中氯波必利的恒波长同步荧光分析方法。氯波必利浓度在2.8×10~(-5)~4.0×10~(-3)g/L范围内与荧光强度呈良好的线性关系,方法检出限为1.1×10~(-5)g/L,相对标准偏差为1.7%(n=11, c=4.0×10~(-5)g/L),方法用于实际尿样中氯波必利含量的直接测定,回收率在95.0~103.8%之间。
     3研究了盐酸普萘洛尔和盐酸氟桂利嗪及其混合溶液的同步荧光光谱,结果表明二者的同步荧光谱在Δλ为50nm时得到完全分离,据此建立了同步荧光光谱法同时测定混合样中盐酸普萘洛尔与盐酸氟桂利嗪的新方法。盐酸普萘洛尔与盐酸氟桂利嗪的线性范围分别为1.2×10~(-6)~2.8×10~(-3)g/L和2.0×10~(-5)~3.6×10~(-3)g/L;检出限分别为3.2×10~(-7)g/L和6.8×10~(-6)g/L,用于混合样品中盐酸普萘洛尔与盐酸氟桂利嗪含量的同时测定,回收率在97.6~101.6%之间。
     4为探讨同时测定地巴唑及西比灵的含量的可能性,研究了两种药物及其混合液的同步荧光光谱,结果表明在pH=3.29的BR缓冲介质中,波长差为100nm的条件下进行同步荧光扫描,并进行二阶导数处理,可有效消除地巴唑及西比灵彼此间的干扰,分别于278、232nm处测定体系荧光强度,据此建立了二阶导数同步荧光法同时测定混合样中地巴唑与西比灵的新方法。对测定条件进行了详细的研究,地巴唑与西比灵的线性范围分别为1.2×10~(-5)~3.6×10~(-3)g/L和1.2×10~(-4)~6.8×10~(-3)g/L;检出限分别为4.3×10~(-6)g/L和1.0×10~(-4)g/L,用于混合样品中地巴唑与西比灵含量的同时测定,回收率在95.3~103.0%之间。
     5研究了美洛昔康-Ce(Ⅳ)-β-环糊精(β-CD)体系的荧光特性。实验发现,美洛昔康自身几乎没有荧光,但其能使Ce(Ⅳ)定量还原为Ce(Ⅲ),Ce(Ⅲ)能发射特征荧光,β-环糊精(β-CD)的加入对体系的荧光强度有增敏增稳作用,基于在λex=260nm和λem=362nm处测定Ce(Ⅲ)的荧光强度,提出了β-CD增敏间接荧光光谱法测定微量美洛昔康的新方法。方法线性范围为8.0×10~(-10)~3.2×10~(-7)g/mL,检出限为3.5×10ˉ10g/mL,相对标准偏差为2.0%(n=5, c=4.0×10~(-8)g/mL)。
     6研究了左旋多巴与Ce(Ⅳ)在碱性体系中的荧光特性。实验发现,左旋多巴具有弱的内源性荧光,在pH为9.15的BR缓冲介质中可与Ce(Ⅳ)发生反应,使其荧光强度显著增强,据此提出了测定左旋多巴含量的荧光分析新方法。左旋多巴含量在0.08~3.6μg/mL范围内与其荧光强度线性关系良好,方法检出限为0.018μg/mL。对于片剂中左旋多巴的含量测定,回收率为97.0~100.5%。
The spectrofluorimetric method has been widely used in quantitative analysis because of its highly sensitivity, selectivity and reproducibility as well as its relatively low cost. However, problems of selectivity can occur in multicomponent analysis because of the overlap of the broadband spectra observed. Synchronous fluorescence spectroscopy has been found to have several advantages such as simple spectra, high selectivity and low interference etc. Because of its sharp, narrow spectrum, synchronous fluorescence spectroscopy serves as a very simple, effective method of obtaining data for quantitative determination in a single measurement. In addition, the combination of synchronous fluorimetry and derivatives is more advantageous than conventional spectrofluorimetry in terms of sensitivity, especially when applied to the determination of multi-component analysis.
     According to the scanning modes of monochromators, synchronous fluorescence spectroscopy is classified into constant-wavelength, constant-energy, variable-angle and matrix isopotential. At present, the constant-wavelength method is used most extensively.
     This thesis consists of a review and two research sections. The review describes the principle, speciality of the normal fluorescence spectra and synchronous fluorescence, and the application of constant-wavelength synchronous fluorescence spectrometry in drugs analysis in recent 10 years. The second section is focused on the study of highly sensitive synchronous fluorescence spectrometry for determination of some medicines. Firstly, in review of normal fluorescence spectra of human urine and many drugs, the spectra are greatly overlapping, such problem was resolved by using synchronous fluorometry. On the basis of this, piroxicam and clebopride have been determined by synchronous fluorometric method which shows good analytical results without any pre-separation steps. Secondly, based on the nature fluorescence of drugs, novel synchronous fluorometric methods have been developed for the simultaneous analysis of propranolol hydrochloride and flunarizine hydrochloride, bendazol and flunarizine hydrochloride, respectively. Finally, meloxicam and levodopa can react with Ce(IV) to produce stong fluorescent species, According to this, new fluorescence methods for determination of meloxicam and levodopa were established.
