用户名: 密码: 验证码:
桥梁风效应的数值方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着计算速度的迅猛发展,基于计算流体动力学的数值方法正在迅速成熟,虽然这些方法还不能代替风洞试验,但已成为研究桥梁风效应问题的另一种有效手段。本文借助数值方法所作的研究概括为二个方面,一是桥梁气动弹性;二是横风中车辆、桥梁的气动特性。完成了下述工作,并得到了一些有益的结论:
     1)在计算域内采用描述流体和结构的任意拉格朗日—欧拉坐标系,推导了二维流变区域的控制方程。通过使用动网格技术,可实现对桥梁断面等刚体截面绕流场的模拟。
     2)首次将一种新的二阶Projection算法应用于描述刚体气动弹性问题的非定常不可压N-S方程的求解。通过对控制方程中对流项的时间、空间不同处理,将此算法分别引入到有限差分法和有限体积法中,并借助多层网格法对压力Possion方程迭代收敛速度的提高,达到有效、快捷地模拟不可压流动问题的目的。
     3)采用强迫振动数值法计算了平板的气动导数,包括理想平板和薄平板二部分。其中理想平板气动导数计算采用有限差分法,计算结果与Theodorsen理论解的偏差很小。薄平板气动导数计算采用有限体积法,气动导数计算结果和理想平板Theodorsen理论解、薄平板强迫振动法风洞试验结果一致性都很好,流线型截面的几个重要的气动导数,与理论解和风洞试验很吻合。
     4)采用有限体积法和强迫振动数值法计算了虎门大桥的气动导数和颤振临界风速。虎门大桥气动导数计算结果与节段模型强迫振动法、自由振动法风洞试验值一致性较好,流线型箱梁截面的几个重要的气动导数,与风洞试验的偏差很小。由数值计算得到的颤振临界风速很靠近全桥气动弹性模型风洞试验值。为评估初始攻角对桥梁断面颤振特性的影响,计算了虎门大桥在+3°、-3°初始攻角下的气动导数,研究表明正的初始攻角对虎门大桥颤振稳定性有不利影响,也证实了强迫振动法风洞试验获得的+3°初始攻角下A_2曲线趋势的正确性。
     5)采用有限体积法和强迫振动数值法计算了丹麦大海带东桥的气动导数和颤振临界风速,并将计算结果与风洞试验值、离散涡方法计算结果作了比较。本文气动导数结果与风洞试验值一致性好、偏差小,也优于离散涡方法得到的计算结果。数值模拟的颤振临界风速稍微高于风洞试验值,由于风洞试验模型包含了栏杆等附属物,因此本文的计算结果是合理的。
    
     中南大学博士学位论文
     6)用数值方法探讨了提高桥梁颤振稳定性的气动措施,采用有限差分法计
    算了具有不同中央开槽率的理想平板的气动导数,计算证实中央开槽能有效地提
    高理想平板的颤振稳定性,且颤振临界风速的提高幅度随开槽率的增大而增大。
    采用有限体积法计算了同一宽高比桥梁截面加不同形状风嘴后的气动导数。研究
    也显示,不同形状风嘴对同一宽高比截面的颤振稳定性影响不同,风嘴上、下面
    能改善桥梁截面前缘绕流特性的形状就能有效地提高截面的部振临界风速。
     刀与采用强迫振动法、自由振动法风洞试验测定气动导数技术相比,本文
    数值模拟能较准确地得到了气动导数中包含的常数,从而具备更精确的计算颤振
    临界风速的可能性,这也是本文数值模拟优于风洞试验的地方。
     8)借助数值方法研究了在横向风中,YZ力型车辆、双层客车车辆、YZ。2型
    车辆在 16m铁路简支梁桥上、双层客车车辆在 24m铁路简支梁桥或高路堤上的
    气动特性。研究发现,当YZ22型车辆、双层客车车辆运行在铁路桥梁上时,它
    们受到的气动力明显大于他们单独存在的情况。并评估了桥梁对车辆气动特性的
    影响。比较了这二种车辆气动特性的差异。研究还发现,铁路桥梁也因为车辆运
    行在其上面而受到比无车辆运行时增大的风荷载。因此,与《铁路桥涵设计基本
    规范》所给出的设计风荷载相比,建议铁路简支梁桥采用更大的设计风荷载值。
     与风洞试验相比,用本文数值方法研究桥梁风效应问题,无需昂贵的风洞试
    验设备和测量仪器,也不涉及到试验模型的设计和制作,可重复性很好,摆脱了
    风洞试验周期长、费用高的问题。数值方法完全可实现气动选型和对模型的参数
    识别。同时,由于风洞试验不能得到气动导数中包含的常数,而数值模拟可比较
    准确地计算出其中的常数,因此,如将数值模拟和风洞试验相结合,可更为准确
    的评估桥梁主梁截面的颤振稳定性。
With the immense leap in computational speeds in the recent past, numerical experiments via Computational Fluid Dynamics are fast maturing as a viable complement, if not an alternative, to wind tunnel investigations to study the various wind effects on bridges. Based on numerical approaches, the present study focuses mainly on two sections, one is aeroelasticity of bridge, the other is aerodynamic characteristics of bridges and vehicles in crosswind. It should be generalized as follows:
    1) The two-dimensional governing equations in deforming domain are derived by using an Arbitrary Lagrangian-Eulerian(ALE) coordinate system for the description of both the structure and the fluid in computational domain. The moving grid technique is adopted to simulate the fluid fields around the rigid body such as bridge girder cross-sections.
