用户名: 密码: 验证码:
高寒地区原油储存过程中的传热问题研究及工艺方案优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随我国石油战略储备工程进展,多数大中型油库也相继完成了增储工程,总储油量随之增大。由于我国部分油田所产为三高原油,低温流动性差,加之客观的地理环境条件,导致高寒地区易凝高粘原油的安全存储问题越来越引起重视。总的来说,原油在储罐内可以有三种不同的存在状态:静态储存、加热及收发油的周转过程。针对不同运行状态,对原油流动及传热特性研究,对于制定合理的工艺方案、辅助工程决策、丰富工程传热问题的研究成果都具有重要意义。目前,该问题的研究主要集中在原油静态储存的温度场测试上,虽然给出了直接的运行数据,但对于传热机理、瞬态自然对流与温度场的耦合无法提供足够的信息。而对于加热和收发油状态,目前尚没有针对性的研究。鉴于此,本文采用数值模拟和现场测试相结合的方法,对高寒地区,浮顶罐储存原油在静态储存、加热及收发油过程中的流动及传热特性开展研究,在保证油品安全存储的前提下,优化原油储库的工艺方案,具体包括以下研究内容:
     首先,采用现场测试和室内实验相结合的方法对大型浮顶储罐表面温度及散热损失进行测试,测试对象包括不同容量储罐罐顶和罐壁的不同位置,所得到的结论包括罐体表面温度分布信息,不同部位的散热损失,罐顶浮舱及罐壁保温结构等难以通过理论计算确定的结构导热系数,基于测试结果对罐体保温效果进行了评价。
     其次,将浮顶罐内原油的储存状态分为静态储存、加热及收发油的周转状态,分别开展不同状态下原油流动及传热特性研究。
     对于静态存储问题,将原油温降过程看做是具有复杂热边界条件的圆柱形空间内高Pr数流体的非稳态自然对流冷却问题,建立了二维轴对称计算模型及相应的数值求解方法。通过对不同工况的计算分析,确定温降过程中,对应自然对流的产生、发展、衰退及消失,原油依次经历了局部温降、整体温降、温度分层和导热为主的温降阶段,对每一阶段原油的流动及传热特性进行了细致的剖析,同时也对温降过程中低温导致的凝油产生及发展变化过程进行了相应的描述。在此基础上,回归了浮顶罐不同边界的自然对流换热关联式,改进了基于热平衡原理的原油温降预测方法,明确了储罐直径、液位和保温结构等不同因素对原油温降的影响规律,探讨了储罐的节能储油工况。
     对于原油的加热问题,根据传热机理不同,以管式加热和热油循环作为两种典型的加热方式进行研究。针对管式加热,建立了单加热管、竖排及横排管束的数值计算模型,得到单加热管自然对流换热的两组实验关联式,更适用于对原油储罐管式加热方式下的热力计算分析。对于竖排管束,中心距较小时,换热恶化,随中心距增大,管束平均Nu数增加,最大可高出单管15%以上,出现换热强化和最大换热强度的临界中心距随Ra增大而减小。此外,研究结果表明竖排管束中底管羽流温度场是导致上层管Nu数随时间波动变化的主要原因。相比而言,横排管束换热更为稳定,仅中间管略有强化,但应避免中心距在2D以下,否则换热强度将显著下降。针对热油循环加热过程的研究表明该加热方式具有热浮力射流特性。稳定加热时,油温轴向分层分布;非稳定加热时,换热更强烈,油温混合效果更好,且热油循环的Fr数越大,液位越低,加热效果越好。将Fr数和相对淹没深度作为影响因素,回归出了表层最高温度点的计算模型,作为对热油循环加热方式调节的依据。进一步对两种加热方式的优缺点进行了对比分析,认为热油循环方式更适用于矿场原油库等中转油库,而管式加热方式更适于战略储备库等中转系数较小的油库。
     对收发油过程中原油储罐的传热及流动特性进行了现场测试及数值计算分析,结果表明,当进油温度高于罐内油温时,原油温度及速度场分布具有热浮力射流特性,进油热量可以被有效利用,而发油温度可以近似代表相同高度处的罐内油温。不同进油参数下的计算结果指出,大排量、低温差的进油方式更有利于进油热量被充分利用。
     最后,在以上研究的基础上,以储运系统总运行费用最小为目标,原油库的罐组运行模式、维温方案、罐体保温方案等为决策变量,建立了储运系统工艺方案优化的数学模型,制定了储运系统优化运行的基本准则。
In recent years, most of the medium and large scale oil depots’ reserves have beenincreased consecutively as our country strategic petroleum reserve progresses, so the oilreserving are increasing in our country. The storage security issues of crude oil in extremelycold areas have been gradually recognized because of high wax content, high freezing pointand high viscosity, the poor low-temperature fluidity, and the objective geographicalenvironment conditions of some areas. There are three existential states of the oil in a storagetank: static state, heating state and turnover process of loading and uploading oil. Research onoil flow and heat-transfer characteristics for different running states is significant informulating rational process scheme, guiding engineering practice, and enriching thetheoretical study of heat-transfer issues in engineering. At present most of the researchesfocus on the tests of oil static state temperature field. Although the direct running datas can begiven, the information is not enough for heat-transfer mechanism and coupling calculating oftransient natural convection velocity field and temperature field. And currently, there is notargeted study on heating state or loading and uploading state. Given that, this paper carriedout the research of oil flow and heat-transfer characteristics during three processes by themethodology of combining numerical models and field tests. And the paper also optimized theoil tank process scheme on the premise of ensuring reserve safety. Detailed research workincludes the following parts:
     First of all, methodology of combining field tests and numerical models was used to testthe surface temperature distributions and heat loss of large-scale floating roof tank. Testobjects include different positions of different capacity tanks’ top and wall. The conclusionsinclude tank surface temperature field distributions, different positions heat loss, and thebuoyancy module and tank wall insulation constructions’ coefficient of thermal conductivitywhich are difficult to be determined by theory methods. And the paper evaluated the heatpreservation effect of tanks based on the test results.
     Secondly, the paper carried out the oil flow and heat-transfer characteristics research ofthree oil states in storage tank: static state, heating state and loading and uploading oil state.
     For the static state, the paper treated oil temperature drop process as unsteady naturalconvection cooling problem of high Pr value fluid in cylindrical space which has complicatedheat boundary conditions. And the paper built two-dimension axisymmetric model and thenumerical solution method of the process. The results of different work conditions calculationand analysis have shown that the fluid heat-transfer coupled with flow during the process oftemperature drop. There are four temperature drop periods corresponding to natural convection’s creation, development, recession and disappearance processes, which are localtemperature drop, quick temperature drop, temperature stratification and heat conductionperiod. On this basis the paper regressed with the floating roof tank different boundariesnatural convection heat-transfer correlation, and presented a new way which can calculate oiltemperature drop. The way can not only predict the oil temperature changing, but also candescribe the oil temperature distributions of different periods in tank. The paper calculated oiltemperature drop in different work conditions by the new way, obtained the influence of tankdiameter, liquid level and thermal insulation construction for oil temperature drop, anddiscussed the optimal condition. For the oil heating state, the paper divided heating type intotwo types: tubular heating and hot oil circulation, according to heat-transfer mechanism. Fortubular heating, the paper established the mathematical model of single heating pipe, verticaland horizontal tubes. And the paper got two experimental relations of single heating pipenatural convection heat-transfer when Ra value is between4.2×104~1×109, Pr value isbetween97~454and Ra value is between1.3×1010~1.7×1012, Pr value is between97~910.The relations are more applicable to thermal calculation analysis of oil tank tubular heating.The heat-transfer characteristics of vertical tubes are different from single heating pipe. Theaverage Nu value of tubes is up to15%more than the single one. The adjacent tubes plumenot only changed the heat-transfer characteristics, but also made top layer Nu value fluctuatesalong with time. The further analysis has shown that the change of plume temperature field isthe main reason for the fluctuation. In contrast, horizontal tubes heat-transfer characteristicschange less, and more stable. The research on hot oil circulation heating process has shownthat this heating way has the characteristics of heated buoyant jets. When heating state isstable, oil temperature hierarchical distribution is along the axis; rather, the performance ofheat-transfer is more excellent. And the bigger the Fr value is, the better the heating effect willbe. As a basis for hot oil circulation heating method adjustment, the Fr value and relativedepth of submergence are taken as the acting factors to regress surface maximum temperaturecalculation model. The comparison of two methods shows that hot oil circulation is moreapplicable to transfer oil depots, and tubes heating is more suitable for strategic oil depots.
