用户名: 密码: 验证码:
莱芜猪和大白猪背最长肌miRNA与mRNA转录组测序及特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪不但可以作为重要的农业经济动物为人类提供大量的肉类产品,而且还可以作为模式生物用于医学研究。由于遗传背景及人工选育方式的不同,造成了中外猪种在生产性状方面存在很大的差异。比如,莱芜猪作为我国特有的猪种资源,具有肉质优良的种质特性;而西方猪种虽然在生长速度方面具有优势,但是其较差的肉品质已不满足于消费者的需求。大量研究证实中外猪种间种质差异的形成与基因的差异表达有关,因此,从转录组水平探索中外猪种骨骼肌差异表达基因,对于解析品种间的差异及揭示形成该差异的分子机理具有重要作用。
     本研究选用生长速度慢但肉质优良的莱芜猪(Laiwu pig, LW)和生长速度快但肉质较差的大白猪(Yorkshire, YS)作为试验动物,利用高通量测序技术分析了莱芜猪与大白猪骨骼肌中的差异表达miRNA与差异表达基因,并对差异表达miRNA与基因进行筛选及信号通路富集,分析差异miRNA与差异基因在中外猪种中的功能。对于差异表达miRNA,采用生物信息学软件预测了这些miRNA可能的靶基因,构建了差异表达miRNA的调控网络图。为了验证高通量测序结果的正确性,我们采用qRT-PCR方法对差异表达miRNA与差异基因进行了定量验证,结果表明,高通量测序结果比较可靠。本研究的主要结果如下:
     (1)莱芜猪与大白猪骨骼肌小RNA测序分析
     分别构建了3个莱芜猪与3个大白猪的背最长肌小RNA文库,并利用RNA-seq技术对6个小RNA文库进行了测序,分析miRNA在莱芜猪与大白猪中的表达模式。结果表明,平均在每个莱芜猪的小RNA文库中获得了13,493,607的纯净测序reads,大白猪约为12,938,257。总共筛选出265个已知miRNA,其中有229个在6个文库中都表达;另外,还预测到94个新miRNA。对筛选出的359个miRNA进行表达分析,结果发现ssc-miR-1在两个品种猪中都是表达量最高的,而ssc-miR-194b-5p在两个品种猪中的差异倍数最大(6.35倍);此外,还发现有25个miRNA在莱芜猪与大白猪骨骼肌中是显著差异表达(q <0.05)。在25个差异显著的miRNA中,有10个miRNA在莱芜猪中上调表达,15个下调表达。为了验证测序结果的准确性,随机选取了16个miRNA进行qRT-PCR验证,qRT-PCR结果与测序结果基本一致。对差异表达miRNA的靶基因进行预测,结果获得了10,806个靶基因,而这些靶基因主要被富集到代谢过程等信号通路中。
     (2)莱芜猪与大白猪骨骼肌mRNA转录组测序分析
     为了研究莱芜猪与大白猪骨骼肌全基因组的转录谱,利用RNA-seq技术对构建的两个品种猪骨骼肌文库进行测序,测序结果显示在莱芜猪的文库中获得了40,498,476的测序reads,大白猪为59,072,892;其中,80%以上的测序reads可以比对到猪的基因组中。在两个文库中共检测到12种选择性剪切类型分析,其中以TSS(转录起始位点)与TTS(转录终止位点)两种剪切类型所占的比例最大,分别占到43%和40%以上。通过对测序reads进行比对分析,结果显示在莱芜猪与大白猪骨骼肌中有10,482个共表达基因,另有739个基因只在莱芜猪中表达,712个基因只在大白猪中表达。在两个品种猪中总共预测得到1,678个新基因,其中对应2,229个新转录本。为了更进一步研究这些差异基因的功能,对这些差异基因进行检验分析,结果表明在莱芜猪与大白猪骨骼肌中有178个显著差异表达的基因(q <0.05),其中,相对于大白猪,在莱芜猪中有98个差异基因为上调表达,80个下调表达。为了验证这些差异基因的正确性,随机选取了12个差异表达基因进行qRT-PCR验证,测序结果与qRT-PCR结果基本一致,两者具有很强的相关性(R2=0.93)。对差异表达基因进行功能注释,发现差异表达基因主要被富集到代谢通路,尤其是与脂肪代谢相关的信号通路,比如脂肪酸合成代谢通路等。
     (3)骨骼肌差异miRNA与差异基因关联分析
     为了从整个转录水平了解两个品种猪差异表达miRNA及差异基因的功能,对178个差异表达基因与25个差异表达miRNA进行关联分析,结果表明只有10个miRNA在关联分析中达到显著水平(q <0.05),上调表达4个、下调表达6个。关联分析结果表明,6个下调miRNA对20个上调差异表达基因具有调控作用;4个上调miRNA对20个下调表达差异基因具有调控作用。
     综上所述,本研究从miRNA和mRNA两个水平系统研究了两个品种猪骨骼肌差异表达基因,并对这些差异表达基因进行了功能注释、通路分析及互作网络调控分析等;并采用qRT-PCR方法验证了部分差异基因的表达水平。为研究不同表型猪的比较转录组学提供了宝贵的遗传资源与材料,并且有助于提高对猪转录组遗传结构的认识和理解。
The domestic pig is not only an important agricultural animal used as a source of meatworldwide, but also considered as a suitable model organism for biomedical research. Due tothe difference of genteic background and artificial selection between the Chinese indigenouspigs and foreigin commercial pig breeds, there have different intrinsic features. For instance,Laiwu pig is a typical Chinese indigenous pig, which has good meat quality; however, thewestern pig breeds have the faster grow performance than Chinese native pig breeds. It hasbeen proved that the differentially expressed genes are associated with the difference betweenChinese indigenous pig and western pig. Therefore, it is important to study the genome-widedifferentially expressed genes of skeletal muscle between Chinese native pig and western pigbreeds, and to investigate the molecular mechanism of the difference.