    2) A novel second-order Projection method is employed, for the first time, to efficiently solve problems governed by unsteady, incompressible Navier-Stokes equations for the description of aeroelasticity of rigid body. With different temporal and spatial treatments to the convective terms, this method has entered into both the Finite Different Method(FDM) and the Finite Volume Method(FVM), then, multigrid algorithm is employed to speedup the convergence of the Possion's equation for pressure, all this make it possible to simulate incompressible flow efficiently and quickly.
    3) The forced oscillating procedure is used to compute flutter derivatives of both the ideal flat plate and the thin plate, with the discretization methods FDM and FVM, respectively. Results of the ideal flat plate are closed to the Theodorsen's theoretic solutions. Results of the thin plate match both the Theodorsen's theoretic solutions and results from wind tunnel tests by using the Forced Vibration Technique(FVT).
    4) The FVM code is employed to compute flutter derivatives and onset wind speeds for flutter of the Humen Bridge in China. Numerical results of the Humen Bridge are compared to data obtained from section model tests in wind tunnel by using the FVT and the Free Vibration Method, better agreements are found. The comparison of onset wind speed for flutter between present study and full aeroelastic
    
    
    bridge model wind tunnel test is satisfactory. In order to evaluate the effect of original angle of attack on flutter characteristics, numerical simulations are also carried out to compute the flutter derivatives of the Humen Bridge girder cross-section in original angle of attack +3° and -3°, it is noted that positive original angle of attack take negative effect on flutter stability of Humen Bridge, also, the correctness of the trend line of A'2 in original angle of attack +3? which was obtained from section model tests by using the FVT, is validated.
    5) The FVM code is used to compute the flutter derivatives and critical wind speeds of the Great Belt East Bridge in Denmark. It is shown that the flutter derivatives of the Great Belt East Bridge are closed to results from section model wind tunnel tests, and the computed onset wind speed for flutter obtained from simulations is little higher than that from wind tunnel tests, and reasonable explanations are presented.