     In conclusion, the proposed methods have the advantages of simplicity, rapidity, precision and sensitivity. The main contents are as follows:
     1 A novel synchronous ?uorimetry method for the determination of piroxicam in human urine was described. The experiments indicate that piroxicam has little fluorescence, but the fluorescence intensity of system could be sensitized dramatically by reaction with oxidation after acidic degradation. The results show that piroxicam could be oxidized by potassium permanganate in polyphosphoric acid to yield strong fluorescent species. The combination of synchronous fluorescence atΔλof 70nm and first derivative technique provides good analytical results and permits the direct determination piroxicam in human urine. The fluorescence intensity of system was linearly proportional to the concentration of piroxicam in the concentration range of 4.0×10~(-9)~2.4×10~(-6)g/mL and the detection limit of 3.8×10~(-9)g/mL.
     2 A rapid, simple, accurate and selective synchronous ?uorimetry method for the determination of clebopride in human urine was described. The experiments indicate that clebopride has endogenous fluorophore, and the fluorescence intensity was enhanced remarkably when formaldehyde was added into the system. The maximum emission wavelengths of clebopride and the urine blank were at 358.0nm and 414.0nm, respectively. Because the emission spectra of clebopride and fluorescent substance of human urine were overlapped partially, clebopride could not be determined directly by normal fluorimetric method. In order to solve this problem, the synchronous spectrum, maintaining a constant difference ofΔλ=30nm between the emission and excitation wavelengths in Britton-Robinson buffer solution (pH 6.60), was selected as optimum to perform the determination. The background interference of human urine was eliminated effectively. Under the optimum conditions, the fluorescence intensity was linearly proportional to the concentration of clebopride in the range of 2.8×10~(-5)~4.0×10~(-3)g/L. The detection limit was 1.1×10~(-5)g/L. The proposed method has been applied to the determination of clebopride in human urines samples with the recoveries of 95.0~103.8%.
     3 A direct method for the simultaneous determination of propranolol hydrochloride and flunarizine hydrochloride using synchronous fluorimetry was described. The maximum emission wavelengths of propranolol hydrochloride and flunarizine hydrochloride were at 354 and 320nm, respectively. Because the emission spectra of two drugs were overlapped partially, propanolol hydrochloride and flunarizine hydrochloride could not be determined directly by normal fluorimetric method. However, the synchronous fluorimetry could be used for determining both drugs simultaneously without separation procedure. The method involved measuring the natural fluorescence of these drugs atΔλ=50nm in the media of acetate buffer solution. The synchronous fluorescence concentration plots were rectilinear over range of 1.2×10~(-6)~2.8×10~(-3)g/L and 2.0×10~(-5)~3.6×10~(-3)g/L for propranolol hydrochloride and flunarizine hydrochloride, respectively with lower detection limits of 3.2×10~(-7) and 6.8×10~(-6)g/L.
     4 Simple and sensitive second derivative synchronous fluorometric method was developed for the simultaneous determination of bendazol and flunarizine hydrochloride. The method was based upon measuring the synchronous fluorescence of both the studied drugs in Britton-Robinson buffer of pH 3.29 atΔλ=100nm. The peak amplitude was measured at 278nm (-) and 232nm(+) for bendazol and flunarizine hydrochloride, respectively. With the application of second-order synchronous fluorimetry advantage, the proposed method could be utilized for a simultaneous direct concentration determination of bendazol and flunarizine hydrochloride without pretreatment step. The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The synchronous fluorescence concentration plots were rectilinear over range of 1.2×10~(-5)~3.6×10~(-3)g/L and 1.2×10~(-4)~6.8×10~(-3)g/L for bendazol and flunarizine hydrochloride, respectively with lower detection limits of 4.3×10~(-6)g/L and 1.0×10~(-4)g/L.
     5 A novel and sensitive spectrofluorimetric method for the determination of meloxicam has been developed. The experiments indicated that meloxicam has little fluorescence signal by itself, but it could reduce cerium(IV) to cerium(III). Cerium(III) could emit characteristic fluorescence atλex=260nm andλem=362nm in sulfuric acid medium. Whenβ-cyclodextrin (β-CD) was added into the system, the fluorescence intensity could be enhanced greatly. Based on this meloxicam-cerium(IV)-β-CD fluorescence system, a new fluorescent method was established for the indirect determination of meloxicam. Under optimal experimental conditions, the linear range was 8.0×10~(-10)~3.2×10~(-7)g/mL, the detection limit was 3.5×10ˉ10g/mL. It has been used for the determination of meloxicam in tablets and human urines with satisfactory results.
     6 The fluorescence characteristic of levodopa with cerium(IV) in alkalic medium has been studied. The experiments show that levodopa had endogenous fluorophore, but the fluorescence signal was weaker. The fluorescence intensity could be sensitized strongly by the reaction with cerium(IV) in the buffer solution of Britton-Robinson with pH 9.15. Based on this, a new simple, rapid and sensitive fluorescence method for the determination of levodopa has been developed. The linear relationship of fluorescence intensity and levodopa concentration was in the range of 0.08~3.6μg/mL. The detection limit was 0.018μg/mL.
