用户名: 密码: 验证码:
苯醚甲环唑悬浮剂稳定体系构建与性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药悬浮剂以其高效、安全、经济、环境友好等优点相对于其他传统剂型有更大的应用优势,但是长期以来农药悬浮剂的稳定性问题一直制约着制剂的发展。本文以30%苯醚甲环唑悬浮剂为研究对象,在构建其稳定体系的前提下,从吸附、沉降、流变等方面系统研究了分散剂、增稠剂等助剂对悬浮体系稳定性的影响,同时对苯醚甲环唑制剂在不同植物叶片上的润湿性能进行了评价。主要研究结果如下:
     1.30%苯醚甲环唑悬浮剂配方的确定
     (1)本研究通过对润湿分散剂、增稠剂筛选,结合正交设计方法对配方进行优化,得到了30%苯醚甲环唑悬浮剂的稳定配方(质量百分比):苯醚甲环唑30%,聚羧酸盐分散剂D1001为3.5%,润湿剂888为3.5%,Tanemul Ps54为2.5%,防冻剂丙三醇3%,增稠剂分别为黄原胶0.08%+硅酸镁铝1.2%或黄原胶0.1%+SM-A870.1%,去离子水补足100%。制剂各项指标符合国标规定,热贮后粒径仍保持在1-2μm,悬浮率仍能达到90%以上。
     (2)30%苯醚甲环唑悬浮剂是通过湿法研磨制备的,悬浮剂的粒径大小、粒度分布与加工时间、氧化锆珠的粒径大小和用量有很大关系。通过对30%苯醚甲环唑悬浮剂砂磨工艺的研究,确定选用1.2mm小粒径氧化锆珠,物料总质量与氧化锆珠体积比为1:1.8,研磨时间为2h时,得到的悬浮剂颗粒粒径保持在1-2μm,而且粒度分布较窄,悬浮剂能保持良好的物理稳定性。
     2.30%苯醚甲环唑悬浮剂稳定性能研究
     本研究在30%苯醚甲环唑悬浮剂配方基础上,探讨了聚羧酸盐分散剂及温度、pH值等影响因素对悬浮剂体系稳定性能的影响,具体研究结果如下:
     (1)通过研究不同粒径的苯醚甲环唑颗粒对聚羧酸盐分散剂D1001的吸附性能,发现吸附表现为Langmuir吸附,而且苯醚甲环唑颗粒粒径小于1250目时,吸附量最大;在温度为25-55℃范围内,吸附量会随着温度的升高先增大后减小,在35℃时吸附量最大;而在pH值3-11范围内,吸附量也表现为先增大后减小的趋势,且在pH值为7时吸附量最大,分散剂D1001在苯醚甲环唑颗粒表面的吸附一级动力学显示在120min时吸附达到平衡,其吸附速率K1为0.0605min-1。
     (2)通过研究聚羧酸盐分散剂D1001对苯醚甲环唑悬浮剂稳定性能的影响,发现在添加量为4%时悬浮体系的粒径、跨度、黏度、沉降体积均达到最小值,而悬浮率达到最大值。
     3.不同增稠剂对苯醚甲环唑悬浮剂流变影响
     在基础配方30%苯醚甲环唑悬浮剂的研究基础上,研究黄原胶、海藻酸钠、SM-A87等悬浮助剂对苯醚甲环唑悬浮剂体系流变性能的影响,结果显示添加以上悬浮助剂的体系均显示出剪切稀化的假塑性特征,尤其是黄原胶和SM-A87的加入表现显著。
     本论文首次系统研究了深海细菌胞外多糖SM-A87在苯醚甲环唑悬浮剂体系中的流变特性,研究发现SM-A87可在苯醚甲环唑悬浮体系中形成网状结构,而且随着SM-A87添加量的增加,网状结构强度增加,稠度系数KH及屈服值τH增大,体系表现出剪切稀化的假塑性特征。在25-55℃温度范围内,悬浮体系均显示剪切稀化的假塑性特征,而且随着温度的升高,其剪切稀化现象减弱,体系粘度降低,其黏度活化能E为27.26kJ/mol,说明体系流变性能对温度有一定依赖性;而pH值对悬浮体系的流变性影响比较复杂,随着pH值的增大,稠度系数KH减小,而流变指数n增大,但都小于1,说明体系虽然保持假塑性特征但有减弱趋势;而NaCl对体系的影响并不显著,体系仍保持剪切稀化的假塑性特征。
     4.黄原胶与SM-A87、硅酸镁铝的协同效应研究
     为了进一步探讨黄原胶/SM-A87、黄原胶/硅酸镁铝在30%苯醚甲环唑悬浮剂中的助悬机理,论文从流变学方面系统研究了两个复配体系的协同效应以及影响因素,从而进一步指导增稠剂复配体系在苯醚甲环唑悬浮剂中的应用。
     (1)黄原胶与SM-A87的复配体系研究结果表明,当黄原胶与SM-A87以质量比1:1复配时具有一定的协同增效作用,具有显著的“剪切稀化”假塑性特征。通过考察二者增效复配体系在不同的温度、pH值和无机电解质条件下的流变性能,发现复配体系的流变性受温度影响较小,在25-55℃范围内,仍然保持明显的剪切稀化的假塑性特征;而复配体系的流变性能受pH值影响较为显著,随着pH值的增大,其屈服值τH、稠度系数KH明显增大,流性指数n也明显减小;无机电解质NaCl对SM-A87与黄原胶复配体系流变影响研究发现,即随着盐离子浓度的增加,屈服值、稠度系数KH减小,而流性指数n增大,复配体系假塑性特征减弱。
     (2)硅酸镁铝与黄原胶的复配研究发现,硅酸镁铝与黄原胶用量比为13.7︰1时,具有一定的协同增效效应;对复配体系影响因素的研究发现,增效复配增效体系随着pH值和温度的升高,屈服值和稠度系数K呈现减小趋势,流性指数n则逐渐增大,说明复配体系假塑性特征减弱;而随着NaCl添加浓度的增大,增效复配体系呈现稠度系数K增大,流性指数n减小的趋势,假塑性特征增强。
     5.苯醚甲环唑悬浮剂在亲水、疏水植物叶片上润湿性能评价
     研究选用基础配方30%苯醚甲环唑悬浮剂,通过添加有机硅助剂,并与市售10%苯醚甲环唑微乳剂比较,探讨了三个制剂配方在亲水植物黄瓜叶片和疏水植物甘蓝叶片的润湿性能。研究发现,三种配方药剂的临界胶束浓度均接近或低于其田间有效剂量浓度,稀释药液表面张力分别为51.6mN/m,38.9mN/m,25.5mN/m,均能在亲水植物黄瓜叶片上润湿,其中添加了有机硅助剂的悬浮剂发生流失现象,在疏水植物甘蓝叶片上,30%苯醚甲环唑悬浮剂药液不能润湿,发生滚落现象。结果说明,30%苯醚甲环唑悬浮剂润湿性能与自身推荐剂量浓度、药液临界胶束浓度、植物叶片临界表面张力密切相关。
Pesticides suspension concentrate (SC) has the advantages of biological efficacy, safety,economic and environment-friendly over many other traditional formulations. However, issueof SC stability has restricted the development of formulation for a long time. In this paper,stabile suspension system of30%(w/v) difenoconazole was constructed. The effects ofdispersants, thickeners on the adsorption, sedimentation and rheology of suspension systemwere studied. The wetting property of different difenoconazole formulation on leaves ofdifferent plants were evaluated. The main results were as follows:
     1. Determination of30%difenoconazole SC formulation
     The formulation of difenoconazole SC was optimized with the orthogonal design method.The optimum formula of30%(weight percent) difenoconazole SC were difenoconazole30%,D10013.5%,8883.5%, tanemulps542.5%, XG0.08%+aluminum magnesium silicate1.2%or XG0.1%+SM-A870.1%, glycerol3%, and fill water to100%. The particle sizemaintained1-2μm, with a suspension rate of more than93%after heat storage, all the otherindex were in accorded with the requirements of SC.