    6) The aerodynamic devices used to improve bridge flutter stability under smooth flow are discussed by means of numerical methods. The flutter derivatives, including those of the ideal flat plate with different slot ratio in center and different shape of fairing attached to box girder section, are computed. It is shown that a slot in center is effective to increase the onset wind speeds for flutter, and the onset wind speeds for flutter increase with the width of slot. It also indicates that different shape of fairing has different effect on flutter stability of bridge girder cross-section, the effective shapes for individual girder cross-sections can be determined by the flow properties around the cross-section, that is, the both side angle of the fairing should be almost the same as t
引文
1. Agar T.J.A.(1989). Aerodynamic flutter analysis of suspension bridges by a model technique, Journal of Engineering Structure, 11(2), 75~82.
    2. Amsden A.A., Harlow F.H.(1970). The SMAC method: A numerical technique for calculating incompressible fluid flows, Los Alamos Scientific Laboratory Report LA-4370, Los Alamos, New Mexico.
    3. Anderson H.L.(1977). Investigation of the forces on bluff bodies near the ground, M. Sc. dissertation, Department of Aeronautics, London: Imperial College.
    4. Baker C.J.(1991). Ground vehicles in high cross winds, Journal of Fluids and Structure, 5, 69~111.
    5. Baker C.J., Reynolds S.(1990a). Report On wind induced accidents of road vehicles, FR90045.
    6. Baker C.J., Robinson C.G.(1990b). The assessment of wind tunnel testing techniques for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics, 33,429~438.
    7. Bearman P.W. (1980). Review: Bluff body flows applicable to vehicle aerodynamics, Journal of Fluids Engineering, 102, 265~274.
    8. Bell J.B., Colella P., Glaz H.M.(1989). A second-order Projection methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85,257~283.
    9. Brancaleoni F., Diana G.(1993). The aerodynamic design of the Messina Straits Bridge, Journal of Wind Engineering and Industrial Aerodynamics, 48, 395~409.
    10. Brandt A.(1977). Multi-level adaptive solution to boundary value problems. Mathematics of Computation, 31,330~390.
    11. Braza M., Chassaing P., Minh H.H.(1986). Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Journal of Fluid and Mechanics, 165, 79~130.
    12. Caretto L.S., Patankar S.V., Spalding D.(1972). Two calculation procedures for steady, three-dimensional flows with recirculation, Proc. Third. Int. Conf. Num. Methods Fluid Mech., Lect. Notes Phys., 19, Springer-Verlag, New York, 60~68.
    13. Chan Y.L., Tien C.L.(1985). A numerical study of two-dimension natural convection in square open cavity, Numerical Heat Transfer, 8, 65~84.
    14. Chan Y.L., Tien C.L.(1985). A numerical study of two-dimension natural convection in shallow open cavity, Int. J. Heat Mass Transfer, 28, 603~612.
    15. Chen K.H., Pletcher R.H.(1993). Simulation of three-dimensional liquid sloshing flows using a strongly implicit calculation procedure, AIAA J., 31,901~910.
    16. Chen W.F., ZHU Z.W.(2002). "DSMC study of Rayleigh-Benard instabilities", 力学季刊,第2期.
    17. Chen Z.Q., Agar T.J.A.(1994). Finite Element-based flutter analysis of cable-suspended bridges (Discussion), Journal of Structural Engineering (ASCE.ST), V120 (3), 1044~1046.
    18. Chio C.K., Yu W.J.(1999). Finite element techniques for wind engineering, Journal of wind engineering and industrial aerodynamics, 81, 83~95.
    
    
    19. Chorin A.J.(1967). A numerical method for solving incompressible viscous flow, Journal of computational physics, 2, 12~26.
    20. Chorin A.J.(1968). Numerical solution of the Navier-Stokes equations, Math. Comp., 22, 745~762.
    21. Chorin A.J.(1973). Numerical study of slightly viscous flow, Journal of Fluid Mechanics, 57, 785~796.
    22. Cobo Del Arco D., Aparicio A.C.(1999). Improving suspension bridge wind stability with aerodynamic appendages, Journal of Structural Engineering, 125(12), 1367~1375.