     Field test and numerical compute analysis performed on heat-transfer and flowcharacteristics in oil tank shows that when inlet temperature is higher, oil temperature andvelocity fields have the features of heated buoyant jets. And outlet temperature isapproximately equal to the oil temperature at the same liquid level in tank. The results atdifferent parameters show that oil inlet heat can be in full use when flow is mass andtemperature difference is less.
     Finally, based on the research work above, the paper established oil storage and transportsystem process scheme optimization models and operation principles using minimized cost ofoperation as objective function and tanks operation mode, heating scheme and insulationscheme as decision variables.
引文
[1]金芳,董小亮.建立和完善我国石油战略储备的探析[J].中外能源,2008,15(4):15-19.
    [2]李斌业,肖道平,田德志.对我国石油战略储备的思考[J].油气储运,2008,27(10):1~3.
    [3]刘承婷.蒸汽管道保温材料与保温结构优化研究[D].东北石油大学博士学位论文,2013.
    [4]陆显洁,方铎荣,等.输热管道散热损失的测试研究[J].节能技术,1984,3:19-22.
    [5]刘晓宇,刘东,等.上海石化蒸汽输热管道的实测与评价[J].节能技术,2008,26(148):140-144.
    [6]吴观乐,陆显洁,等.热网管道热损失现场测试方法探讨[J].工程热物理学报
    [7]苏磊,付军隆,等.热力管道的测试与技术分析[J].节能,1999,(3):41-43.
    [8]马溥,司丹,等.输热管道散热损失测定的数理统计方法[J].节能技术,1987,5:30-33.
    [9]王圣妹,章宗德,等.输热管道热损现场测试四种方法对比研究[J].能源技术,1996,2:6-8.
    [10]刘晓燕,袁荣坤.热流计测试精度修正的模拟试验研究[J].大庆石油学院学报,1994,18(2):69-72.
    [11]段泉圣,刘禾等.锅炉散热量的实时测量[J].现代电力,1999,16(4):60-63.
    [12]吴永宁.热采注汽锅炉保温结构效果测试与问题分析[J].油气田地面工程,2009,28(8):7-9.
    [13]段光才,赵飞松.加热炉热平衡测试及分析[J].油气储运,2005,24(6):50~52.
    [14]于开源,张连素,曾玲敏.油田加热炉热效率影响因素现场测试研究[J].应用鞥能源技术,2001,4:3-5.
    [15]肖茹月,张烈辉,宋晓琴.原油管道热损失计算[J].石油与天然气化工.2005,34(1):37-39.
    [16]胡鸣.环境温度和风速对加热炉外壁温度及散热损失的影响[J].石油化工设备技术.2005,26(1):5-7.
    [17]GB4272-92.设备及管道保温技术通则[S].
    [18]GB8174-87.设备及管道保温效果的测试和评价[S].
    [19]邹平华,贾晶等.对《设备及管道保温技术通则》中允许最大散热损失值的探讨[J].暖通空调,2007,37(4):41-46.
    [20]王顺利.原油储罐散热分析及低温余热综合利用[J].辽宁化工,2013,42(6):700-704.
    [21]许玉磊,姜平峰.原油储罐的热损失模拟计算[J].内蒙古石油化工,2008,3:81-82.
    [22]彭国庆.原油储罐的热能消耗分析及控制措施[J].油气储运,2001,20(5):49-52.
    [23]王明吉,张勇等.储油罐原油温度实时监测报警系统的研制与开发[J].仪器仪表学报,2001,22(3):200-201.
    [24]刘泽.浮顶储油罐温降规律与温度监测报警系统的研究[D].大庆石油学院硕士学位论文,2009.
    [25]朱秀峰,黄秀杰,朱秀莲.储油罐温度分布规律初探[J].油气田地面工程,2005,21(5):136-137.
    [26]王明吉,张勇,曹文.立式浮顶原油储罐温降规律[J].油气田地面工程,2005,24(12):11-12.
    [27]王明吉,张勇,曹文.原油储罐纵向温度分布规律[J].大庆石油学院学报,2004,28(5):74-75.
    [28]于达,方徐应等.大型浮顶罐储油温降特点[J].油气储运,2003,22(9):47~49.