     30%difenoconazle SC was prepared by wet-grinding method. The particle size andparticle size distribution of formulation were closely related to the processing time and thediameter and amount of zirconium oxide beads. The results of sand rubbing study suggestedthat good stability of the suspension concentration with narrow particle size distribution couldbe obtained at the zirconia bead diameter of1.2mm, the mass ratio of the material withzirconia beads volume of1:1.8, and a grinding time of2hours. The resulted particle size ofsuspension maintained at1-2μm.
     2. Study on the stability of30%difenoconazole SC
     On the basis of30%difenoconazole SC formula, the influence of dispersant and factorsof temperature and pH on the stability of suspension system were investigated. Specificresults were as followed:
     (1)Adsorption of dispersant D1001on the surface of difenoconazole of different particlesize were determined, the results showed that the adsorption expressed as the Langmuir model,The adsorption amount reached the maximum at the particle size of less than1250mesh.During a temperature range of25-55℃, the adsorption amount had a trend of first increasing and then decreasing with the increasing temperature, and the maximum adsorption wasobtained maximum at the temperature of35℃. Similar trend was found within the maximumadsorption at pH of7. Kinetics of interaction between D1001and difenoconazole showedbetter agreement with lagergren first order kinetics, the adsorption capacity reached themaximum within120min, and with the adsorption rate K1of0.0605min-1.
     (2)By adding of different amount of the dispersant D1001, it is found that the particlesize, span, viscosity, sedimentation volume of the suspension system reached their minimumvalues, and while the suspension rate got the maximum value when4%dispersant D1001wasadding.
     3. On the basis of30%difenoconazole SC formula, effect of Xanthan gum, sodiumalginate, and SM-A87as suspension additives, on the rheological behavior of prepareddifenoconazole SC was evaluated. The suspension systems with all above additives havepseudoplastic of “shear-thinning” characteristics, among which Xanthan gum and SM-A87played more significant roles.
     In this paper, the rheological property of expolysaccharide secreted by a deep-seamesophilic bacterium in difenoconazole suspension was studied systematically for the firsttime. The results indicated that SM-A87formed a network structure in the suspension system,and this network structure enhanced with the increase of the SM-A87addition. Theconsistency coefficient KHand yield value τHof suspension increased correspondingly, andexhibiting “shear thinning” characteristics of pseudoplastic fluid. The effect of temperature onthe suspension with SM-A87showed significant pseudoplasticity in range of25-55℃. The“shear thinning” property weakened and the viscosity reduced with the increasingtemperature. The corresponding viscosity activation energy E is27.26kJ/mol. Resultsindicated that the suspension system of SM-A87was dependent on the temperature. Effect ofpH on the difenoconazole suspension concentrates with SM-A87was more complex,consistency coefficient of suepesnion KHdecreased and rheological index “n” increased withthe increasing pH. But both KHand “n” were less than1, suggesting that the systemmaintained pseudoplastic characteristics with a decreasing trend. The SC added with NaClmaintained the “shear thinning” property of pseudoplasticity, but not significantly changedwith the NaCl concentration.