     This experiment herein is based on the contrast of porcine skeletal muscles between theslow-growing Laiwu pig (LW) breed with better meat quality and fast-growing Yorkshire pig(YS) breed with poor meat quality. The RNA-seq technology was used to identify thedifferentially expressed miRNAs and genes of the skeletal muscle, longissimus dorsi muscle,for LW and YS pig breeds, and the identified differentially expressed miRNAs and geneswere enriched to the GO terms and KEGG pathways, which can analyze the functions of thedifferentially expressed genes. We also predicted the target genes of the differentiallyexpressed miRNAs, and constructed the regulated network between miRNAs and target genes.The miRNAs and genes expression results of the RNA-seq data were validated by the qRT-PCR, and the result shows the RNA-seq was more reliable. The results of our study arefollowing:
     (1) Small RNA sequencing of longissimus dorsi muscle between LW and YS pig breeds
     On average, we obtained approximately13,493,607clean reads in Laiwu pig and12,938,257clean reads in Yorkshire pig in this study. Totally,265known miRNAs wereidentified, and among these,229miRNAs were expressed in all the six pigs. In addition,94novel mature miRNAs and95novel hairpins were detected in the muscle libraries. From the265known miRNAs and95novel miRNAs,25of these miRNAs were found significantlydifferentially expressed (q <0.05). Of these significantly expressed miRNAs,10miRNAs were significantly up-regulated and15miRNAs were down-regulated in Laiwu pig comparedwith Yorkshire pig; and ssc-miR-1was the most abundant miRNA in both two pig breeds.Among the significantly expressed miRNAs, ssc-miR-194b-5p has the largest fold-change(6.35-fold). Sixteen differentially expressed miRNAs selected from high throughputsequencing were confirmed by real-time RT-PCR, and the results indicated that theexpression patterns were consistent with sequencing results. Further analysis of gene ontologyand KEGG pathway showed that249pathways were enriched which involved4,972targetgenes.
     (2) Transcriptome analysis of longissimus dorsi muscle between LW and YS pig breeds
     RNA-seq was applied to sample transcripts of the longissimus dorsi muscle between thetwo pig breeds to gain insights into whole-genome transcription profiles in this study. Theresulting data set provided expression patterns for many annotated, predicted and novel piggenes. We found that alternative5' first exon was the commonest type of alternative splicingevent in this study. Moreover,178significantly differentially expressed genes (q <0.05) wereidentified between the Laiwu and Yorkshire pigs, with98up-regulated and80down-regulated genes in Laiwu pig compared with Yorkshire pig. Gene expression results of theRNA-seq data were validated by qRT-PCR for twelve genes, revealing a strong correlationbetween the qRT-PCR and RNA-seq data (R2=0.93). In addition, pathway analysis revealedthat the differentially expressed genes played roles in metabolic processes, signalingpathways, and biological functions.
     (3) Correlation analysis of differentially expressed miRNAs and genes
     In order to investigate the functions of the differentially expressed miRNAs and genes,we analyzed the correlations of the miRNAs and genes. The results show that10miRNAwere significantly expressed between LW and YS pig breeds (q <0.05). There were4up-regulated miRNAs and6down-regulated miRNAs. The correlation results suggested that the6down-regulated miRNAs could regulate20up-regulated differentially expressed genes, andthe4up-regulated miRNAs also could regulate20down-regulated differentially expressedgenes.
     In conclusion, the present study provides a comprehensive view of differences in themuscle miRNAome and transcriptome between two pig phenotypes. These results not onlycontribute to the understanding of the porcine miRNA transcriptome profiles andtranscriptome but also provide a valuable resource for future pig breeding research.
引文
毕延震,熊远,徐德全,谢红涛.猪杂种一代与亲本肌肉组织间正反向消减cDNA文库的构建.畜牧兽医学报,2005,36(5):417-421.
    陈其美.猪肌内脂肪沉积相关基因的筛选鉴定及其特征分析[D].泰安:山东农业大学,2012.
    韩志玲,赵德超,付绍印,吕晓曼,高爱琴,张文广,李金泉.绒山羊骨骼肌miRNAs及其靶基因表达谱分析.畜牧兽医学报,2012,43(10):1539-1546.