    [29]于达,大型浮顶油罐测温系统的研发[J].油气储运,2005,24(8):41-43.
    [30]徐祥政,储罐测量仪表的应用与探讨[J].仪表技术,2008,11:51-52
    [31]沈为民,张艺,等.油罐测温用光纤温度传感器系统的研究[J].电子激光,1997,8(4):254-256.
    [32]李建树,汪运芬.油罐温度测量[J].自动化与仪器仪表,1996,6:34-36.
    [33]GB50058-92.爆炸和火灾危险环境电力装置设计规范[S].
    [34]GB3836-2000.爆炸性气体环境用电气设备[S].
    [35]张丽娜,陈保东.油罐温度场的数值求解[J].设计与研究,2003,4:1-3.
    [36]司马英杰.储油罐内温度场分布的模拟计算[J].油气田地面工程,2012,9:30-31.
    [37]Bin Zhao. Numerical simulation for the temperature changing rule of the crude oil in astorage tank based on the wavelet finite element method[J]. J Therm Anal Calorim.2012;107:387-393.
    [38]赵志明.大庆北油库浮顶储油罐非稳态传热问题的数值计算[D].大庆石油学院硕士学位论文,2009.
    [39]李旺,王情愿等.大型浮顶油罐温度场数值模拟[J].化工学报.2011,62(S1):108-112.
    [40]Busson C, Miniscloux C. Modele technoeconomique de calorifugeage des reservoirs defuel lourd[J]. Rev. Gen. Therm.1980;226:785-797.
    [41]Kumana J.D, Kothari S.P. Predict storage tank heat transfer precisely[J]. Chem. Engng.1982;6:127-132.
    [42]Venart J.E.S, Mendes de Sousa A.C, Laplante M, Pickles R. Free convective flows inlarge heated oil storage tanks[J]. Proc. Seventh Int. Heat Trans. Conf.1982;2:293-297.
    [43]Cotter M, Charles M. Transient cooling of petroleum by natural convection in cylindricalstorage tanks—I. Development and testing the numerical simulator[J]. InternationalJournal of Heat and Mass Transfer.1993;36:2165–2174.
    [44]Cotter M, Charles M. Transient cooling of petroleum by natural convection in cylindricalstorage tanks—II. Effect of heat transfer coefficient, aspect ratio andtemperature-dependent viscosity[J]. International Journal of Heat and Mass Transfer.1993;36:2175–2182.
    [45]Cotter M, Charles M. Transient cooling of petroleum by natural convection in cylindricalstorage tanks: A Simplified Heat Loss Model[J]. The Canadian Journal of ChemicalEngineering.1992;70:1090-1093.
    [46]Cotter, M. A.,“Transient Natural Convection in Petroleum Storage Tanks”[D], Ph.D.thesis, University of Toronto (1991)
    [47]Oliveski R.D.C, Macagnan M.H, Copetti J.B, Andreas de La Martiniere Petroll. Naturalconvection in a tank of oil: experimental validation of a numerical code with prescribedboundary condition[J]. Experimental Thermal and Fluid Science.2005;29:671-680.
    [48]Nurten Vardar. Numerical analysis of the transient turbulent flow in a fuel oil storagetank[J]. International Journal of Heat and Mass Transfer.2003;46:3429–3440.
    [49]Gross R.J. An experimental study of single medium thermocline termed energy storage[J].ASME Report.1982;82-HT-53:1-8.
    [50]Hyun J. Transfer process of thermally stratifying an initially homogeneous fluid in anenclosure[J]. International Journal of Heat and Mass Transfer.1984;27:1936-1938.
    [51]Nelson J.E.B, Balakrishnan A.R, Murthy S.S. Experiments on stratified chilled watertanks[J]. International Journal of Refrigeration.1999;22:216-234.
    [52]Papanicolaou E, Belessiotis V, Transient natural convection in a cylindrical enclosure athigh Rayleigh numbers[J]. International Journal of Heat and Mass Transfer.2002;45:1425-1444.
    [53]Lin W, Armfield S. Long-term behaviour of cooling fluid in a vertical cylinder[J].International Journal of Heat and Mass Transfer.2005;48:53-66.
    [54]Rodriguez I, Castro J, Perez-Segarra C.D, Oliva A. Unsteady numerical simulation of thecooling process of vertical storage tanks under laminar natural convection[J]. InternationalJournal of Thermal Sciences.2009;48:708-721.