     4. The synergistic characteristics of rheological properties of Xanthan gum/SM-A87andXanthan gum/aluminum magnesium silicate were studied, in order to guide the application ofthickening agent system in difenoconazole SC.
     (1) The complex system of xanthan gum with SM-A87was studied. A strong synergisticeffect was observed when the mass ratio of Xanthan gum and SM-A87was1:1. The systemwas obvious pseudoplastic fluid with shear-thinning property, and the viscosity wassignificantly increased. The rheological behavior of complex system of Xanthan gum withSM-A87was less affected by the temperature with apparent shear-thinning pseudoplasticcharacteristics in the range of25to55℃. The effect of pH on the mixed system was moresignificant, the consistency coefficient KHand yield value τHincreased with the increasing ofpH, but rheological index “n” decreased markedly. Effects of inorganic electrolyte NaCl onthe rheology of SM-A87and xanthan gum seemed more complicated, the coefficient KHandyield value τHincreased and rheological index “n” decreased with the increase of saltconcentration, and the pseudoplastic characteristics weakened.
     (2) Compounds of magnesium aluminum silicate and xanthan gum were also investigated.Synergistic effect on viscosity has been found when magnesium aluminum silicate andxanthan gum reached a ratio of13.7:1. With the increasing of pH, the consistency coefficientKHand yield value τHdecreased, while the rheological index “n” increased. As for theinfluence of temperature, pseudoplastic characteristics of the system decreased with theincrease of temperature, indicating from the decreased consistency coefficient K and yieldvalue τHdecreased, and the gradually increased rheological index “n”. in the matter ofinorganic salt NaCl influence, consistency coefficient K increased and rheological index “n”decreased with the increasing NaCl mass fraction.
     5. Wetting properties evaluated of difenoconazole SC on leaves of hydrophilic andhydrophobic plants
     The wetting properties of30%difenoconazole SC and with organosilicon wetting agent,10%difenoconazole ME on the hydrophobic plant cabbage and hydrophilic plant cucumberleaves were investigated. The critical micelle concentration(CMC) of three formulations arewere close or blow to its effective concentrations, and surface tension of30%difenoconazoleSC is51.6mN/m,10%difenoconazole ME38.9mN/m, and SC withorganosilicon wetting agent25.5mN/m. three formulations have good wetting properties onthe cucumber leaves, and formulation adding organosilicon wetting agent occurred drainphenomena; but30%difenoconazole SC could not wet the cabbage leaves and rolled downfrom leaves. The results showed that wetting property30%difenoconazole SC was closelyrelated to recommended dose concentration, CMC and the critical surface tension of plant.Itcan be seen from the results, for the hydrophilic plant,30%difenoconazole SC can reach thecritical surface tension, and wetting in leaf distribution, while for the hydrophobic plant, it is necessary that wetting agent added in the formulation to reduce the surface tension and achieve betterwetting effect.
引文
卜小莉,黄啟良,王国平,李凤敏,折冬梅,张春华.30%吡虫啉悬浮剂中触变性稳定体系的构建.农药科学与管理,2006,27(4):24-28.
    曹慧,李涛,廖晓兰,聂思桥,陈九星,梁骥,刘昱霖,廖力华.500g/L噻虫嗪悬浮种衣剂配方研究.精细化工中间体,2011,41(5):17-20,26.
    柴月娥,龚富忠,张国利.超分散剂应用进展.天津化工,2006,20(6):4-6.
    陈福良.农药制剂加工中助剂的发展趋势及助剂的应用误区.中国农药,2009,1:19-21.
    陈雷,刘忠海,沈磊,鲍俊,刘文汉,高琛.在纯水中高能球磨稀土氧化物制备超细纳米悬浮液,物理化学学报,2004,20(7):722-726.
    陈启元,王建立,李旺兴,尹周澜.分散剂对氧化铝悬浮液分散稳定性的影响.中国粉体技术,2008,14(6):33-37.
    陈甜甜,路福绥,李现伟,张树琴,侯万国.Mg-MMH对除虫脲水悬浮剂流变性的影响.高等学校化学学报,2010,31(10):2036-2041.
    成家壮.农药水性化剂型的前景.广州化工,2001,29(3):1-3.
    成家壮.我国农药剂型和制剂的可持续发展,广州化工,2009,37(7):3-7.
    戴干策,陈敏恒.化工流体力学.北京:化学工业出版社,2005.
    戴肖南,侯万国,李淑萍.无机电解质及聚合物对Mg-Al-混合金属氢氧化物-高岭土分散体系触变性的影响.应用化学,2002,19(4):338-341.
    但盼,邱学青,周明松.温度及剪切时间对水煤浆表观黏度及流变性影响.煤炭科学技术.2008,36(6):103-106.
    范建平,杨勇利.槐豆胶与黄原胶的协效性研究.西北植物学报,2002,22(2):396-400.
    冯建国,路福绥,陈甜甜,李伟.浅谈农药悬浮剂物理稳定性的研究方法和手段.中国农药,2009,7:43-46.
    冯建国,路福绥,陈甜甜,张树琴,李慧.聚合物分散剂对氟虫脲水悬浮剂分散稳定性的影响.高等学校化学学报,2010,31(7):1386-1390.
    冯建国,路福绥,李慧.浅谈我国主要水基性农药剂型的发展概况.中国农药,2010,05:44-46.