    23. Coleman S.A., Baker C.J.(1990). High sided road vehicles in cross winds, Journal of Wind Engineering and Industrial Aerodynamics, 36,1383~1392.
    24. Frandsen J.B.(1999a). Computational fluid-structure interaction applied to long-span bridge design, PhD thesis, University of Cambridge.
    25. Frandsen J.B., McRobie F.A.(1999b). Computational aeroelastic modeling to guide long-span bridge cross-section design, Proc. 10th Int. Conf. Wind Eng., Copenhagen.
    26. Fujiwara A., Kataoka H,, Ito M.(1993). Numerical simulation of flow field around an oscillating bridge using finite difference method. Journal of Wind Engineering and Industrial Aerodynamics, 46&47, 567~575.
    27. Fung Y.C.(1993). A introduction to the theory of aeroelasticity, New York: Dover Publications, Inc., 160~245.
    28. Germano M., Piomelli U., Moin P., Cabot W.H.(1991). A dynamic subgrid scale eddy viscosity model, Phys. Fluid A 3(7), 1760~1765.
    29. Ghia U., Ghia K.N., Shin C.T.(1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48, 387~411.
    30. Gresho P.M.(1990a). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, Part 1: Theory, Int. J. Numer. Meth. Fluids, 11,587~620.
    31. Gresho P.M.(1990b). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, Part 2: Implementation, International Journal of Numerical Methods in Fluids, 11, 621~659.
    32. Gu M., Chang C.C., Wu W., and Xiang H.F.(1998). Increase of critical wind speed of long-span bridges using tuned mass dampers, Journal of Wind Engineering and Industrial Aerodynamics, 73, 111~123.
    33. Harlow F.H., Welch J.E.(1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, The Physics of Fluids, 12(8), 2182~2189.
    34. Hirsh R.S., Rudy D.H.(1974). The role of diagonal dominance and cell Reynolds number in implicit methods for fluid mechanics problems, Journal of Computational Physics, 16, 304~310.
    35. Hirt C.W., Amsden A.A., Cook J.L.(1974). An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics, 14, 227~253.
    36. Hughes T.J.T., Liu W.K., Zimmerman T.K.(1984). Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Meths. Appl. Mech. Engrg., 29, 329~349.
    
    
    37. Inamuro T., Adachiand T., Sakata H.(1993). Simulation of aerodynamic instability of bluff body, Journal of Wind Engineering and Industrial Aerodynamics, 46&47, 611~618.
    38. Issa R.I.(1985). Solution of the implicitly discretized fluid flow equations by operator-splitting, Journal of Computational Physics, 62, 40~65.
    39. Karniadakis G.E., Orszag M.A.(1991). High-order splitting methods for the incompressible Navier-Stokes equations, Journal of Computational Physics. 97, 414~443.
    40. Kim J., Moin P.(1985). Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, 59, 308~323.
    41. Kuroda S.(1997). Numerical simulation of flow around a box girder of a long span suspension bridge, Journal of Wind Engineering and Industrial Aerodynamics, 67&68, 239~252.
    42. Larsen A.(1997). Prediction of aeroelastic stability of suspension bridges during erection, Journal of Wind Engineering and Industrial Aerodynamics, 72, 265~274.
    43. Larsen A., Walther J. H.(1997). Aeroelastic analysis of bridge girder sections based on discrete vortex simulations, Journal of Wind Engineering and Industrial Aerodynamics, 67&68, 253~265.
    44. Le H., Moin P.(1991). An improvement of fractional step methods for the incompressible Navier-Stokes equation, Journal of Computational Physics, 92, 369~379.
    45. Lecointe Y., Piquet J.(1989). Flow structure in the wake of an oscillating cylinder, Journal of Fluid Engineering, 111, 139~148.
    46. Lee S., Lee J.S., Kim J.D.(1997). Prediction of vortex-induced wind loading on long-span bridge, Journal of Wind Engineering and Industrial Aerodynamics, 67&68, 267~278.