引文
[1]马春燕.高效液相色谱法测定盐酸普萘洛尔片含量[J].中国药师, 2005, 8(8): 637-638
    [2]王琼芬,夏瑛瑛. HPLC测定复方硫酸新霉素口腔溃疡药膜中克霉唑的含量[J].华西药学杂, 2006, 21(3): 290-291
    [3] Mansilla AE, De la pe?a AM, Gómez DG, Salinas F. HPLC determination of enoxacin, cipro?oxacin, nor?oxacin and o?oxacin with photoinduced ?uorimetric (PIF) detection and multiemission scanning Application to urine and serum[J]. Journal of Chromatography B, 2005, 822: 185-193
    [4]王伟,陈宇云,杨维平,章竹君.毛细管电泳手性分离-激光诱导荧光检测普萘洛尔对映体[J].分析化学, 2005, 33(8): 1113-1115
    [5]翟海云,杨冰仪,吴燕红,陈缵光.毛细管电泳法快速测定琥乙红霉素的含量[J].化学研究与应用, 2007, 19(4): 437-440
    [6]李安荣,许群芬,龚亚林.紫外分光光度法和高效液相色谱法测定利巴韦林片含量的比较[J].药物鉴定, 2004, 13(12): 34-34
    [7]刘一品,杨小刚,李常胜.紫外分光光度法测定依诺沙星含量的改进[J].武汉大学学报(医学版), 2001, 22(4): 367-369
    [8]秦咏九,黄蓓琳,徐新元.紫外分光光度法测定苯妥英钠血药浓度[J].中国临床药学杂志, 2004, 13(3): 174-175
    [9]尹立杰,郭怀龙,张芳.紫外分光光度法测定琥乙红霉素可溶性粉中琥乙红霉素的含量[J].黑龙江畜牧兽医, 2007, 5: 88-89
    [10] Fujiwara T, Mohammadzai IU, Kitayama K, Funazumi Y, Kumamaru T. Catalytic behavior of tris(2,2-bipyridine)iron(II) complex in chemiluminescence reaction of luminol in reversed micellar medium of cetyltrimethylammonium chloride[J]. Journal of Colloid and Interface Science, 2007, 310(2): 682-685
    [11] Lu C, Lin JM, Huie CW. Determination of total bilirubin in human serum by chemiluminescence from the reaction of bilirubin and peroxynitrite[J]. Talanta, 2004, 63(2): 333-337
    [12] Erbao L, Bingchun X. Flow injection determination of adenine at trace level based onluminol-K2Cr2O7 chemiluminescence in a micellar medium[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(2): 649-653
    [13] Liu YM, Cheng JK. Separation of biogenic amines by micellar electrokinetic chromatography with on-line chemiluminescence detection[J]. Journal of Chromatography A, 2003, 1003(1-2): 211-216
    [14]丁宇,姜效军.指示离子方波极谱法测定维生素B1[J].鞍山科技大学学报, 2005, 28(3-4): 195-198
    [15]刘利民,郭新春,林洪.单扫描示波极谱法测定药物中的苯妥英钠[J].分析科学学报, 2004, 20(1): 54-56
    [16]郭国玲,姜春刚,张伟新.气相色谱法测定头孢哌酮粉针剂中溶媒残留量[J].中国药科大学学报, 1998, 29(2): 112-114
    [17]范荃,夏豪刚.气相色谱/质谱法测定水中五氯酚.环境监测管理与技术[J]. 2001, 13(l): 33-34
    [18] Legnerova Z, Sklenarova H, Solich P. Automated sequential injection ?uorimetric determination and dissolution studies of Ergotamine Tartrate in pharmaceuticals[J]. Talanta, 2002, 58(6): 1151-1155
    [19] Piccirilli GN, Escandar GM. A novel ?ow-through ?uorescence optosensor for the determination of thiabendazole[J]. Analytica chimica acta, 2007, 601(2): 196-203
    [20]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社, 2006: 3-4
    [21] Szollosi J, Damjanovich S, Matyus L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research[J]. Cytometry, 1998, 34(4): 159-179
    [22]潘祖亭,刘义庆,刘小玲.药物荧光分析法研究进展[J].武汉大学学报, 2000, 46(6): 674-680
    [23]刘文英,张亮.药物分析[J].分析试验室, 2000, 19(2): 91-108
    [24]柴逸峰,朱臻宇,李翔.药物分析[J].分析试验室, 2008, 27(9): 100-122
    [25] Lloyd JBF. Synchronyzed excitation of ?uorescence emission spectra. Nature(London) Phys Sci, 1971, 231: 64-65
    [26]何立芳,林丹丽,李耀群.同步荧光分析法的应用及其新进展[J].化学进展, 2004, 16(6):879-885
    [27] Digambara P, Mishra AK. Recent developments in multi-component synchronous fluorescence scan analysis[J]. Trends in analytical chemistry, 2002, 21(12): 787-798
    [28]罗庆尧等.分光光度分析.北京:科学出版社, 1998: 240-241
    [29] Green GL, O’Haver TC. Derivative luminescence spectrometry[J]. Anal. Chem., 1974, 46(14): 2191-2196
    [30]赵一兵,潘洁,郭祥群,许金钩.同步荧光法同时测定四环素和脱水四环素[J].分析化学, 1993, 21(12): 1439-1441