    冯建国,路福绥,李明,李伟,王秀秀.悬浮液的稳定性与农药水悬浮剂研究开发现状.农药研究与应用,2009,13(3):12-19.
    冯建国,路福绥.浅谈有机溶剂及其在农药剂型加工中的应用.中国农药,2010,(9):43-47.
    冯若,李化茂.声化学及其应用.合肥:安徽科学技术出版社,1995:27.
    高毕亚,郑柏存,傅乐峰.聚羧酸盐类分散剂对超细CaCO3粉体的吸附行为研究.涂料工业,2008,38(4):47-51.
    高春燕,卢跃红,田呈瑞.枸杞多糖流变学特性研究,食品科学,2009,30(21):28-31.
    高德霖.农药悬浮剂的物理稳定性问题.中国化工农药专业委员会第八届年会论文
    集,1992:406-410.
    公瑞煜,肖传建,徐诗强,石朝周,王洛礼,刘景民.聚羧酸型梳状共聚物超分散剂的构性关系研究.高分子材料科学与工程,2003,19(1):132-135.
    顾中言,许小龙,韩丽娟.不同表面张力的杀虫单微乳剂药滴在水稻叶面的行为特性.中国水稻科学,2004,18(2):176-180.
    顾中言,许小龙,韩丽娟.几种植物临界表面张力的估测.现代农药,2002,(2):18-20.
    顾中言.影响杀虫剂药效的因素与科学使用杀虫剂的原理和方法-表面活性剂与杀虫剂药效的关系,江苏农业科学,2005,3:72-77.
    顾中言.影响杀虫剂药效的因素与科学使用杀虫剂的原理和方法-表面活性剂与杀虫剂药效的关系,江苏农业科学,2005,4:46-50
    顾中言.影响杀虫剂药效的因素与科学使用杀虫剂的原理和方法-表面活性剂与杀虫剂药效的关系.江苏农业科学,2005,5:57-59.
    郭瑞,丁恩勇.黄原胶的结构、性能与应用.牙膏工业,2007,2:36-39.
    郭守军.槐豆胶与黄原胶复配胶的流变性研究.食品工业科技,2005(6):152-155.
    韩书霞,崔岩,庄占兴.黄原胶用量对50%丁醚脲水悬浮剂流变性的影响.农药,2009,48(12):875-877.
    郝成伟,吴伯麟,利基彦.聚乙二醇分散剂对高纯超细α-Al2O3制备影响.材料导报,2007,21:163-167.
    何林,慕立义.农药悬浮剂物理稳定性的预测和评价.农药科学与管理,2001,22(5):10-12.
    胡国华.功能性食品胶.北京:化学工业出版社,2004:217-237.
    华乃震.农药剂型中非安全添加物的问题与对策.现代农药,2009,8(4):3-10.
    华乃震.农药悬浮剂的进展、前景和加工技术.现代农药,2007,6(1):1-7.
    黄啟良,李风敏,袁会珠,杨代斌,齐淑华.颗粒粒径和粒谱对悬浮剂贮存物理稳定性影响研究.农药学学报,2001,(3):77-80.
    黄树华,陈铭录.助剂如何适应环保型农药制剂的发展.中国农药,2007(6):24-28.
    贾海红,韩宝平,马卫兴,周洪英.壳聚糖吸附溴酚蓝的动力学及热力学研究.环境科学与技术,2011,3(5):43-46.
    江体乾.化工流变学.上海:华东理工大学出版社,2004.
    江体乾.流变学进展.上海:华东化工学院出版社,1990.
    江体乾.流变学在我国发展的回顾与展望.流变学进展,武汉:华中理工大学出版社,1999:1-5
    江万权,朱春玲,陈祖耀,胡源,张培强.微米级浓悬浮体系中粒子的沉降稳定性及其表征方法.中国科学技术大学学报,2001,31(6):663-667.
    蒋建新,朱莉伟,安鑫南,吴春华.植物多糖胶流变性质的研究.中国野生植物资源,2003,22(5):29-33.
    蒋建新,朱莉伟,徐嘉生.野皂荚豆胶的研究.林产化学与工业,2000,20(4):59-61.
    蒋凌雪,马红,陶波.农药助剂的安全性评价.农药,2009,48(4):235-238.
    蒋以超,黄天栋.胶体化学,北京:北京农业出版社,1993:244.
    雷鸣,卢晓黎,陈正刚,肖凯.黄原胶在低浓度时的流变特性及影响因素研究.食品科学,2000,21(12):16-18.
    冷阳.制剂技术的发展和中国农药新剂型的产业化开发.世界农药,2009:9
    李登好,郭露村. pH对α-Al2O3-H2O-聚丙烯酸悬浮液稳定性的影响.中国陶瓷工业,2003,12(4):1-4.
    李登好,朱晓文,郭露村.温度对α-Al2O3-H2O-PAA悬浮液稳定性的影响材料科学与工程学报.2006,24(2):227-229.
    李凤生.超细粉体技术.北京:国防工业出版社,2000.
    李海平,刘升波,侯万国.一种深海中温菌胞外多糖水溶液的流动行为.高等学校化学学报,2012,33(5):1025-1030.
    李继成,董立峰,刘振邦,王智.剪切转速、时间和乳化剂含量对水乳剂粒度分布的影响.世界农药,2011,33(3):53-57.
    李俊明,唐浩,祖智波,李凤明,徐万涛,吴家全.苯醚甲环唑的合成研究。农药研究与应用,2009,13(1):18—21.