    47. Li Q.C.(1995). Measuring flutter derivatives for bridge sectional models in water channel, Journal of Engineering Mechanics, 121(1), 90~101.
    48. Lopez J.M., Shen J.(1998). Numerical simulation of incompressible flow in cylindrical geometries using a spectral projection method, Int. J. Appl. Sci. & Comput., 5, 25~40.
    49. Matsumoto M., Kobayashi Y., Shirato H.(1996). The influence of aerodynamic derivatives on flutter, Journal of Wind Engineering and Industrial Aerodynamics, 60, 227~239.
    50. Merkle C.L., Athavale M.(1987). Time-accurate unsteady incompressible flow algorithm based on artificial compressibility, AIAA paper 87-1137-CP, Honolulu, Hawaii.
    51. Miyata T., Yamaguchi K.(1993). Aerodynamics of wind effects on the Akashi Kaikyo Bridge, Journal of Wind Engineering and Industrial Aerodynamics, 48, 287~315.
    52. Murakami S.(1992a). Numerical study on velocity-pressure field and wind forces for bluff bodies by κ-ε, ASM and LES, Journal of Wind Engineering and Industrial Aerodynamics, 44, 2841~2852.
    53. Murakami S., Iizuka S. (1992b). CFD analysis of turbulent flow past square cylinder using dynamic LES, Journal of Fluids and Structures, 13, 1097~1112.
    54. Murakami S., Mochida A.(1995). On turbulent vortex shedding flow past 2D square cylinder predicted by CFD, Journal of Wind Engineering and Industrial Aerodynamics, 54, 191~211
    55. Murakami S., Mochida A., Sakamoto S.(1997). CFD analysis of wind-structure interaction for oscillating square cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 72, 33~46.
    56. Nagao F., Utsunomiya H., Oryu T., Manabe S.(1993). Aerodynamic efficiency of triangular fairing on box girder, Journal of Wind Engineering and Industrial Aerodynamics, 46&47,
    
    587~594.
    57. Namini A., Albrecht P., Bosch H.(1992). Finite element-based flutter analysis of cable-suspended bridges, (ASCE.ST) 118(6), 1509~1525.
    58. Nomura T.(1993a). A numerical study on vortex-excited oscillations of bluff cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 50, 555~564.
    59. Nomura T.(1993b). Finite element analysis of vortex-induced vibrations of bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 46&47, 587~594.
    60. Ogawa S., Ishiguro T.(1987). A method for computing flow fields around moving bodies, Journal of Computational Physics, 69, 49~68.
    61. Okajima A., Kitajima K.(1993). Numerical study on aeroelastic instability of cylinders with a circular and rectangular cross-section. Journal of Wind Engineering and Industrial Aerodynamics, 46&47, 541~550.
    62. Patankar S.V.(1980). Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C.
    63. Pecora M., Lecce L., Marulo F., Coiro D.P.(1993). Aeroelastic behaviour of long span bridges with "multibox" type deck sections, Journal of Wind Engineering and Industrial Aerodynamics, 48,343~358.
    64. Poulsen N.K., Damsgaard A., Reinhold T.A.(1992). Determination of flutter derivatives for the Great Belt Bridge, Journal of Wind Engineering and Industrial Aerodynamics, 41~44, 153~164.
    65. Pracht W.E.(1975). Calculating three-dimensional fluid flows at all flow speeds with Lagrangian-Eulerian computing method, Journal of Computational Physics, 17, 132~159.
    66. Preidikman S., Mook D.T.(1998). On the development of a passive-damping system for wind-excited oscillations of long-span bridges, Journal of Wind Engineering and Industrial Aerodynamics, 77, 443~456.
    67. Robi W.(1997). Comparison of LES and RANS calculations of the flow around bluff bodies, Journal of wind engineering and industrial aerodynamics, 69&71,55~75.
    68. Roose D., Driessche R.(1995). Parallel computers and parallel algorithms for CFD: an introduction, AGARD Report R-807.