    黄涛,熊远,徐德全,邓昌彦,雷明刚,蒋思文,郑嵘,姜勋平,李凤娥,李家连.大梅与梅山猪背最长肌正反消减文库的构建及序列分析.农业生物技术学报,2006,14(4):456-461.
    李华,曾勇庆,魏述东,陈其美,宋一萍,钱源,董彬,崔志锋.猪宰后肌肉SOD与MDA的变化及其对肉质特性的影响.畜牧兽医学报,2010,41(3):257-261.
    李珂.高脂日粮诱导肥胖表型猪相关基因差异表达分析及分子网络构建[D].雅安:四川农业大学,2011.
    李宁.基因组学技术在动物遗传育种中的应用.华南农业大学学报(自然科学版),2005,26(1):12-l19.
    李文海,邓学梅,李宁,王少华,赵毅强,杜正霖,张然,吴克亮,吴常信. SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因.生物化学与生物物理进展,2005,32(4):353-358.
    李新建.猪脂肪沉积关键基因筛选及TCTP基因功能研究[D].杨凌:西北农林科技大学,2011.
    马国达,罗小暖,韩冰,李庆章. MiR-206在骨骼肌发育中的功能.生命的化学,2012,32(4):353-358.
    唐中林.应用LongSAGE技术进行中外猪种不同发育时期的胚胎骨骼肌比较转录谱研究[D].武汉:华中农业大学,2007.
    唐中林,万平,李小平,李勇,赵书红,刘榜,李奎.猪胚胎骨骼肌LongSAGE文库的构建.农业生物技术学报,2007,15(1):171-172.
    王滔.猪皮下与内脏脂肪组织mRNA转录组鉴定和差异分析[D].雅安:四川农业大学,2013.
    吴望军,陈杰,黄瑞华,刘红林.高通量技术挖掘猪microRNA的研究进展.畜牧兽医学报,2013,44(12):1857-1866.
    徐德全.猪背最长肌差异表达基因的克隆鉴定及其特征分析[D].武汉:华中农业大学,2005.
    薛春阳,汪秀星,王晓娜,刘红林,徐银学,程占军,陈杰.苏太猪肌内脂肪沉积相关基因SRC-1的差异显示反转录PCR鉴定.南京农业大学学报,2009,32(3):126-129.
    岳桂东,高强,罗龙海,王军一,许姣卉,尹烨.高通量测序技术在动植物研究领域中的应用.中国科学,2012,42(2):107-124.
    曾勇庆.莱芜猪肉质特性及其分子遗传学基础的研究[D].南京:南京农业大学,2004.
    曾勇庆,孙玉民,张万福,王慧,李同树.莱芜猪肌肉组织学特性与肉质关系的研究.畜牧兽医学报,1998,(6):7-13.
    曾勇庆,王根林,魏述东,王林云,杨海玲,曹洪防,徐云华.含不同比例莱芜猪血缘杂交猪胴体品质及肉质特性的研究.遗传,2005,27(1):65-69.
    赵敬贤,张路培,高会江,李俊雅,许尚忠,高雪.全基因组DNA甲基化图谱及其在动物遗传育种中的研究进展.生物技术通报,2013,(9):47-53.
    赵栓平.猪骨骼肌生长发育相关基因和microRNA鉴定及其网络互作分析[D].杨凌:西北农林科技大学,2012.
    赵要风,李宁,肖璐,曹更生,陈怡真,张顺,陈永福,吴常信.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究.中国科学(C辑),1999,29(1):81-86.
    Alvarez-Garcia I. and Miska E.A. MicroRNA functions in animal development and humandisease. Development,2005,132(21):4653-4662.
    Ambros V. The functions of animal microRNAs. Nature,2004,431(7006):350-355.
    Anders S. and Huber W. Differential expression analysis for sequence count data. GenomeBiol,2010,11(10): R106.
    Anderson C., Catoe H. and Werner R. MIR-206regulates connexin43expression duringskeletal muscle development. Nucleic Acids Res,2006,34(20):5863-5871.
    Ansorge W. Next-generation DNA sequencing techniques. Nat Biotechnol,2009,25(4):195-203.
    Bai Y., Sartor M. and Cavalcoli J. Current status and future perspectives for sequencinglivestock genomes. J Anim Sci Biotech,2012,3(1):8.
    Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-297.
    Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell,2009,136(2):215-233.
    Benjamini Y. and Hochberg Y. Controlling the false discovery rate: a practical and powerfulapproach to multiple testing. J R Stat Soc Series B (Methodological),1995,57(1):289-300.
    Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R.H.A. and Cuppen E.Phylogenetic shadowing and computational identification of human microrna genes.Cell,2005,120(1):21-24.
    Berezikov E., Robine N., Samsonova A., Westholm J.O., Naqvi A., Hung J.-H., Okamura K.,Dai Q., Bortolamiol-Becet D. and Martin R. Deep annotation of Drosophilamelanogaster microRNAs yields insights into their processing, modification, andemergence. Genome Res,2011,21(2):203-215.