    李淑萍,侯万国,戴肖南,胡季帆,李冬青. PH值对Fe-Al-Mg-MMH/钠质蒙脱土悬浮体触变性的影响.高等化学学报,2002,23(9):1763-1766.
    李淑萍,侯万国,戴肖南,胡季帆,李冬青.剪切速率对Fe-Al-Mg-MMH/钠质蒙脱土悬浮体触变性的影响.化学学报,2002,60(4):749-752.
    李玮,顾明元,金燕萍.分散剂用量对碳化硅浆料流变性能的影响.硅酸盐学报,2004,32(11):1356-1360.
    李言郡,朱慧,吴伟都,王雅琼,施文蓉.一价阳离子对黄原胶溶液流变特性的影响研究.中国食品添加剂,2012(3):77-81.
    廖洪涛. XVT凝胶的胶体性能研究.日用化学工业,1992,6:51-54.
    凌世海,温家钧.中国农药剂型加工工业60年发展之回顾与展望.安徽化工,2009,35(4):1-7.
    凌世海.从农药液体制剂中的溶剂谈农药剂型的发展.中国农药,2010,(12):16-23.
    凌世海.我国农药加工工艺现状和发展建议.农药,1999,38(10):19-24.
    刘步林,吕盘根,邵维忠.农药剂型加工技术.北京:化学工业出版社,1998:316-323.
    刘程,张万福,陈长明.表面活性剂应用手册(第二版).北京:化学工业出版社,1996:28-43.
    刘程,周汝忠。食品添加剂实用大全.北京:北京工业大学出版社,1994.
    刘佳,卢秀萍,吴蒙,韩永.超分散剂及其在颜料分散中的应用.上海涂料,2009,47(1):29-31.
    刘科.触变性研究新进展.胶体与聚合物,2003,21(3):31-33.
    刘秀敏,陈利梅,李德茂.黄原胶流变性特性的研究.中国酿造,2011,3:115-118.
    刘宣勇,苏文强,钱端芬,谢建国.陶瓷粉料在液体介质中分散的稳定机制.陶瓷工程,1999,(1):52
    刘学建,古宏晨,黄莉萍,符锡仁,古宏晨.分散剂对氮化硅浆料流变性的影响.无机材料学报,1999,14(3):491-494.
    刘源煌.介绍一种胶体保护剂-硅酸镁铝.日用化学工业,1984,5:31-36.
    刘占山,任新国,李旭君,蔡湘衡,杨桂花.农药悬浮剂研究概况.农药科学与管理,2007,28(11):45-48.
    刘振宇,林奇英,谢联辉.环境相容性农药发展的必然性和可能途径.世界科技研究与发展,2003,5:11-16.
    卢向阳,徐筠,陈莉.几种除草剂药液表面张力、叶面接触角与药效的相关性研究.农药学学报,2002,4(3):67-71.
    卢晓黎,陈正刚,肖凯.黄原胶在低浓度时的流变特性及影响因素研究.食品科学,2000,21(12):16-18.
    卢毅屏,陈志友,冯其明,欧乐明,张国范.表面活性剂对微细滑石的分散作用.中南大学学报,2006,37(1):16-19.
    陆伯岑,李海峰,江纪民,沈雁飞.不同研磨料介质在砂磨机中的研磨效果.上海涂料,1999,3:45-46.
    陆树新,张秋禹,周桓.超分散剂对重质碳酸钙的两亲性改性研究.化学工程,2009,37(10):54-57.
    陆天长.粒度分布沉降分析法中一些问题的讨论.南京工业大学学报,1980,01:88-96.
    路福绥.农药水悬浮剂的研究开发.山东农药信息,2007,5(15):17-20.
    路福绥.农药悬浮剂的物理稳定性.农药,2000,39(10):8-10.
    吕秀亭.苯醚甲环唑市场及在我国的登记情况.山东农药信息,2012,9:36-39.
    马俊凯,欧晓明,步海燕,蔡德玲,聂思桥,梁骥.正交试验法在10%茚虫威悬浮剂表面活性剂选择中的应用.现代农药,2009(6):15-18.
    孟凡平,周维芝,马玉红,高金强.微生物胞外多糖SM-A87EPS固定化条件优化及对Pb(Ⅱ)吸附的研究.山东大学学报(工学版),2011,41(3):160-166.
    潘立刚,陶岭梅,张兴.农药悬浮剂研究进展.农药市场信息,2005,11:13-15.
    潘相卿,曾凡,傅晓燕.腐植酸类水煤浆添加剂性能与其级分的关系研究(1)分散性能与
    级分的关系.煤炭转化,1999,22(1):38-42.
    秦友山,李汉承.Zeta电势探索聚羧酸盐分散剂在农药水分散粒剂中的最佳用量.现代农药,2008,7(6):10-14.
    邱学青,周明松,王卫星,谢宝东,杨东杰.不同分子量木质素磺酸钠对煤粉的分散作用研究.燃料化学学报,2005,33(2):179-183.
    冉宁庆,戴郁菁,朱光,何其慧,谢力,胡柏星,沈健,余定基.亚甲基萘磺酸-苯乙烯磺酸-马来酸盐对水煤浆的分散作用研究.南京大学(自然科学),1999,35(5):643-647.
    任俊.超细粉体的分散技术及其应用综述.中国粉体工业:2007,1:5-8.
    任智.黄原胶的流变性质及其在食品工业中的应用.四川食品与发酵,2006,(3):4-7.