    69. Sato H., Kusuhara S., Ogi K., Matsufuji H.(2000). Aerodynamic characteristics of super long-span bridges with slotted box girder, Journal of Wind Engineering and Industrial Aerodynamics, 88,297~306.
    70. Sato H., Toriumi R., Kusakabe T.(1995). Aerodynamic characteristics of slotted box girders, Proceedings of bridges into 21st century, Hong Kong, 721~728.
    71. Sarkar P.P., Jones N.P., Scanlan R.H.(1992). System identification for estimation of flutter derivatives, Journal of Wind Engineering and Industrial Aerodynamics, 41&44, 1243~1254.
    72. Sarkar P.P., Jones N.P., Scanlan R.H. (1994). Identification of aeroelastic parameters of flexible bridges, EM8, ASCE, 1718~1741.
    73. Scanlan R.H.(1993). Problematics in formulation of wind-force models for bridge decks, Journal of Engineering Mechanics, 119(7), 1353~1375.
    74. Scanlan R.H., Rosenbaum R.(1951). Aircraft vibration and flutter, Macmillan, New York.
    75. Scanlan R.H., Sabzevari A.(1969). Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter, J. Mech, Engrg. Sci., 11(3), 234~242.
    76. Scanlan R.H., Tomko J.J.(1971). Airfoil and bridge deck flutter derivatives, Journal of Engineering Mechanics, ASCE, 97(6), 1171~1737.
    
    
    77. Schulz K.W., Kallinderis Y.(1998). Unsteady flow structure interaction for incompressible flows using deformable hybrid grids, Journal of Computational Physics, 143,569~597.
    78. Selvam R.P.(1993). Finite element modeling of flow around circular cylinder using LES, Journal of Wind Engineering and Industrial Aerodynamics, 36, 129~139.
    79. Selvam R.R, Tarini M.J., Larsen A.(1998). Computer modeling of flow around bridges using LES and FEM, Journal of Wind Engineering and Industrial Aerodynamics, 77&78,643~651.
    80. Shen J.(1992). On error estimates of the projection method for the Navier-Stokes equations: first order schemes, SIAM. J. Numer. Anal., 29, 57~77.
    81. Shen J.(1993). A remark on the Projection-3 method, Inter. J. Numer. Methods Fluids, 16, 249~253.
    82. Shen J.(1996). On error estimates of the Projection methods for the Navier-Stokes equations: second-order schemes, Mathematics of Computation, 215(65), 1039~1065.
    83. Soh W.Y., Goodrich J.W.(1988). Unsteady solutions of incompressible Navier-Stokes equations, Journal of Computational Physics, 79, 113~134.
    84. Son, J.S., Hanratty T.J.(1969). Numerical solution for the flow around a cylinder at Reynolds number of 40,200 and 500, Journal of Fluid Mechanics, 35,369~386.
    85. Spalding D.B.(1972). A novel finite-difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. Methods Eng., 4, 551~559.
    86. Tamura T.,(1993). On the reliability of two-dimensional simulation for unsteady flows around a cylinder-type structure, Journal of Wind Engineering and Industrial Aerodynamic, 35, 275~298.
    87. Tamura T.,(1999). Reliability on CFD estimation for wind-structure interaction problems, Journal of Wind Engineering and Industrial Aerodynamics, 81, 117~143.
    88. Tamura T., Itoh Y., Wada A., Kuwahara K.(1993). Numerical study of pressure fluctuations on a rectangular cylinders in aerodynamic oscillations. Journal of Wind Engineering and Industrial Aerodynamics, 54&55,239~250.
    89. Tannehill J.C., Anderson D.A., Pletcher R.H.(1997). Computational fluid mechanics and heat transfer(second edition),Taylor & Francis, Washington, D.C.
    90. Tau E.Y.(1994). A second-order Projection method for incompressible Navier-Stokes equations in arbitrary domains, Journal of Computational Physics, 115, 147~152.