    Betel D., Koppal A., Agius P., Sander C. and Leslie C. Comprehensive modeling ofmicroRNA targets predicts functional non-conserved and non-canonical sites. GenomeBiol,2010,11(8): R90.
    Betel D., Wilson M., Gabow A., Marks D.S. and Sander C. The microRNA.org resource:targets and expression. Nucleic Acids Res,2008,36(suppl1): D149-D153.
    Black D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem,2003,72(1):291-336.
    Blomberg L.A. and Zuelke K.A. Serial analysis of gene expression (SAGE) during porcineembryo development. Reprod Fert Develop,2004,16(2):87-92.
    Bonnet A., Bevilacqua C., Benne F., Bodin L., Cotinot C., Liaubet L., Sancristobal M., SarryJ., Terenina E. and Martin P. Transcriptome profiling of sheep granulosa cells andoocytes during early follicular development obtained by Laser CaptureMicrodissection. BMC Genomics,2011,12(1):417.
    Brennecke J., Hipfner D.R., Stark A., Russell R.B. and Cohen S.M. Bantam encodes adevelopmentally regulated microrna that controls cell proliferation and regulates theproapoptotic gene hid in Drosophila. Cell,2003,113(1):25-36.
    Bushati N. and Cohen S.M. microRNA functions. Annu Rev Cell Dev Biol,2007,23(1):175-205.
    Cánovas A., Rincon G., Islas-Trejo A., Wickramasinghe S. and Medrano J. SNP discovery inthe bovine milk transcriptome using RNA-Seq technology. Mamm Genome,2010,21(11-12):592-598.
    Carrington J.C. and Ambros V. Role of microRNAs in plant and animal development. Science,2003,301(5631):336-338.
    Chen C., Ai H., Ren J., Li W., Li P., Qiao R., Ouyang J., Yang M., Ma J. and Huang L. Aglobal view of porcine transcriptome in three tissues from a full-sib pair with extremephenotypes in growth and fat deposition by paired-end RNA sequencing. BMCGenomics,2011,12(1):448.
    Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L.,Mahuvakar V.R., Andersen M.R., Lao K.Q., Livak K.J. and Guegler K.J. Real-timequantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res,2005,33(20):e179.
    Chen J.-F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L.and Wang D.-Z. The role of microRNA-1and microRNA-133in skeletal muscleproliferation and differentiation. Nat Genet,2006,38(2):228–233.
    Chen Q.-M., Wang H., Zeng Y.-Q. and Chen W. Developmental changes and effect onintramuscular fat content of H-FABP and A-FABP mRNA expression in pigs. JApplied Genet,2013,54(1):119-123.
    Chen Q., Zeng Y., Wang H., Yang L., Yang Y., Zhu H., Shi Y., Chen W. and Hu Y.Molecular characterization and expression analysis of NDUFS4gene in m.longissimus dorsi of Laiwu pig (Sus scrofa). Mol Biol Rep,2013,40(2):1599-1608.
    Chen W., Zeng Y., Cui J., Chen Q., Du J., Yang L., Hu Y., Song Y. and Qian Y. Effects ofphospholipid hydroperoxide glutathione peroxidase mRNA expression on meat qualityof M. longissimus dorsi in pigs. Eur Food Res Technol,2011,232(3):433-440.
    Chen W., Zhu H.-L., Shi Y., Zhao M.-M., Wang H. and Zeng Y.-Q. Comparative analysis onantioxidative ability of muscle between Laiwu pig and Large White. Asian-Austral JAnim Sci,2012,25(8):1190-1196.
    Chen X., Li Q., Wang J., Guo X., Jiang X., Ren Z., Weng C., Sun G., Wang X., Liu Y., Ma L.,Chen J.-Y., Wang J., Zen K., Zhang J. and Zhang C.-Y. Identification andcharacterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol,2009,10(7): R78.
    Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.,Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C. andGeorges M. A mutation creating a potential illegitimate microRNA target site in themyostatin gene affects muscularity in sheep. Nat Genet,2006,38(7):813-818.
    Consortium T.F. and Group t.R.G.E.R. The transcriptional landscape of the mammaliangenome. Science,2005,3091559-1563.
    Costa V., Angelini C., De Feis I. and Ciccodicola A. Uncovering the complexity oftranscriptomes with RNA-Seq. J Biomed Biotech,2010,2010.
    Davoli R., Zambonelli P., Bigi D., Fontanesi L. and Russo V. Analysis of expressed sequencetags of porcine skeletal muscle. Gene,1999,233(1–2):181-188.
    Diatchenko L., Lukyanov S., Lau Y.-F.C. and Siebert P.D.(1999) Suppression subtractivehybridization: A versatile method for identifying differentially expressed genes. In:Methods in Enzymology (Ed. by Sherman MW), pp.349-380. Academic Press.
    Enright A., John B., Gaul U., Tuschl T., Sander C. and Marks D. MicroRNA targets inDrosophila. Genome Biol,2003,5(1): R1.
    Erlich Y., Mitra P.P., McCombie W.R. and Hannon G.J. Alta-Cyclic: a self-optimizing basecaller for next-generation sequencing. Nature methods,2008,5(8):679-682.