    邵维忠,王早骧,缪鑫才.农药助剂.第三版.北京:化学工业出版社,2002:10-12.
    沈德隆,周瑛,唐霭淑,李青,李铁英.农药多组分悬浮体系的流变学行为研究.农药,1995,5(34):6-9.
    沈娟,黄啟良,夏建波,陈丹,折冬梅,李凤敏,胡炜.分散剂及黄原胶对多菌灵悬浮剂流变性质的影响.农药学学报,2008,10(3):354-360.
    石键.农用表面活性剂125-C的研究与开发.河北农业大学学报,1996,19(4):56-61.
    时均,袁权,高从开.膜科学技术手册(第一版).北京:化学工业出版社,2001:638-648.
    孙德军,刘尚营,杨智,侯万国,张春光.Al-MgMMH正电胶体粒子体系的流变学.高等学校化学学报,2001,22(6):1002-1005.
    唐中山,苏红军,徐世艾.黄原胶流变学性质的实验研究.烟台大学学报(自然科学与工程版),2008,21(2):130-133.
    陶晡,康占海,张金林.硅酸镁铝及及其与黄原胶协同使用对30%辛硫磷微囊悬浮剂贮存物理稳定性的影响.农药学学报,2012,14(5):574-578.
    涂伟萍.水性涂料.北京:化学工业出版社,2005.
    屠豫钦.农药使用技术图解-技术决策.北京:化工工业出版社,2004.
    屠豫钦.农药剂型和制剂与农药的剂量转移.农药学学报,1999,1(1):1-6.
    汪剑炜,王正东,胡黎明.超分散剂的应用.涂料工业,1995,(4):29-33.
    王敬,周维芝,申博玲,侯万国,张玉忠.新型深海中温菌Wangia profunda(SM-A87)胞外多糖对对硝基苯胺的吸附研究.山东大学学报(理学版),2009,44(5):33-39.
    王敬.新型深海中温菌Wangia profunda(SM-A87)胞外多糖对重金属和有机物的吸附性能研究.山东大学,2009.
    王浚,高濂.高含量Y-TZP悬浮液的流变性特性.无机材料学报,1999,14(4):651-656.
    王少会,刘佩珍,徐卫兵,任凤梅,周正发.超分散剂改性滑石粉填充PP复合材料的性能研究.塑料工业,2008,36(1):53-56.
    王伟,冯晓健,胡华国.阴离子型水性超分散剂对纳米TiO2的表面改性.南京师范大学学报,2008,8(2):51-55.
    王元兰,李忠海,张乐华.低浓度海藻酸钠的流变性及影响因素研究.食品与机械,2008,24(1):29-31.
    王振,李光玉,高越,范仁俊,张润祥.嘧霉胺悬浮剂的润湿性能及其靶标表面性质研究.农药学学报,2012,14(5):551-556.
    王正东,胡黎明.超分散剂的作用机理及应用效果.精细石油化工,1996,6:59-62.
    王正东,张雪莉,胡黎明.超分散剂的结构特征与合成路线.化学世界,1996,(2):59-63。
    魏福祥,郝莉莉,王金梅.表面活性剂对环境的污染及检测研究进展.河北工业科技,2006,23(1):57-60.
    魏孔虎.超分散剂在提高酞青蓝颜料流动度中的应用.甘肃化工,2004,4:41-44.
    魏湘寅,邓万定,金方.医药剂型在农药中的应用及发展趋向.农药,2010,49(3):157-160.
    温景蒿.悬浮体力学—流体力学与胶体科学交叉的新兴学科.力学进展,1987,17(3):291-315.
    吴乐,徐同台,韩斅,潘小镛.黄原胶高温稳定性的影响因素.钻井液月完井液,2011,28(6):77-80.
    吴其晔,巫静安.高分子材料流变学导论.北京:化学工业出版社,1994:11-12.
    徐年凤,闻柳.有关悬浮剂稳定性的几个问题.世界农药,2002,22(3):42-44.
    徐世艾.黄原胶的制备.食品与发酵工业,1999,26(5):56-61.
    徐妍,马超,贾然,蔡梦玲,胡奕俊,吴学民.超分散剂在莠去津颗粒表面吸附的红外和拉曼光谱学研究.光谱学与光谱分析,2011,31(3):640-643.
    薛群翔,程萌,张冬燕.甲基硫菌灵悬浮剂的稳定性.农药,2009,48(3):180-182.
    杨化桂,张辉,古宏晨,方图南.剪切稀化悬浮体触变性的研究.高校化学工程学报,1999,13(6):506-510.
    杨晓东,尚广瑞,李雨田,宣明.植物叶表的润湿性能与其表面微观形貌的关系.东北师大学报(自然科学版),2006,38(3):91-95.
    杨旭宇,姜宏伟,聂玉静.聚丙烯酸型超分散剂在聚乙烯/氢氧化镁复合材料中的应用.塑料科技,2009,37(9):38-42.
    杨旭宇,姜宏伟.超分散剂改性氢氧化镁及其在聚烯烃中的应用.塑料,2007,36(6):12-16.
    殷习初译.设计农药剂型以获得最佳生物活性.农药,1997,19(5):47-53.
    印万忠,宋振国,王泽红. DA分散剂在超细SiO2粉磨过程中的助磨作用研究.矿冶,2006,15(4):30-34.
    英H.A.巴勒斯等.《流变学导引》,北京:中国石化出版社,1992.
    袁会珠,李永平,邵振润.silwet系列农用喷雾助剂使用技术指导.中国农业科学出版社,2007,09:20
    袁会珠,齐淑华,杨代斌.药液在作物叶片上的流失点和最大稳定持留量研究.农药学学报,2000,2(4):66-71.