    [31] Goicoechea HC, Olivieri AC. Enhanced Synchronous Spectrofluorometric Determination of Tetracycline in Blood Serum by Chemometric Analysis. Comparison of Partial Least-Squares and Hybrid Linear Analysis Calibrations[J]. Anal. Chem., 1999, 71(19): 4361-4368
    [32] Fernandez-González R, García-Falcón MS, Simal-Gándara J. Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry[J]. Analytica Chimica Acta, 2002, 455(1): 143-148
    [33]胡乃梁,赵一兵,王冬媛,许金钩.同步荧光法同时测定强力霉素和土霉素[J].分析测试学报, 1996, 15(5): 77-80
    [34]敖登高娃,张莹,樊海燕.同步-导数荧光光谱法测定混合样品中美他环素[J].光谱学与光谱分析, 2006, 26(8): 1530-1532
    [35]杜黎明,王静萍,范哲锋,叶玉香.氧氟沙星在胶束体系中的荧光特性及应用[J].分析化学, 2002, 30(1): 59-61
    [36]弓巧娟,杜黎明,晋卫军,董川,刘长松.同步-导数荧光光谱法测定尿样中的痕量氧氟沙星[J].光谱学与光谱分析, 2000, 21(3): 356-358
    [37]弓巧娟,晋卫军,董川.氧氟沙星对映体的同步-导数荧光光谱法识别与测定[J].分析化学, 2000, 28(6): 672-677
    [38]弓巧娟,晋卫军,董川.左氧氟沙星的体内构型转化与同步一阶导数荧光光谱测定的研究[J].光谱学与光谱分析, 2001, 21(5): 688-690
    [39]杜黎明,范哲锋,郭全娥.司帕沙星与卤素反应产物的荧光特性及其应用[J].分析化学, 2001, 29(3): 249-252
    [40]杜黎明,晋卫军,董川,郑台.司帕沙星金属络合物在胶束体系中的荧光特性研究及应用[J].分析化学, 2000, 28(4): 403-406
    [41] Tong C, Zhuo X, Liu W, Wu J. Synchronous fluorescence measurement of enrofloxacin in the pharmaceutical formulation and its residue in milks based on the yttrium(Ⅲ)-perturbed luminescence[J]. Talanta, 2010, 82(5): 1858-1863
    [42]张先廷,赵惠玲,杜黎明.同步荧光光谱法测定人体尿液中加替沙星[J].分析科学学报, 2008, 24(3): 344-346
    [43]张国文,倪永年.偏最小二乘-同步荧光光谱法同时测定鳗鱼组织中三种喹诺酮药物残留量[J].光谱学与光谱分析, 2006, 26(1): 113-116
    [44]代刚,敖登高娃.同步荧光光谱法测定尿液中依诺沙星含量[J].光谱学与光谱分析, 2005, 25(10): 1634-1636
    [45]杜黎明,曹玺珉,吴红艳.胶束增敏-同步荧光光谱法直接测定血浆中的依诺沙星[J].分析化学, 2003, 31(11): 1330-1332
    [46]王静萍,杜黎明,许庆琴.同步-导数荧光光谱法直接测定人体尿液中的盐酸环丙沙星的方法研究[J].分析科学学报, 2001, 17(2): 135-137
    [47]程志民,齐正保,朱蔓菁.多元校正恒波长同步荧光法同时测定甲氧苄啶和诺氟沙星[J].江西科学, 2010, 28(3): 301-303
    [48]王志龙,严乘农,梅平,付丽,张华新.甲氧苄啶的同步增敏荧光光谱分析法研究[J].分析测试学报, 2005, 24(6): 59-61
    [49]张艳,陈冠华,郝庆红,陈志敏,郭云霞.硫酸氧化同步荧光法测定猪肉中的螺旋霉素残留[J].河北大学学报, 2010, 30(1): 64-68
    [50]陈培珍,马春华.荧光素二聚体荧光探针测定硫酸庆大霉素的同步荧光光谱研究[J].龙岩学院学报, 2009, 27(5): 57-60
    [51]杨昌昕,肖向旭,杨志斌.头孢氨苄和头孢拉定药物的同步荧光鉴别分析法[J].南昌大学学报, 2003, 27(3): 259-262
    [52]胡蓉,杨琼,张书然,杨季冬.偏最小二乘-同步荧光光谱法同时测定两种蒽环类抗生素[J].分析试验室, 2009, 28(8): 62-65
    [53] Murillo Pulgarín JA, Molina AA, López PF, Robles ISF. Direct determination of closelycverlapping drug mixtures of diflunisal and salicylic acid in serum by means of derivative matrix isopotential synchronous fluorescence spectrometry[J]. Analytica Chimica Acta, 2007, 583(1): 55-62
    [54] Hadir MM. Simultaneous Determination of Naproxen and Diflunisal using Synchronous Luminescence Spectrometry[J]. Journal of Fluorescence, 2008, 18(5): 909-917
    [55] Dimitrios GK, Pinelopi CI. Second-derinative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Naproxen and Salicylic Acid in Human Serum[J]. Analyst, 1996, 121(7): 909-912
    [56] El-Enany N, Belal F, El-Shabrawy Y, Rizk M. Second Derivative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Chlorzoxazone and Ibuprofen in Pharmaceutical Preparations and Biological Fluids[J]. International Journal of Biomedical Science, 2009, 5(2): 136-145
    [57]魏永锋,李小花,马冬梅.同步扫描荧光光谱法同时测定阿司匹林和水杨酸[J].光谱学与光谱分析, 2005, 25(4): 588-590
    [58]朱亚先,张勇,李少霞,黄贤智.导数-同步荧光法同时测定苯甲酸和水杨酸[J].分析化学, 1995, 23(11): 1313-1315
    [59]马丽英,姜吉刚,冯霞光,王怀友.乙酰丙酮-甲醛为荧光衍生试剂同步荧光法测定胺类物质[J].化学工程师, 2009, 3: 24-26
    [60] Lianidou ES, Loannou PC, Polydorou CK, Efstathiou CE. Synchronous scanning second derivative spectrofluotimetry for the simultaneous determination of diflunisal and salicylic acid added to serum and urine as ternary complexes with terbium and EDTA[J]. Anal. Chim. Acta, 1996, 320(1): 107-114