    Esteve-Codina A., Kofler R., Palmieri N., Bussotti G., Notredame C. and Perez-Enciso M.Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMCGenomics,2011,12(1):552.
    Faulconnier Y., Chilliard Y., Torbati M. and Leroux C. The transcriptomic profiles of adiposetissues are modified by feed deprivation in lactating goats. Comp Biochem Phys PartD: Genomics and Proteomics,2011,6(2):139-149.
    Feng Y., Huang T.H., Fan B. and Zhao S.H. Mapping of six miRNAs expressed in porcineskeletal muscle. Anim Genet,2008,39(1):91-92.
    Freeman T., Ivens A., Baillie J.K., Beraldi D., Barnett M., Dorward D., Downing A.,Fairbairn L., Kapetanovic R., Raza S., Tomoiu A., Alberio R., Wu C., Su A.,Summers K., Tuggle C., Archibald A. and Hume D. A gene expression atlas of thedomestic pig. BMC Biol,2012,10(1):90.
    Friedl nder M.R., Mackowiak S.D., Li N., Chen W. and Rajewsky N. miRDeep2accuratelyidentifies known and hundreds of novel microRNA genes in seven animal clades.Nucleic Acids Res,2012,40(1):37-52.
    Gerhold D., Rushmore T. and Caskey C.T. DNA chips: promising toys have become powerfultools. Trends Biochem Sci,1999,24(5):168-173.
    Gorodkin J., Cirera S., Hedegaard J., Gilchrist M., Panitz F., Jorgensen C., Scheibye-KnudsenK., Arvin T., Lumholdt S., Sawera M., Green T., Nielsen B., Havgaard J., RosenkildeC., Wang J., Li H., Li R., Liu B., Hu S., Dong W., Li W., Yu J., Wang J., StaerfeldtH.-H., Wernersson R., Madsen L., Thomsen B., Hornshoj H., Bujie Z., Wang X.,Wang X., Bolund L., Brunak S., Yang H., Bendixen C. and Fredholm M. Porcinetranscriptome analysis based on97non-normalized cDNA libraries and assembly of1,021,891expressed sequence tags. Genome Biol,2007,8(4): R45.
    Gorodkin J. and Hofacker I.L. From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comput Biol,2011,7(8): e1002100.
    Gorodkin J., Hofacker I.L., Torarinsson E., Yao Z., Havgaard J.H. and Ruzzo W.L. De novoprediction of structured RNAs from genomic sequences. Trends Biotechnol,2010,28(1):9-19.
    Groenen M.A.M., Archibald A.L., Uenishi H., Tuggle C.K., Takeuchi Y., Rothschild M.F.,Rogel-Gaillard C., Park C., Milan D., Megens H.-J., Li S., Larkin D.M., Kim H.,Frantz L.A.F., Caccamo M., Ahn H., Aken B.L., Anselmo A., Anthon C., Auvil L.,Badaoui B., Beattie C.W., Bendixen C., Berman D., Blecha F., Blomberg J., BolundL., Bosse M., Botti S., Bujie Z., Bystrom M., Capitanu B., Carvalho-Silva D.,Chardon P., Chen C., Cheng R., Choi S.-H., Chow W., Clark R.C., Clee C.,Crooijmans R.P.M.A., Dawson H.D., Dehais P., De Sapio F., Dibbits B., Drou N., DuZ.-Q., Eversole K., Fadista J., Fairley S., Faraut T., Faulkner G.J., Fowler K.E.,Fredholm M., Fritz E., Gilbert J.G.R., Giuffra E., Gorodkin J., Griffin D.K., HarrowJ.L., Hayward A., Howe K., Hu Z.-L., Humphray S.J., Hunt T., Hornshoj H., Jeon J.-T., Jern P., Jones M., Jurka J., Kanamori H., Kapetanovic R., Kim J., Kim J.-H., KimK.-W., Kim T.-H., Larson G., Lee K., Lee K.-T., Leggett R., Lewin H.A., Li Y., LiuW., Loveland J.E., Lu Y., Lunney J.K., Ma J., Madsen O., Mann K., Matthews L.,McLaren S., Morozumi T., Murtaugh M.P., Narayan J., Truong Nguyen D., Ni P., OhS.-J., Onteru S., Panitz F., Park E.-W., Park H.-S., Pascal G., Paudel Y., Perez-EncisoM., Ramirez-Gonzalez R., Reecy J.M., Rodriguez-Zas S., Rohrer G.A., Rund L., SangY., Schachtschneider K., Schraiber J.G., Schwartz J., Scobie L., Scott C., Searle S.,Servin B., Southey B.R., Sperber G., Stadler P., Sweedler J.V., Tafer H., Thomsen B.,Wali R., Wang J., Wang J., White S., Xu X., Yerle M., Zhang G., Zhang J., Zhang J.,Zhao S., Rogers J., Churcher C. and Schook L.B. Analyses of pig genomes provideinsight into porcine demography and evolution. Nature,2012,491(7424):393-398.