    袁卫.超分散剂在单张纸胶印黑墨中的应用.上海涂料,2007,45(12):10-13.
    岳湘安,郝江平,陈家琅.固体颗粒在宾汉流体中的阻力系数与沉降速度.石油钻采工艺,1993,15(1):1-8.
    张保华,杨利,王智.苯醚甲环唑·多菌灵水悬浮剂配方的研究与开发.浙江农业科学,2011(5):1105-1109.
    张健,涨罡,王涛,梁勇,王福会.剪切力和PH值的变化对SiC纳米粉体分散行为的影响.硅酸盐通报,2006,2:118-120.
    张民.超分散剂的发展现状及前景.科技信息,2010,17:26-29.
    张清岑,黄苏萍.非离子型超分散剂对SiO2分散稳定性的影响.矿产综合利用,2001,4:15-19.
    张霞,朱金丽,房宽峻,蔡玉青.聚羧酸型分散剂对水性超细颜料分散体系的作用.北京服装学院学报,2005,25(1):1-5.
    张小军,张宗俭.三角坐标法在25%噻虫嗪WDG配方优选中的应用.现代农药,2008,7(2):17-19.
    张小平.胶体界面与吸附教程.广州:华南理工大学出版社,2008:147.
    张亚媛,洪雁,顾正彪,朱玲.玉米淀粉与黄原胶复配体系流变和凝胶特性分析.农业工程学报,2011,7(9):357-362.
    张岩春,戴智勇,刘跃辉,李盛钰,杨贞耐.一株融合菌株G23产胞外多糖的流变学特性.中国乳品工业,2011,39(2):21-23,30.
    张一宾.表面活性剂在农药及植物上的作用特性及功能.世界农药,2008,30(4):14-19.
    赵大健,王锐.黄原胶及其在食品工业上的应用.食品与发酵工业,1986(3):48-54.
    赵国玺,朱埗瑶.表面活性剂作用原理.中国轻工业出版社,2003:152.
    赵九蓬.新型功能材料设计与制备工艺.北京:化学工业出版社,2003.
    赵谋明,孔静,刘丽娅,赵强忠.黄原胶/CMC符合稳定剂对酪蛋白乳液稳定性的影响.吉林大学学报,2012,12(5):1343-1348.
    赵永发,刘绍文,张亚,柏海玲,戴良英.自动化农药剂型研究思考.中国农学通报,2009,25(03):179-184.
    赵正涛,王秀菊,安鑫,陈亮.黄原胶流变学特性及其协效研究.中国食品添加剂,2009,6:76-81.
    郑水林,钱柏太,卢寿慈.非金属矿物填料表面改性研究进展.粉体技术,1998,4(2):24.
    郑之明,杨守志,樊永红,姚黎明,余增亮.黄原胶发酵过程中流变学行为和气液传质研究.天然气化工,2006,31(5):27-31.
    中国标准出版社编.(化学工业标准汇编)表面活性剂.北京:中国标准出版社,1997:48-53.
    周本新.关于农药制剂中有机溶剂的毒性与环保化.农药市场信息,2010,(23):17.
    周本新.农药制剂的环保化和剂型选择.农药市场信息,2008,(15):16-18.
    朱晓文,李登好.聚电解质分散剂对超细氧化铝悬浮液的稳定性影响.淮阴工学院学报,2006,15(1):50-53.
    庄占兴,路福绥,陈甜甜,李伟,郭雯婷,罗万春.聚合物分散剂对氟铃脲水悬浮剂流变性质的影响.应用化学,2010,27(4):470-473.
    Bell NS, Wang, L, Sigmund, WM, et al. Temperature Induced Forming: Application ofBridging Floccultation to Near-net ShapeProduction of Ceramic Parts[J].Z. Metallkd.1996,90:388~392.
    BinnerJ G P, Murfin A M. the Effect of Temperature, Heating Method and State ofDispersion on the Vacuum Filter Casting ofAlumina Suspensions[J].J EurCermSoc.,1998,18:791~798.
    Braun DB, Rosen MR. Rheology modifiers handbook: practical use and application. NewYork:William Andrew Publishing:2000.
    Cecile Pagnoux,*Marina Serantoni, Richard Laucournet, Thierry Chartierand Jean-FrancoisBaumard. Influence of the Temperature on the Stability of Aqueous AluminaSuspensions. Journal of the European Ceramic Society,1999,19(11):1935-1948.
    Chen H. H., Xu S. Y., Wang Z. Interaction between flaxseed gum and meat protein. J. FoodEng.,2006,77(2):295-303.
    Clasen C., Kulicke W. M. Determination of viscoelastic and rheo-optical material functionsof water-soluble cellulose derivatives. Prog. Polym. Sci.,2001,26(9):1839-1919.
    Formate technical manual section B5:Compatibility with additives.Cabot Specialty Fluids,2009.
    Giles, C. H., J. H. McEwan, S. N. Nakhwa, and D. Smith.1960. Studies in adsorption. XI. Asystem of classification of solution adsorption isotherms and its use in diagnosis ofadsorption mechanisms and in measurements of specific areas of soils. J. Chem.Soc.:3973-3993.
    Grahm-Bryce I.J.,Royal Aer.Soc.Symposium on Practical Crop Protection from the Air,London,1978:1-15.
    Grigorescu G., Kulicke W. M.. Adv. Polym. Sci.,2000,152:1-40.