    [61]唐学燕,陶冠军,秦昉.二阶导数-同步荧光法同时测定微量维生素B1, B2和烟酰胺[J].分析试验室, 2009, 28(10): 92-94
    [62]徐烨,顾鑫荣,张秀娟,李千,陈立华.同步荧光法测定功能饮料中维生素B2和B6的研究[J].分析试验室, 2008, 27(7): 85-87
    [63]倪永年,蔡英俊.平行因子-同步荧光法测定食品中维生素B1, B2和B6[J].光谱学与光谱分析, 2005, 25(10): 1641-1644
    [64]杨培慧,齐剑英,冯德雄,蔡继业,戴黎明.微量元素对B族维生素同步荧光分析法影响的研究[J].光谱实验室, 2001, 18(6): 791-795
    [65] García L, Blázquez S, San Andrés MP, Vera S. Determination of thiamine, riboflavin and pyridoxine in pharmaceuticals by synchronous fluorescence spectrometry in organized media[J]. Analytica Chimica Acta, 2001, 434(2): 193-199
    [66] NAHED EL-ENANY. Second Derivative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Metoclopramide and Pyridoxine in Syrup and Human Plasma[J]. Journal of AOAC international, 2008, 91(3): 542-550
    [67]李英丽,邓连琴,果秀敏,宋朝辉,王立娅,方正.同步荧光法测定蔬菜中维生素E含量[J].河北大学学报, 2009, 29(4): 412-415
    [68]崔风灵,孔晓朵,卢雁,樊静,张贵生,李建平.新硫脲试剂同步荧光法测定蛋白质应用研究[J].河南师范大学学报, 2009, 37(1): 89-92
    [69] Cui FL, Fan J, Li W, Fan YC, Du ZD. Fluorescence Spectroscopy Studies on 5-aminosalicylic Acid and Zinc 5-aminosalylicylate Interaction with Human Serum Albumin[J]. J Pharmaceut Biomed, 2004, 34(1): 189-197
    [70]闫迎华,杨艳杰,万笑云,崔凤灵,张强斋,党晓云,渠桂荣.快速测定生物样品中蛋白含量的同步荧光法研究[J].河南师范大学学报, 2010, 38(2): 108-111
    [71]田建袅,韦盛志,赵彦春,赵书林. CdTe量子点同步荧光法测定人血清白蛋白[J].分析试验室, 2008, 27(12): 23-26
    [72]陈红旗,梁阿妮,许轶,王伦. CdS/PPA纳米溶胶荧光探针同步荧光光度法测定水溶液中牛血清白蛋白[J].应用化学, 2008, 25(12): 1484-1486
    [73]崔凤灵,张强斋,王俊丽,王丽,卢雁,渠桂荣.氰基乙基-5-氯尿嘧啶核苷探针测定蛋白质的同步荧光法研究[J].分析试验室, 2008, 27(1): 23-26
    [74]崔凤灵,闫迎华,张强斋,渠桂荣,卢雁.巯嘌呤分子探针同步荧光法测定蛋白质的研究[J].化学试剂, 2008, 30(8): 584-586
    [75]崔凤灵,王俊丽,崔延瑞,渠桂荣,卢雁,樊静.探针3-(2-氰基乙基)胞嘧啶同步荧光法测定血清中蛋白质[J].光谱学与光谱分析, 2008, 28(2): 384-388
    [76]崔凤灵,张强斋,渠桂荣,王丽,王俊丽.荧光探针碘苷在血清白蛋白同步荧光测定中的应用研究[J].分析测试学报, 2008, 27(3): 289-292
    [77]崔凤灵,王俊丽,崔延瑞,渠桂荣,卢雁,樊静.分子探针N6-羟基乙基腺苷同步荧光测定人血清中蛋白质[J].河南师范大学, 2007, 35(2): 97-100
    [78]林旭聪,燕瑾,郭良洽,谢增鸿.吲哚基二聚体菁类探针同步荧光测定蛋白质的研究[J].光谱学与光谱分析, 2008, 28(11): 2615-2618
    [79]陈莹,姚闽娜,唐尧基,李耀群.卟啉全内反射同步荧光法测定蛋白质[J].光谱学与光谱分析, 2005, 25(12): 2048-2051
    [80]石燕,鄢远,黄坚锋.牛血清白蛋白的同步荧光分析法[J].南昌大学学报, 2000, 24(3): 282-285
    [81]剑菊,杜江燕,冯玉英,杨秀娟,陆天虹.肌红蛋白的同步荧光光谱[J].分析化学, 2001, 29(2): 219-221
    [82]赵燕燕,苏芳,王翠玲,姜明明,白洁.同步扫描-双波长荧光分光光度法同时测定三种儿茶酚胺类神经递质[J].理化检验-化学分册, 2009, 45(5): 497-500
    [83]赵燕燕,耿成光,白洁,刘丽艳,苏芳.胶束增敏同步荧光-双波长法同时测定血浆中儿茶酚胺类神经递质[J].河北大学学报, 2010, 30(3): 264-270
    [84] JoséAMP, Aurelia AM, Pablo FL. Direct determination of triamterene in urine by matrix isopotentialsynchronous fluorescence spectrometry[J]. Analytica Chimica Acta, 1996, 326(1-3): 117-126
    [85] Walash MI, El-Brashy A, El-Enany N, Kamel ME. Second-Derivative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Fluphenazine Hydrochloride and Nortriptyline Hydrochloride in Pharmaceutical Preparations[J]. J Fluoresc., 2009, 19(5): 891-904
    [86] Abdelal A, El-Enany N, Belal F. Simultaneous determination of sulpiride and its alkaline degradation product by second derivative synchronous ?uorescence spectroscopy[J]. Talanta, 2009, 80(2): 880-888
    [87] Walash MI, Belal F, El-Enany N, Abdela AA. Second-derivative Synchronous Fluorometric Method for the Simultaneous Determination of Cinnarizineand Domperidone in Pharmaceutical Preparations. Application to Biological Fluids[J]. J Fluoresc, 2008, 18(1): 61-74
    [88] Xiao Y, Wang HY, Han JA. Simultaneous determination of carvedilol and ampicillin sodium bysynchronous ?uorimetry[J]. Spectrochimica Acta Part A, 2005,61(4): 567-573