    Guimbellot J., Erickson S., Mehta T., Wen H., Page G., Sorscher E. and Hong J. Correlationof microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics,2009,2(1):15.
    Hafner M., Landthaler M., Burger L., Khorshid M., Hausser J., Berninger P., Rothballer A.,Ascano Jr M., Jungkamp A.-C. and Munschauer M. Transcriptome-wide identificationof RNA-binding protein and microRNA target sites by PAR-CLIP. Cell,2010,141(1):129-141.
    He L. and Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat RevGenet,2004,5(7):522-531.
    Hernandez D., Fran ois P., Farinelli L., ster s M. and Schrenzel J. De novo bacterialgenome sequencing: millions of very short reads assembled on a desktop computer.Genome Res,2008,18(5):802-809.
    Hornsh j H., Conley L.N., Hedegaard J., S rensen P., Panitz F. and Bendixen C. Microarrayexpression profiles of20.000genes across23healthy porcine tissues. PLoS ONE,2007,2(11): e1203.
    Hossain M., Ghanem N., Hoelker M., Rings F., Phatsara C., Tholen E., Schellander K. andTesfaye D. Identification and characterization of miRNAs expressed in the bovineovary. BMC Genomics,2009,10(1):443.
    Hou X., Tang Z., Liu H., Wang N., Ju H. and Li K. Discovery of microRNAs associated withmyogenesis by deep sequencing of serial developmental skeletal muscles in pigs.PLoS ONE,2012,7(12): e52123.
    Hu H.Y., Guo S., Xi J., Yan Z., Fu N., Zhang X., Menzel C., Liang H., Yang H., Zhao M.,Zeng R., Chen W., P bo S. and Khaitovich P. MicroRNA expression and regulationin human, chimpanzee, and macaque brains. PLoS Genet,2011,7(10): e1002327.
    Huang J., Ju Z., Li Q., Hou Q., Wang C., Li J., Li R., Wang L., Sun T., Hang S., Gao Y., HouM. and Zhong J. Solexa sequencing of novel and differentially expressed MicroRNAsin testicular and ovarian tissues in Holstein cattle. Int J Biol Sci2011,7(7).
    Huang T.-H., Zhu M.-J., Li X.-Y. and Zhao S.-H. Discovery of porcine microRNAs andprofiling from skeletal muscle tissues during development. PLoS ONE,2008,3(9):e3225.
    Huang W. and Khatib H. Comparison of transcriptomic landscapes of bovine embryos usingRNA-Seq. BMC Genomics,2010,11(1):711.
    Hwang H.W. and Mendell J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis.Br J Cancer,2006,94(6):776-780.
    J ger M., Ott C.-E., Grünhagen J., Hecht J., Schell H., Mundlos S., Duda G.N., Robinson P.N.and Lienau J. Composite transcriptome assembly of RNA-seq data in a sheep modelfor delayed bone healing. BMC Genomics,2011,12(1):158.
    Ji Z., Wang G., Xie Z., Zhang C. and Wang J. Identification and characterization ofmicroRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep,2012,39(10):9361-9371.
    Jiang L., Schlesinger F., Davis C.A., Zhang Y., Li R., Salit M., Gingeras T.R. and Oliver B.Synthetic spike-in standards for RNA-seq experiments. Genome Res,2011,21(9):1543-1551.
    Jiang Y.-L., Li N., Du L.-X. and Wu C.-X. Relationship of T→A mutation in the promoterregion of myostatin gene with growth traits in swine. J Gnent Genomics,2002,29(5):413-416
    Johnson J.M., Castle J., Garrett-Engele P., Kan Z., Loerch P.M., Armour C.D., Santos R.,Schadt E.E., Stoughton R. and Shoemaker D.D. Genome-wide survey of humanalternative pre-mRNA splicing with exon junction microarrays. Science,2003,302(5653):2141-2144.
    Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., KawashimaS., Okuda S., Tokimatsu T. and Yamanishi Y. KEGG for linking genomes to life andthe environment. Nucleic Acids Res,2008,36(suppl1): D480-D484.
    Kang L., Cui X., Zhang Y., Yang C. and Jiang Y. Identification of miRNAs associated withsexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMCGenomics,2013a,14(1):352.
    Kang X., Liu G., Liu Y., Xu Q., Zhang M. and Fang M. Transcriptome profile at differentphysiological stages reveals potential mode for curly fleece in Chinese Tan sheep.PLoS ONE,2013b,8(8): e71763.
    Keren A., Tamir Y. and Bengal E. The p38MAPK signaling pathway: A major regulator ofskeletal muscle development. Mol Cell Endocrinol,2006,252(1–2):224-230.
    Khvorova A., Reynolds A. and Jayasena S.D. Functional siRNAs and miRNAs exhibit strandbias. Cell,2003,115(2):209-216.
    Kim H.K., Lee Y.S., Sivaprasad U., Malhotra A. and Dutta A. Muscle-specific microRNAmiR-206promotes muscle differentiation. J Cell Biol,2006a,174(5):677-687.