    [55]Oliveski R.C, Krenzinger A, Vielmo H.A. Experimental and numerical analysis of athermal storage tank[J]. Fluid Mechanics and Thermodynamics.2001;3:2193–2198.
    [56]Oliveski R.C, Krezinger A, Vielmo H.A. Cooling of cylindrical vertical tanks submittedto natural internal convection[J]. International Journal of Heat and Mass Transfer.2003;46:2015-2026.
    [57]Fernandez-Seara J, Francisco J. Uhia, Alberto Dopazo J. Experimental transient naturalconvection heat transfer from a vertical cylindrical tank[J]. Applied Thermal Engineering.2011;31:1-15.
    [58]Lin W.X, Armfield S.W. Direct simulation of natural convection cooling in a verticalcircular cylinder[J]. International Journal of Heat and Mass Transfer.1999;42:4117-4130.
    [59]李海荣.原油储罐循环加热系统工艺要点[J].油气田底面工程,2000,19(2):67.
    [60]赵健.原油库生产运行过程仿真与优化技术研究[D].东北石油大学硕士学位论文,2011.
    [61]刘育峰.浮顶原油储罐的设计[J].石油规划设计,2004,15(4):34-36.
    [62]李超,李旺,刘人玮,宇波.大型油罐加热技术及温度场研究现状与展望[J].油气储运,2013,11:.
    [63]侯磊,贾玲玲,黄维秋.常温条件下油罐长期储存易凝高黏原油后输转作业加热方案的选择[J].中外能源,2009,14:88-92.
    [64]赵长海.电磁感应涡流加热技术[J].油气田地面工程,2003,22(5):77.
    [65]赵连勤,李青生,王风驰,姚景泉,边容江.油罐局部快速加热器[P].山东:CN201092440,2008-07-30.
    [66]常智.油罐局部加热浮式输油装置[P].湖北:CN2331621,1999-08-04.
    [67]任炎.油罐电加热棒的应用与实践[J].油气储运,1992,11(3):52-54.
    [68]刘广宇,付国. U型管式油罐加热器的改造[J].炼油设计,1997,27(2):30-31.
    [69]吴廷元,立式储罐门型加热器[J].油气储运,1983,2:38-46.
    [70]吴廷元,五万立方米浮顶原油罐门型加热器[J].油气储运,1989,8(6):32-43.
    [71]郭雅文,陈福利.储罐水平排管式高效蒸汽加热器的研发与应用[J].石油和化工设备,2009:12-14.
    [72]王晓梅,王红菊,石蕾等.浮顶油罐降温储存高凝油品[J].油气储运,2007,26(12)12~15.
    [73]TanakaH. Method of storing heavy hydrocarbon oiland vessel therefore[P]. US,4230138.1980.
    [74]TanakaH. Apparatus for storing heavy hydrocarbon oil and vessel therefor[P]. US,4470402.1984.
    [75]W. Nusselt, Das Grundgesetz des warmeuberganges[J], Gesundheitsingenieur38(1915)477–482.
    [76]W. Nusselt, Die Warmeabgabe eines waagrecht liegenden Drahtes oder Rohres in3.Flüssigketein und Gasen[J], Zeitschrift des Vereines deutscher Ingenieure41(1929)1475–1478.
    [77]G. Ackermann, Die warmeabgabe eines horizontalen geheizten Rohres an kaltes Wasserbei natrlicher Konvektion[J], Forsch. Geb. Ingenieruw.3(1932)42–50.
    [78]V.T. Morgan, The overall convective heat transfer from smooth circular cylinders[J], Adv.Heat Transfer11(1975)199–264.
    [79]S.W. Churchill, H.H.S. Chu, Correlating equations for laminar and turbulent freeconvection from a horizontal cylinder[J], Int. J. Heat Mass Transfer18(1975)1049–1053.
    [80]W.H. McAdams, Heat Transmission[J],3rd ed., McGrawHill, New York,1954, pp.175-177.
    [81]S.W. Churchill, H.S. Chu, Correlation equations for laminar and turbulent free convectionfrom a horizontal cylinder[J], Int. J. Heat Mass Transfer18(1974)1049-1053.
    [82]F. Karim, B. Farouk, Natural convection heat transfer from a horizontal cylinderbetweenvertical confining adiabatic walls[J], J. Heat Transfer108(1986)291–298.