    91. Taylor I.J., Vezza M.(1999). Analysis of the wind loading on bridge deck sections using a discrete vortex method, Wind Engineering into 21st Century, Larsen, Larose & Livesey (eds.), Balkema, 1345~1352.
    92. Temam R.(1984). Navier-Stokes equations, Amsterdam: Elsevier Science, 395~426.
    93. Theodorsen T. (1935). General theory of aerodynamic instability and the mechanism of flutter. NACA Report No.496, Langley, Va.
    94. Thomas P.D., Lombard C.K.(1979). Geometric conservation law and its application to flow computations on moving grids, AIAA Journal, 17(10), 1030~1037.
    95. Thompson J.F., Thames F.C., Mastin C.W.(1974). Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, Journal of Computational Physics, 15,299~319.
    96. Van Kan J. (1986). A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. SCI. STAT. Comput., 7(3), 870~891.
    97. Walther J.H.(1994). Discrete vortex method for two-dimensional flow past bodies of arbitrary
    
    shape undergoing prescribed rotary and translational motion, Ph.D. thesis, Department of fluid mechanics, Technical University of Denmark, AFM-94-11.
    98. Walther J.H., Larsen A.(1997). Two dimensional discrete vortex method for application to bluff body aerodynamics, Journal of Wind Engineering and Industrial Aerodynamics, 67&68, 183~193
    99. Wardlaw R.L.(1971). Some approaches for improving the aerodynamics stability of bridge road decks, Proc. 3rd Int. Conf. on wind effects on building and structures, Tokyo, Japan, 931~940.
    100. Weinan E., Liu J.G.(1995). Projection method Ⅰ: Convergence and numerical boundary layers. SIAM J. Numer. Anal., 32(4), 1017~1057.
    101. Wilde K., Fujino Y.(1998). Aerodynamic control of bridge deck flutter by active surfaces, Journal of Engineering Mechanics, ASCE, 124(7), 718~727.
    102. Yoshizawa A.(1991). Eddy-viscosity-type subgrid-scale model with a variable Smagorinshy coefficient and its relationship with the one equation model in large eddy simulation, Phys. Fluid A 3(8), 2001~2009.
    103. Zang Y., Street R.L., Koseff J.R.(1993). A dynamic mixed subgrid scale model and its application to recirculating flows, Phys. Fluid A 5(12), 1760~1765.
    104. Zhang L.B.(1994). A multigrid solver for the steady incompressible Navier-Stokes equations on curvilinear coordinate systems, Journal of Computational Physics, 113, 26~34.
    105. Zhang X.G., Liu Y.Q.(1995). Numerical computation of flow over a train in cross winds, Journal of Southwest Jiaotong University, 3 (2), 163~168.
    106. Zhou C.Y., So R.M.C., Lam K.(1999). Vortex-induced vibrations of an elastic circular cylinder, Journal of Fluid and Structures, 13, 165~189.
    107.曹丰产(1999).桥梁气动弹性问题的数值计算,同济大学申请博士学位论文,上海:同济大学桥梁工程系.
    108.曹丰产(2000).桥梁断面的气动导数利颤振临界风速的数值计算,空气动力学学报,18(1),26~33.
    109.陈政清(1993).桥梁颤振临界风速值上下限预测与多模态参与效应,结构风工程新进展及应用,上海:同济大学出版社,197~203.
    110.陈政清(1994).桥梁颤振临界状态的二维分析与机理研究,一九九四年斜拉桥国际学术讨论会论文集,上海,302~306.
    111.埃米尔.希谬,罗伯特·H·斯坎伦著,刘尚培等译,(1992).风对结构的作用—风工程导论,上海:同济大学出版社.
    112.公路桥梁抗风设计指南编写组(1996).《公路桥梁抗风设计指南》,北京:人民交通出版社,20~23.