    Kim N.-K., Park H.-R., Lee H.-C., Yoon D., Son E.-S., Kim Y.-S., Kim S.-R., Kim O.-H. andLee C.-S. Comparative studies of skeletal muscle proteome and transcriptomeprofilings between pig breeds. Mamm Genome,2010,21(5-6):307-319.
    Kim T.-H., Kim N.-S., Lim D., Lee K.-T., Oh J.-H., Park H.-S., Jang G.-W., Kim H.-Y., JeonM., Choi B.-H., Lee H.-Y., Chung H. and Kim H. Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library ofporcine backfat tissue. BMC Genomics,2006b,7(1):36.
    Kloosterman W.P. and Plasterk R.H.A. The diverse functions of microRNAs in animaldevelopment and disease. Dev Cell,2006,11(4):441-450.
    Kuhnlein U., Parsanejad R., Zadworny D. and Aggrey S. The dynamics of the genotype-phenotype association. Poult Sci,2003,82(6):876-881.
    Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A. and Tuschl T. New microRNAs frommouse and human. RNA,2003,9(2):175-179.
    Lai E.C. MicroRNAs are complementary to3' UTR sequence motifs that mediate negativepost-transcriptional regulation. Nat Genet,2002,30(4):363-364.
    Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., DewarK., Doyle M. and FitzHugh W. Initial sequencing and analysis of the human genome.Nature,2001,409(6822):860-921.
    Langmead B. and Salzberg S.L. Fast gapped-read alignment with Bowtie2. Nat Meth,2012,9(4):357-359.
    Langmead B., Trapnell C., Pop M. and Salzberg S. Ultrafast and memory-efficient alignmentof short DNA sequences to the human genome. Genome Biol,2009,10(3): R25.
    Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S. andKim V. The nuclear RNase III Drosha initiates microRNA processing. Nutrue,2003,425415-419.
    Lee Y., Jeon K., Lee J.T., Kim S. and Kim V.N. MicroRNA maturation: stepwise processingand subcellular localization. EMBO J,2002,21(17):4663-4670.
    Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S.H. and Kim V.N. MicroRNA genes aretranscribed by RNA polymerase II. EMBO J,2004,23(20):4051-4060.
    Leung A.K.L. and Sharp P.A. microRNAs: a safeguard against turmoil? Cell,2007,130(4):581-585.
    Lewis B., Burge C. and Bartel D. Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell,2005,120(1):15-20.
    Lewis B.P., Shih I.h., Jones-Rhoades M.W., Bartel D.P. and Burge C.B. Prediction ofmammalian microRNA targets. Cell,2003,115(7):787-798.
    Li G., Li Y., Li X., Ning X., Li M. and Yang G. MicroRNA identity and abundance indeveloping swine adipose tissue as determined by solexa sequencing. J Cell Biochem,2011a,112(5):1318-1328.
    Li H.-Y., Xi Q.-Y., Xiong Y.-Y., Liu X.-L., Cheng X., Shu G., Wang S.-B., Wang L.-N., GaoP., Zhu X.-T., Jiang Q.-Y., Yuan L. and Zhang Y.-L. Identification and comparison ofmicroRNAs from skeletal muscle and adipose tissues from two porcine breeds. AnimGenet,2012a,43(6):704-713.
    Li M., Wu H., Luo Z., Xia Y., Guan J., Wang T., Gu Y., Chen L., Zhang K., Ma J., Liu Y.,Zhong Z., Nie J., Zhou S., Mu Z., Wang X., Qu J., Jing L., Wang H., Huang S., Yi N.,Wang Z., Xi D., Wang J., Yin G., Wang L., Li N., Jiang Z., Lang Q., Xiao H., JiangA., Zhu L., Jiang Y., Tang G., Mai M., Shuai S., Li K., Wang J., Zhang X., Li Y.,Chen H., Gao X., Plastow G.S., Beck S., Yang H., Wang J., Wang J., Li X. and Li R.An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun,2012b,3:850.
    Li Q., Li N., Hu X., Li J., Du Z., Chen L., Yin G., Duan J., Zhang H. and Zhao Y. Genome-wide mapping of DNA methylation in chicken. PLoS ONE,2011b,6(5): e19428.
    Li R., Fan W., Tian G., Zhu H., He L., Cai J., Huang Q., Cai Q., Li B., Bai Y., Zhang Z.,Zhang Y., Wang W., Li J., Wei F., Li H., Jian M., Li J., Zhang Z., Nielsen R., Li D.,Gu W., Yang Z., Xuan Z., Ryder O.A., Leung F.C.-C., Zhou Y., Cao J., Sun X., Fu Y.,Fang X., Guo X., Wang B., Hou R., Shen F., Mu B., Ni P., Lin R., Qian W., Wang G.,Yu C., Nie W., Wang J., Wu Z., Liang H., Min J., Wu Q., Cheng S., Ruan J., WangM., Shi Z., Wen M., Liu B., Ren X., Zheng H., Dong D., Cook K., Shan G., Zhang H.,Kosiol C., Xie X., Lu Z., Zheng H., Li Y., Steiner C.C., Lam T.T.-Y., Lin S., ZhangQ., Li G., Tian J., Gong T., Liu H., Zhang D., Fang L., Ye C., Zhang J., Hu W., Xu A.,Ren Y., Zhang G., Bruford M.W., Li Q., Ma L., Guo Y., An N., Hu Y., Zheng Y., ShiY., Li Z., Liu Q., Chen Y., Zhao J., Qu N., Zhao S., Tian F., Wang X., Wang H., XuL., Liu X., Vinar T., Wang Y., Lam T.-W., Yiu S.-M., Liu S., Zhang H., Li D., HuangY., Wang X., Yang G., Jiang Z., Wang J., Qin N., Li L., Li J., Bolund L., KristiansenK., Wong G.K.-S., Olson M., Zhang X., Li S., Yang H., Wang J. and Wang J. Thesequence and de novo assembly of the giant panda genome. Nature,2010,463(7279):311-317.