    [89] Sharaf El-Din MMK, Attia KAM, Nassar MWI, Kaddah MMY. Two different spectro?uorimetric methods for simultaneous determination ofgemfibrozil and rosiglitazone in human plasma[J]. Talanta, 2010,82(5): 1708-1716
    [90]万益群,谭婷,郭岚.同步荧光法测定人尿中异黄蝶呤[J].分析试验室, 2007, 26(5): 8-11
    [91]万益群,谭婷,郭岚.偏最小二乘-同步荧光法测定人尿中黄蝶呤[J].分析科学学报, 2007, 23(4): 417-420
    [92]唐莉娟,谭婷,万益群.同步荧光法同时测定人体尿液中黄蝶呤和异黄蝶呤[J].分析化学, 2009, 37: B056
    [93]张敏,曹庸,于华忠,龚竹琼,李贵.同步荧光检测虎杖提取物中白藜芦醇含量的新方法[J].林产化学与工业, 2005, 25(2): 63-66
    [94]张寒俊,吴波.同步荧光法检测桑堪提取液中微量白黎芦醇含量[J].分析仪器, 2007, 1: 24-26
    [95]张寒俊,吴波.同步荧光分析红葡萄酒中微量白藜芦醇含量的研究[J].中国酿造, 2006, 10: 62-64
    [96]杨军,余德顺,刘绍璞,田弋夫,莫彬彬.二阶导数同步荧光光谱法同时直接测定厚朴酚及和厚朴酚[J].分析化学, 2009, 37(1): 107-110
    [97]张敏,阳艳,高中松,向建南.导数-同步荧光法测定三月泡叶中总黄酮含量的研究[J].化学工程师, 2006, 126(3): 23-25
    [98]张仁学,陈熙佳,陈刚,彭艳,卓尚.同步荧光法测定三月泡叶中总黄酮含量的研究[J].中国民族民间医药杂志, 2005, 75: 238-240
    [99]蔡其洪,邹哲祥,李耀群.同步荧光法同时测定苏丹红Ⅱ和苏丹红Ⅲ[J].高等学校化学学报, 2007, 28(9): 1663-1665
    [100]张爱梅,刘妮娜,臧运波,贾晶晶.罗丹明B-Mn2+-H2O2体系同步荧光分光光度法测定中药的抗氧化活性[J].理化检验-化学分册, 2007, 43(4): 280-282
    [101]王金中,刘波,周艳梅.流动注射化学发光抑制法测定吡罗昔康[J].分析测试学报, 2005, 24(5): 110-112
    [102] Chakraborty H, Banerjee R, Sarkar M. Incorporation of NSAIDs in micelles: implication ofstructural switchover in drug-memberane interaction[J]. Biophysical Chemistry, 2003, 104(1): 315-325
    [103] Ibrahim H, Boyer A, Bouajila J, Couderc F, Nepveu F. Determination of non-steroidal anti-in?ammatory drugs in pharmaceuticals and human serum by dual-mode gradient HPLC and ?uorescence detection[J]. Journal of Chromatography B, 2007, 857(1): 59-66
    [104] Ji HY, Lee HW, Kim YH, Jeong DW, Lee HS. Simultaneous determination of piroxicam, meloxicam and tenoxicam in human plasma by liquid chromatography with tandem mass spectrometry[J]. Journal of Chromatography B, 2005, 826(1-2), 214-219
    [105] Shirkhedkar AA, Shaikh AM, Surana SJ. Simultaneous Determination of Paracetamol and Piroxicam in Tablets by Thin Layer Chromatography Combined with Densitometry[J]. Eurasian Journal of Analytical Chemistry, 2008, 3(2): 258-267
    [106] Amin AS, Dessouki HA, Khalil KM. Indirect spectrophotometric determination of piroxicam and tenoxicam through oxidation with porassium permanganate[J]. Bull. Chem. Soc. Ethiop. 2010, 24(1): 121-126
    [107] Idrees F. AL-MOMANI. Indirect Flow-Injection Spectrophotometric Determination of Meloxicam, Tenoxicam and Piroxicam in Pharmaceutical Formulations[J]. Analytical Sciences, 2006, 22(12): 1611-1614
    [108] Yu FS, Chen F, Zheng SS, Chen LH, Cui M. Flow-Injection Chemiluminescent Determination of Piroxicam Using Tris(2,2’-bipyridyl) Ruthenium(II)- Potassium Permanganate System[J]. Analytical Letters, 2008, 41(13): 2412-2423
    [109] Amber RS, Muhammad IB, Saima QM, Muhammad YK, Arfana M. A Capillary Zone Electrophoretic Method for Simultaneous Determination of Seven Drugs in Pharmaceuticals and in Human Urine[J]. Journal of AOAC INTERNATIONAL, 2009, 92(5): 1382-1389
    [110] Chen YL, Wu SM. Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-in?ammatory drugs in pharmaceuticals[J]. Anal Bioanal Chem, 2005, 381(4): 907-912
    [111] Beltagi AM, Abdallah OM, Ghoneim MM. Determination of Piroxicam in Pharmaceutical Formulations and Human Serum by Square-Wave Stripping Voltammetry[J]. Chem. Anal., 2007,52(3): 387-398
    [112] Escandar GM, Bystol AJ, Campiglia AD. Spectro?uorimetric method for the determination of piroxicam and pyridoxine[J]. Analytica Chimica Acta, 2002, 466(2): 275-283
    [113]郝巧艳,张远馥,王金中.吡罗昔康的荧光分光光度法测定[J].宝鸡文理学院学报, 2007, 27(4): 291-294