    113.华旭刚,祝志文,陈政清(2001).“基于ANSYS二次开发的大跨度桥梁颤振导数分析”,第十届全国风工程与工业空气动力学会议论文集.
    114.贺德馨,周瑜平,张亮亮等编(1996).风工程与工业空气动力学,绵阳:中国空气动力研究与发展中心,6-11.
    115.李锋,周伟江,汪翼云(1995).三维大钝头体简谐振动绕流的数值模拟,力学学报,27(4),477~481.
    116.李锋,王保育,汗翼云,崔尔杰.(1995).振动翼型和襟翼的绕流特性研究,力学学报,25(1),1~7.
    117.李加武,林志兴(2001).雷诺数效应研究的回顾与展望,第十届全国结构风工程学术会
    
    议论文集,263~268.
    118.刘超群(1995).多层网格法及其在计算流体力学中的应用,北京:清华大学出版社.
    119.陆夕云,童秉纲,庄礼贤(1993).均匀来流中横向振动圆柱近迹涡结构的数值模拟,力学学报,25(5),537~546.
    120.罗奇,P.J.钟锡昌,刘学宗译(1983).计算流体动力学(第一版),北京:科学出版社,95~97.
    121.[日]余步事故技术调查委员会(1988).余步事故技术调查委员会报告书,50~61.
    122.[日]铁道综研报告(1990).横风中车辆空气动力学特性的数值模拟.
    123.宋锦忠,陈艾荣,项海帆(1996).虎门大桥的抗风稳定性分析,中国土木工程学会桥梁及结构工程学会第十二届年会论文集,691~696.
    124.宋锦忠,林志兴,徐建英(2001).桥梁抗风气动措施的研究及应用,第十届全国结构风工程学术会议论文集,142~147.
    125.谭维炎(1998).计算浅水动力学——有限体积法的应用,北京:清华大学出版社,118~119.
    126.陶文铨(2000).计算传热学的近代进展,北京:科学出版社.
    127.铁道部第三勘测设计院(1999).TB10002.1-99铁路桥涵设计基本规范.北京:中国铁道出版社,23~25.
    128.童纲,夏南,李潜(1985).物体绕流的离散涡方法,力学进展,15(3),318~328.
    129.同济大学,交通部公路科学研究所(1995).虎门悬索桥抗风稳定性试验研究之四:施工阶段抗风稳定性研究.
    130.王懋勋(1994).我国高速列车气动力研究进展.第四届全国风工程及工业空气动力学学术会议论文集,25~38.
    131.王开春,朱国林,金钢(1998).车辆气动特性的数值计算,第五届全国风工程及工业空气动力学学术会议论文集,409~413.
    132.吴子牛(2001).计算流体力学基本原理,北京:科学出版社.
    133.项海帆(2001).进入21世纪的桥梁风工程研究,第十届全国结构风工程学术会议论文集,17~21.
    134.杨咏昕,葛耀君,项海帆(2000).改善大跨度悬索桥抗风稳定性能的实践和探讨,第十四届全国桥梁学术会议论文集,上海:同济大学出版社.
    135.余南阳(1998).时速160Km、200Km列车通过隧道时产生的压力波研究,第五届全国风工程及工业空气动力学学术会议论文集,381~386.
    136.于向尔,陈政清(2001).桥梁土梁断面颤振导数的强迫振动识别法,中国公路学报,14(2),36~39.
    137.张宝琳,谷同祥,莫则尧(1999).数值并行计算原理与方法,北京:国防工业出版社.
    138.张小刚,刘应清(1996).高速列车湍流绕流三维数值模拟研究,西南交通大学学报,6,262~266.
    139.赵海恒,黄美荣(1998).两列车在隧道中交会期间的压力瞬变的数值模拟,第五届全国风工程及工业空气动力学学术会议论文集,392~397.
    140.周瑜平,王懋勋(1998).我国车辆空气动力学试验研究综述,第五届全国风工程及工业空气动力学学术会议论文集,554~559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700