    [83]T.H. Kuehn, R.J. Goldstein, Numerical solution to the Navier–Stokes equations forlaminar natural convection about a horizontal isothermal circular cylinder[J], Int. J. HeatMass Transfer23(1980)971–979.
    [84]B. Farouk, S.I. Guceri, Natural convection from a horizontal cylinder-turbulent regime[J],Trans. ASME, J. Heat Transfer104(1982)228-235.
    [85]Y. Hattori, Turbulent natural convection boundary layer around horizontal cylinder[J],Proceedings of National Heat Transf. Conference of Japan (special issue), Heat TransferSociety of Japan (in Japanese)33(1996)853-854.
    [86]K. Kitamura, F. Kami-iwa, T. Misumi, Heat transfer and fluid flow of natural convectionaround large horizontal cylinders[J], Int. J. Heat Mass Transfer42(1999)4093–4106.
    [87]M.A. Atmane, V.S.S. Chan, D.B. Murray, Natural convection around a horizontal heatedcylinder: the effects of vertical confinement[J], Int. J. Heat Mass Transfer46(2003)3661–3672.
    [88]Stig Grafsrφnningen, Atle Jensen, B. Anders Pettersson Reif,PIV investigation ofbuoyant plume from natural convection heat transfer above a horizontal heated cylinder[J].International Journal of Heat and Mass Transfer54(2011)4975–4987
    [89]J. Lieberman, B. Gebhart, Interactions in natural convection from an array of heatedelements[J], experimental, Int. J. Heat Mass Trans.12(1969)1385–1396.
    [90]G.F. Marsters, Arrays of heated horizontal cylinders in natural convection[J], Int. J. HeatMass Trans.15(1972)921–933.
    [91]E.M. Sparrow, J.E. Niethammer, Effect of vertical separation distance andcylinder-to-cylinder temperature imbalance on natural convection for a pair of horizontalcylinders[J], J. Heat Trans.103(1981)638-644.
    [92]M. Sadegh Sadeghipour, M. Asheghi, Free convection heat transfer from arrays ofvertically separated horizontal cylinders at low rayleigh numbers[J], Int. J. Heat MassTrans.37(1)(1994)103-09.
    [93]A. Bejan, A.J. Fowler, G. Stanescu, The optimal spacing between horizontal cylinders ina fixed volume cooled by natural convection[J], Int. J. Heat Mass Trans.38(11)(1995)2047-055.
    [94]R. Chouikh, A. Guizani, M. Mafilej, Numerical study of the laminar natural convectionflow around an array of two horizontal isothermal cylinders[J], Int. Commun. Heat MassTrans.26(3)(1999)329-38.
    [95]R. Chouikh, A. Guizani, A. El Cafsi, M. Maalej, A. Belghith, Experimental study of thenatural convection flow around an array of heated horizontal cylinders[J], Renew. Energy21(2000)65–78.
    [96]Stig Grafsrφnningen, Atle Jensen.Natural convection heat transfer from two horizontalcylinders at high Rayleigh numbers[J]. International Journal of Heat and Mass Transfer55(2012)5552–5564
    [97]O. Reymond, D.B. Murray, T.S. O’Donovan, Natural convection heat transfer from twohorizontal cylinders[J], Exp. Thermal Fluid Sci.32(2008)1702–1709.
    [98]T. Persoons, I.M. O’Gorman, D.B. Donoghue, G. Byrne, D.B. Murray, Naturalconvection heat transfer and fluid dynamics for a pair of vertically aligned isothermalhorizontal cylinders[J], Int. J. Heat Mass Trans.54(2011)5163–5172.
    [99]Lieberman, J. and B. Gebhart: Int. J. Heat MassTransfer,12(1969),1385-1396.
    [100]Masafumi Kuriyama;Hideki Tokanai;Eiji Harada;Hirotaka Konno. Heat Transfer-Japanese Research.25(6)(1996)410-419.
    [101]高阳.喷射式混合加热器在供热系统中的应用与节能[J].节能与环保,2006,08:41-44.
    [102]邱春花,王蓉,付文锋.射水式喷射加热器结构设计计算与分析[J].华北电力大学学报(自然科学版),2007,01:63-66.