    [114] Al-Kindy SMZ, Suliman FEO, Al-Wishahi AA, Al-Lawati HAJ, Aoudia M. Determination of piroxicam in pharmaceutical formulations and urine samples using europium-sensitized luminescence[J]. Journal of luminescence, 2007, 127(2): 291-296
    [115]赵一兵,王冬媛,张传标,许金钩.硫酸颜色反应用于荧光法测定利血平研究[J].分析化学, 1995, 23(9): 1055-1058
    [116]贾红生.氯波必利的临床应用及不良反应[J].社区医学杂志, 2009, 7(9): 41-41
    [117]程能能,马越鸣,刘锡久,桂常青,徐瑶.氯波必利对胃肠道平滑肌运动机能的影响[J].中国新药杂志, 1997, 6(5): 386-388
    [118]刘安祥.氯波必利治疗功能性消化不良74例临床观察[J].实用临床医学, 2004, 5(6): 34-35
    [119]丁潇潇,李成平,单伟光.高效液相色谱测定氯波必利片剂含量及其有关物质[J].药物分析杂志, 2009, 29(6): 947-949
    [120]国家药品标准新药转正标准: WSI-(X-110)- 2003Z: 114
    [121] Tan ZR, Ouyang DS, Chen Y, Zhou G, Cao S, Wang YC, Pemg XJ, Zhou HH.. Development and validation of a LC–MS/MS method for the determination of clebopride and its application to a pharmacokinetics study in healthy Chinese volunteers[J]. J Chromatogr B Analyt Technol Biomed Life Sci., 2010, 878(23): 2072-2076
    [122] Robinson PR, Jones MD, Maddock J. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry[J]. J Chromatogr., 1988, 432(18): 153-163
    [123] Philip RR, Michael DJ, Jeffrey M. Simultaneous determination of clebopride and a major metabolite N-desbenzyl clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1991, 564(1): 147-161
    [124] Huizing G, Beckett A, Segura J. Rapid thin-layer chromatographic photodensitometric method for the determination of metoclopramide and clebopride in the presence of some of their metabolic products[J]. Journal of Chromatography A, 1979, 172(1): 227-237
    [125] Thangabalan B, Prabahar AE, Kalaichelvi R, Vijayaraj K. UV spectrophotometric method for determination of clebopride in pure and in pharmaceutical formulation[J]. RASAYAN J. Chem. 2009, 2(3): 712-715
    [126]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社, 2006: 137-150
    [127]李蔚博,张国文,赵楠,胡兴.化学计量学-同步荧光光谱法同时测定速灭威、残杀威和呋喃丹[J].分析试验室, 2010, 29(12): 59-62
    [128]仉文升,李安良.药物化学[M].北京:高等教育出版社, 1999: 276-281
    [129]国家药典委员会.临床用药须知(化学药和生物制品卷)[M].北京:人民卫生出版社, 2005: 57-57
    [130]叶小菊,胡兴越.偏头痛发病机制的研究进展[J].国际神经病学神经外科学杂志, 2005, 32(3): 280-283
    [131]苏泾波.氟桂利嗪联合普萘洛尔预防偏头痛128例[J].中西医结合心脑血管病杂志, 2008, 6(9): 1122-1123
    [132] EI-Saharty YS. Simultaneous high-performance liquid chromatographic assay of furosemide and propranolol HCl and its application in a pharmacokinetic study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(4): 699-709
    [133]朱碧君,赵海榕,田慧,万凯化. HPLC法测定盐酸氟桂利嗪胶囊的含量[J].药物分析杂志, 2005, 25(1): 95-97
    [134]朱金枝,杜建修,鹿艳秋.流动注射化学发光法测定盐酸氟桂利嗪[J].分析试验室, 2008, 27(9): 66-68
    [135] Marques KL, Santos JL, Lima JL. Chemiluminometric determination of propranolol in an automated multicommutated flow system[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(5): 886-891
    [136] Akram M. EI-Didamony. A sensitive spectrophotometric method for the determination of propranolol HCl based on oxidation bromination reactions[J]. Drug Testing and Analysis, 2010,2(3): 122-129
    [137] Jain SK, Jain D, Tiwari M, Chaturvedi SC. Simultaneous spectrophotometer determination of Propranolol hydrochloride and hydrochlorothiazide in pharmaceutical formulations[J]. Indian Journal of Pharmaceutical Sciences, 2002, 64(3): 267-270
    [138] Madrakian T, Afkhami A, Mohammadnejad M. Simultaneous spectro?uorimetric determination of levodopa and propranolol in urine using feed-forward neural networks assisted by principal component analysis[J]. Talanta, 2009, 78(3): 1051-1055