    Haiping Li,Renfu Chen,Xiaomei Lu,Wanguo Hou. Rheological properties of aqueoussolution containing xanthan gum and cationic cellulose JR400.carbohydrate polymers,2012,90:1330-1336.
    Haiping Li,Wanguo Hou,Yu zhong Zhang. Rheological properties of aqueous solution ofnew exopolysaccharide secreted by a deep-sea mesophilic bacterium.carbohudratepolymers,2011,84:1117-1125.
    Haiping Li,Wanguo Hou. Influences of pH and electrolyte on the rheological properties ofaqueous solution of exopolysaccharide secreted by a deep-sea mesophilic bacterium.foodhydrocolloids,2011,25:1547-1553.
    H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯.流变学导引,北京:中国石化出版社,1992.
    H.B.Winzeler,R.Vogel,A.Dudler,徐义宽.流变学测试应用于胶悬剂开发和质量控制.农药译丛,1980,6:1-6.
    Hoffman RL. INTERRELATIONSHIPS OF PARTICLE STRUCTURE AND FLOW INCONCENTRATED SUSPENSIONS. MRS Bulletin,1991,8:32-37.
    John Provost, Cedric Dieleman,Mike Freche, et al. Helizar in EVO P2100涂料型数码印花墨水.印染,2005(10):9-10.
    Kang K S,Pettit D J. Industrial gums. New York: Academic Press,1993:341-398.
    Kelessidis V.C.,Tsamantaki C.,Dalamarinis P.Gelation of water–bentonite suspensionsat high temperatures and rheological control with lignite additionApplied Clay Sci.,2007,38:86-96.
    Kulkarni, A.R., Soppimath, K.S.,Aminabhavi,T.M. In-vitro release kinetics ofcefadroxil-loaded sodium alginate interpenetrating network beads.Eur J Pharm Biopharm.2001,51(2):127-133.
    Luckham P. F. The physical stability of suspension concentrates with particular reference topharmaceutical and pesticide formulations P estic. S ci.,1989,25(1):25-34.
    Mahaveer D. Kurkuri, Anandrao R. Kulkarni,Tejraj M. Aminabhavi..Rheologicalinvestigations on the dispersions of sodium alginate and guar gum mixtures at differenttemperatures. polym.-plast.technol.eng.,2002,41(3):469-488.
    McHugh DJ. A guide to the seaweed industry. FAO Fisheries Technical Paper,2003,No441.
    Mohamed Kheireddine Aroua,S P P Leong,L Y Teo, et al.Real-time determination ofkinetics of adsorption of lead(Ⅱ)onto palm shell-based activated carbon using ionselective electrode. Bioresource Technology,2008,99(13):5786-5792.
    MORENO J,VARGAS M A,MADIEDO J M, et al. Chemical andRheological Propertiesof an Extracellular Polysaccharide Produced by the Cyanobacterium Anabaena sp. ATCC33047. Biotechnology and Bioengineering,2000,67(3):283–290.
    NEINHUIS C,BARTHLOTT W1Characterization and distribution of water-repellent,self-cleaning plant surfaces.Annals of Botany,1997,79:667-6771.
    Pang X M, Xu M X, Liang H,et al. Rheological Properties and Thixotropy Model ofConcentrated Aqueous Silicon Slurry for Gel Casting. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,10:1-10.
    Phillips G o,Williams P A.Handbook of hydrocolloids.USA:Woodhead Publishing Ltd,2000.
    Quadrat,bohdanecky,P.Munk, Influence of Thermodynamic Quality of a Solvent upon Non‐
    Newtonian Viscosity of Poly (methyl Methacrylate) Solutions.J.Polymer Sci.1967,16:95.
    R. A. Speer and M. A. Tung. Concentration and temperature dependence of flow behavior ofxanthan gum dispersions.Journal of Food Science.1986,51(1):96-98.
    Rosen M J Surfactant Interfacial Phenomena.New York:John Wiley&sons,1989.
    Russel WB. Concentrated colloidal dispersions.MRS Bulletin.1991,8:27-31
    Russel WB. MRS Bulletin.1991,8:27-31.
    SIMON PIERCE, KATE MAXWELL, HOWARD GRIFFITHS,et al.Hydrophobic layersand epicuticular wax powders in Bromelaceae.American Journal of Botany,2001,88(8):1371-1389.
    Vivian Florián-Algarín&Aldo Acevedo..Rheology and Thermotropic Gelation of AqueousSodium Alginate Solutions.J Pharm Innov,2010,5:37-44.
    Vivian Florian-Algarín and Aldo Acevedo-Rullán. Rheology and Gelation Temperature ofAqueous Gelatin and Sodium Alginate Solutions. The XVthInternational Congress onRheology, The Society of Rheology8thAnnual Meeting,2008:618-620.
    WASCHE ROLF,NAITO MAKIO,HACKLEY VINCENT A. Experimental Study on ZetaPotential and Streaming Potential of Advanced Ceramic Powders.Powder Technology,2002,123:275-281.
    Xu R L,Wu C F,Xu H Y. Particle Size and Zeta Potential of Carbon Black in LiquidMedia.Carbon,2007,45:2806-2809.
    Zhu B Y,G T.Adv Colloid Interface Sci,1991,37:1.
    Zong-qi Chen, Ning-hua Wang,En-shan Han,,Juan Chen,Guang-xin Wang. The effects ofcalciumion, pH value on the rheological properties of sodium alginate solution.Actachimica sinica,1991,49,462-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700