    [103]张琨,蔡志广,贺翔.自动控制喷射式换热器在供热系统中的应用[J].区域供热,2010,04:72-74.
    [104]汽水混合换热器的实验研究和性能计算[J].力学与实践,1985,01:18-20.
    [105]谢春象.湍流射流理论与计算[M].北京市:科学出版社,1975.
    [106]平浚.射流理论基础及应用[M].北京市:宇航出版社,1995.
    [107]Gerhard H. Jirka, Donald R. F. Harleman, Stability and mixing of vertical Plane buoyantjet in confined depth [J];J.Fluid Mech(1979),Vol.94.Part2,pp275-304
    [108]Gerhard H. Jirka. Multiport diffusers for heat disposal: a summary[J].J.HydraulDiv,Proc.ASCE,1982,Vol.108(12),pp1425-1486
    [109]Jirka, G.H., and Harleman,D.R,F, The mechanics of submerged multiport diffusers forbuoyant discharges in shallow water[J], Technical report169, Ralph. MParsonsLaboratory of water resources and hydrodynamics, Massachusetts Insititute of technology,Cmabridge, Mass.,1973.
    [110]C.P.Kuang, J.H.W.Lee, A numerical study on the stability of a vertical Plane jet inconfined depth[J], Environmental Hydraulics.1999, Balkema, Rotterdam, ISBN9058000353.
    [111]Jannis Andreopoulos, et al. Experiments on vertical Plane buoyant jets in shallowwater[J]; J. Fluid Mech.(1986),vol.168.PP305一336.
    [112]C.P.Kuang, J.H.W.Lee, Effect of downstream control on stability and mixing of avertical buoyant jet in confined depth [J], Journal of HydraulicReseacrh,Vol.39,2001,No.4.
    [113]Fukushima, Y.Analysis of inclined wall plume by turbulent model[J], Pro. of JapanSociety of Civil Engineers,1988, Vol.168, pp65-74
    [114]Fukushima, Y. Similarity solution of plane and jets using k-E turbulent model[J], Pro. ofJapan Society of Civil Engineers,1989, Vol.339, pp147-154
    [115]Huai wen xin and Li wei, Similarity Solutions of round jets and plumes[J], AppliedMathematics and Mechanics, English Edition,1993, Vol.14, No.7, pp649-658
    [116]李炜,槐文信.平面射流和浮力射流的数学模型及其计算方法[J].水动力学研究与进展,1989,04:41-50.
    [117]李炜,槐文信.湍浮力射流形成后区特性的预报[J].水动力学研究与进展(A辑),1991,01:10-17.
    [118]Lee, J.H.W, and Jirka, G.H. Vertical Round Buoyant Jet in Shallow Water [J]. J. Hyd.Div, ASCE,1981,Vol.107(12),PP:1651-1675.
    [119]Balasubramaninan. V. SubhashJain.C, Horizontal buoyant jets in quiescent shallowwater[J]. J. of the environmental engineering division, ASCE,1978, vol.104(4),pp:717-729.
    [120]Bradburg, L. J. S. The structure of self-preserving turbulent plane jet[J], J. Fluid Mech,1965, Vol.23, pp31-64
    [121]Alertson, M. L, etal, Diffusion of submerged jet, Transactions[J], ASCE,1950, Vol.155,pp13-22
    [122]Rodi, W. A New method of analyzing hot-wires signals in highly turbulent flow[J],Experiment in fluids,1975, Vol.97, pp139-150
    [123]Wright, S. J. and R. B. Wallace, Two-dimensional buoyant jets in stratified[J], Proc.ASCE, J. Hydr. Div.1979, Vol.105, pp393-1406
    [124]Michael Shusser, Morteza Gharib, A Model for vortex ring formation in a startingbuoyant plume[J], J. Fluid Mech.,2000, Vol.416, pp173-185.
    [125]Wallace, R. B and B. B. Sheff, Two-dimensional buoyant jets in two-layer ambientfluid[J], Proc. ASCE, J. Hydr. Eng.,1984, Vol.113, pp992-1005
    [126]槐文信.静止环境中的射流、卷流和浮力射流[D].武汉水利电力学院博士论文,1991.
    [127]曾玉红.静止浅水环境中浮力射流稳定性与混合特性研究[D].武汉大学,2005.
    [128]张晓元.横流流动环境下的湍浮力射流[D].武汉水利电力大学博士论文,1997.