    [139] Abdul-Azim Mohammad M. Spectrophotometric and spectrofluorimetric determination of cinnarizine and flunarizine dihydrochloride in pure and dosage forms[J]. Bulletin Faculty Pharmacy Cairo University, 2004, 42(1): 27-38
    [140]中华人民共和国卫生部药品标准-化学药品及制剂. 1989,第一册: 32-33
    [141]王雪辉,左晓磊.盐酸氟桂利嗪的临床新用途[J].中国现代药物应用, 2009, 3(15): 129-130
    [142]甘受益.西比灵联合地巴唑治疗血管神经性头痛86例疗效观察[J].咸宁学院学报(医学版), 2009, 23(6): 496-497
    [143]胡德福,谭会洁,蒋慧. HPLC法测定地巴唑片含量及其有关物质[J].药物分析杂志, 2004, 24(4): 430-431
    [144]刘振胜,赵艳,闫美兴,陈安进,王少华. HPLC法测定盐酸氟桂利嗪分散片的血药浓度及药动学研究[J].中国新药杂志, 2005, 14(8): 1041-1044
    [145]初阳,张姝.高效液相色谱-质谱法联用测定人血浆中氟桂利嗪含量及其药代动力学研究[J].山西医药杂志, 2007, 36(11): 995-996
    [146]于华玲,陈笑艳,朱林,钟大放.液相色谱-串联质谱法测定人血浆中氟桂利嗪[J].中国药学杂志, 2006, 41(6): 463-466
    [147]傅应华,徐宏祥.一阶导数光谱法测定地巴唑片含量[J].中国医院药学杂志, 1996, 16(8): 364-365
    [148]陈珍珊,杨永固,王维思,余帮海,王德新.紫外分光光度法测定盐酸氟桂嗪胶囊的含量[J].药物分析杂志, 1995, 15(3): 57-58
    [149]李伟.阴离子表面活性剂滴定法测定地巴唑片得含量均匀度[J].药物分析杂志, 2001, 21(3): 201-202
    [150]柳小秦.醇中碱滴定测定盐酸氟桂利嗪的含量[J].西北药物杂志, 2005, 20(4): 150-151
    [151]郭琦,王锦秋,杨云,明新.荧光分光光度法测定尿液中盐酸氟桂嗪浓度[J].广东药学, 2000, 10(4): 32-33
    [152]张阿慧,杨琼,侯鸿军,王锦芝.薄层扫描法测定血浆中盐酸氟桂利嗪浓度及药物动力学[J].陕西医学检验, 1998, 13(3): 22-23
    [153]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社, 2006: 299-307
    [154]王平,顾振纶.新型非甾体抗炎药-美洛昔康[J].中国新药与临床杂志, 2000, 19(6): 499-501
    [155]谭力,张杰.美洛昔康血药浓度高效液相色谱法测定及生物等效性研究[J].中国药科大学报, 2000, 31(4): 269-272
    [156]黄鹤,曾泳淮.美洛昔康的单扫示波极谱法[J].分析化学, 2002, 28(12): 1501-1503
    [157] Jia BX, Cao ML, Liu CH, Li YQ, Li K, Qi YX. Flow injection chemiluminescence determination of meloxicam using potassium permanganate and formaldehyde system[J]. Journal of Chinese Pharmaceutical Science, 2008, 17: 35-40
    [158] Emirhan N, Sedef K. Method development and validation for the analysis of meloxicam in tablets by CZE[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31(2): 393-400
    [159]游文玮,刘彦,王尊本.紫外分光光度法测定美洛昔康[J].分析化学, 1999, 27(7): 841-844
    [160]吴翠敏,吴国土.美洛昔康在玻碳电极上的电化学行为[J].福建医科大学学报, 2005, 139 (1): 101-105
    [161] Taha EA, Salama NN, Abdel Fattah LS. Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-chloro-4- nitrobenz-2-oxa-1,3-diazole(NBD-Cl). Chem. Pharm. Bull, 2006, 54(5): 653-658
    [162]叶桦珍,邱彬,陈珍斌,汤水粉,陈国南.同步扫描荧光法测定美洛昔康片的含量[J].分析测试技术与仪器, 2007, 13(1): 50-55
    [163]童裳伦,项光宏,刘维屏.铈Ⅳ与抗坏血酸的荧光反应及其分析应用.分析化学, 2005, 33(1): 80-82
    [164] Khashaba PY. Spectrofluorimetric analysis of certain macrolide antibiotics in bulk and pharmaceutical formulations[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 27(6):923-932
    [165] Yang J, Cao X, Sun C, Wu X, Li L. Sensitive determination of carbohydrates by fluorimetric method with Ce(IV) and sodium triphosphate[J]. Journal of Fluorescence, 2004, 14(3), 275-279
    [166]袁进,龙启才,赵树进.左旋多巴治疗帕金森病致症状波动的机制[J].中国医院药学杂志, 2001, 21(70): 421-423
    [167]袁静,王平全,杨惠娣等.高效液相色谱法测定左旋多巴/苄丝肼分散片血药浓度及其药代动力学研究[J].中国新药杂志, 2001, 10(2): 110-112
    [168]王春,王志,韩丹丹,胡彦学,赵锦,杨秀敏,宋双居.毛细管电泳法同时测定血清中的左旋多巴和甲基多巴[J].色谱, 2006, 24(4): 389-391
    [169]马红燕,郑行望,章竹君.流动注射电化学发光分析法测定左旋多巴的研究[J].分析测试学报, 2005, 24(4): 58-60
    [170]胡玉斐,吕弋,何德勇,何树华,章竹君.鲁米诺-铁氰化钾化学发光体系测定左旋多巴[J].分析试验室, 2004, 23(5): 18-20
    [171]李省云,渠文霞.左旋多巴与2,3-二氯-5,6-二氰-1,4-苯醌的荷移反应研究[J].分析试验室, 2006, 25(8): 54-56
    [172] Pagani AP, Cabezón MA, Ibá?ez GA. Simultaneous Kinetic-Spectrofluorometric Determination of Levodopa and Carbidopa using Partial Least-Squares Regression[J]. Analytical Sciences, 2009, 25(5): 633-638
    [173]王周平,章竹君,付志锋等.蘑菇组织催化氧化-流动注射荧光法测定去肾上腺素和左旋多巴[J].化学学报, 2004, 62(5): 508-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700