    [129]杨世铭.自由运动放热的基本准则式[J].西安交通大学学报,1962,02:125-139.
    [130]陶文铨.传热学[M].西安市:西北工业大学出版社,2006.
    [131]郭光臣.油库设计与管理[M].东营市:石油大学出版社,1991.
    [132]李才,刘云龙等.管内含蜡原油降温过程中的放热问题[J].油田地面工程,1994,13(1):18-20.
    [133]GB50473-2008.钢制储罐地基基础设计规范[S].
    [134]王福军.计算流体动力学分析[M].北京市:清华大学出版社,2004.09.
    [135]Patankar V. Numerical Heat Transfer and Fluid Flow.[M]1980; McGraw Hill.
    [136]Issa R.I. Solution of implicitly discretized fluid flow equations by operator splitting.Journal of computational physics[J].1986;62:40-65.
    [137]Oliveira P.J.R, Issa R.I. An improved PISO algorithem for the computation of buoyantdriven flows[J]. Numerical Heat Transfer, Part B: Fundamentals.2001;40:473-493.
    [138]T. Hayase, J.A.C.Humphrey, R.Greif, A consistently formulated QUICK scheme for fastand stable convergence using finite-volume iterative calculation procedures[J]. Journal ofComputational Physics.1992,98:108-118.
    [139]D. F. Cooper, J. W. Smith, M. E. Charles, E. J. Ryan and G. Alexander. Transienttemperature effects in predicting start-up characteristics of gelling-type crude oils[J], Proc.Sixth Int. Hear Transfer Conf.1978,4,67-71.
    [140]侯磊,白宇恒,黄维秋.浮顶罐内原油温降计算方法研究[J].科技通报,2010,26(1):159-164.
    [141]李云雁,胡传荣.试验设计与数据处理[M].北京市:化学工业出版社,2005.02.
    [142]M. Fishenden and O. A. Saunders. An Introduction to Heat Transfer[M]. OxfordUniversity Press, London(1950).
    [143]R. L. C. Bosworth. Heat Transfer Phenomena[M]. John Wiley, New York(1952).
    [144]M. Mikheyev. Fundamentals of Heat Transfer[M]. Peace, Moscow (1968).
    [145]R. B. Husar, E. M. Sparrow. Patterns of free convection flow adjacent to horizontalheated surfaces[J]. Int. J. Heat Mass Transfer11.1206-1208(1968).
    [146]T. Fujii and H. Imura, Natural convection heat transfer from a plate with arbitraryinclination[J], Int. J. Heat Mass Transfer.15:755-767(1972).
    [147]M.al-Arabi, M.el-Riedy. Natural Convection Heat Transfer From Isothermal HorizontalPlates Of Different Shapes[J], Int. J. Heat Mass Transfer. Vol.19, pp.1399-1404.
    [148]W. W. Yousef, J. D. Tarasuk and W. J. Mckeen, Free convection heat transfer fromupward facing isothermal horizontal surfaces[J], Trans. Am. Soc. Mech. Engrs, J. HeatTransfer104,493-500(1982).
    [149]Kenzokitamura, Fumiyoshikimura. Heat transfer and fluid flow of natural convectionadjacent to upward-facing horizontal plates[J]. Int. J. Heat Mass Transfer.38(17):3149-3159(1995).
    [150]Ozisik, M. N., Heat Transfer[M], McGraw-Hill, New York (1985).
    [151]S. S. Kutateladze, Fundamentals of Heat Transfer[M], pp.288-297. Academic Press,New York (1963).
    [152]R. M. Fand, E. W. Morris and M. Lum. Natural Convection Heat Transfer FromHorizontal Cylinders to Air, Water and Silicone Oils For Rayleigh Numners Between3x102and2x107[J]. Int. J. Heat Mass Transfer. Vol.20, pp.1173-1184.
    [153]刘扬,赵洪激,周士华.低渗透油田地面工程总体规划方案优化研究[J].石油学报,2000,21(2):88-95
    [154]刘扬,魏立新,李长林.油气集输系统拓扑布局优化的混合遗传算法[J].油气储运,2003,22(6):33-35
    [155]刘扬,袁振中,魏立新.大型油田注水系统节能降耗与运行方案优化[J].大庆石油学院学报,2006,30(3):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700