    Li R., Yu C., Li Y., Lam T.-W., Yiu S.-M., Kristiansen K. and Wang J. SOAP2: an improvedultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967.
    Li T., Wu R., Zhang Y. and Zhu D. A systematic analysis of the skeletal muscle miRNAtranscriptome of chicken varieties with divergent skeletal muscle growth identifiesnovel miRNAs and differentially expressed miRNAs. BMC Genomics,2011c,12(1):186.
    Lian C., Sun B., Niu S., Yang R., Liu B., Lu C., Meng J., Qiu Z., Zhang L. and Zhao Z. Acomparative profile of the microRNA transcriptome in immature and mature porcinetestes using Solexa deep sequencing. FEBS J,2012,279(6):964-975.
    Liang P. and Pardee A. Differential display of eukaryotic messenger RNA by means of thepolymerase chain reaction. Science,1992,257(5072):967-971.
    Lim D., Cho Y.-M., Lee K.-T., Kang Y., Sung S., Nam J., Park E.-W., Oh S.-J., Im S.-K. andKim H. The Pig Genome Database (PiGenome): an integrated database for piggenome research. Mamm Genome,2009,20(1):60-66.
    Lim L.P., Glasner M.E., Yekta S., Burge C.B. and Bartel D.P. Vertebrate microRNA genes.Science,2003,299(5612):1540.
    Lin S., Li H., Mu H., Luo W., Li Y., Jia X., Wang S., Jia X., Nie Q., Li Y. and Zhang X. Let-7b regulates the expression of the growth hormone receptor gene in deletion-typedwarf chickens. BMC Genomics,2012,13(1):306.
    Liu N., Williams A.H., Kim Y., McAnally J., Bezprozvannaya S., Sutherland L.B.,Richardson J.A., Bassel-Duby R. and Olson E.N. An intragenic MEF2-dependentenhancer directs muscle-specific expression of microRNAs1and133. Proc Natl AcadSci USA,2007,104(52):20844-20849.
    Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W. and Li J.Identification of conserved and novel microRNAs in Cashmere goat skin by deepsequencing. PLoS ONE,2012,7(12): e50001.
    Livak K.J. and Schmittgen T.D. Analysis of relative gene expression data using real-timequantitative PCR and the2ΔΔCTmethod. Methods,2001,25(4):402-408.
    Lobjois V., Liaubet L., SanCristobal M., Glénisson J., Fève K., Rallières J., Le Roy P., MilanD., Cherel P. and Hatey F. A muscle transcriptome analysis identifies positionalcandidate genes for a complex trait in pig. Anim Genet,2008,39(2):147-162.
    Lu T., Lu G., Fan D., Zhu C., Li W., Zhao Q., Feng Q., Zhao Y., Guo Y., Li W., Huang X.and Han B. Function annotation of the rice transcriptome at single-nucleotideresolution by RNA-seq. Genome Res,2010,20(9):1238-1249.
    Lund E., Gtittinger S., Calado A., Dahlberg J. and Kutay U. Nuclear export of microRNAprecursors. Science,2004,303(5654):95-98.
    Lunney J.K. Advances in swine biomedical model genomics. Int J Biol Sci2007,3(3):179-184.
    Ma J., Yu S., Wang F., Bai L., Xiao J., Jiang Y., Chen L., Wang J., Jiang A., Li M. and Li X.MicroRNA transcriptomes relate intermuscular adipose tissue to metabolic risk. Int JBiol Sci,2013,14(4):8611-8624.
    Mao X., Cai T., Olyarchuk J.G. and Wei L. Automated genome annotation and pathwayidentification using the KEGG Orthology (KO) as a controlled vocabulary.Bioinformatics,2005,21(19):3787-3793.
    Mardis E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet.,2008,9387-402.
    Marioni J.C., Mason C.E., Mane S.M., Stephens M. and Gilad Y. RNA-seq: An assessment oftechnical reproducibility and comparison with gene expression arrays. Genome Res,2008,18(9):1509-1517.
    Martin J.A. and Wang Z. Next-generation transcriptome assembly. Nat Rev Genet,2011,12(10):671-682.
    Matlin A.J., Clark F. and Smith C.W. Understanding alternative splicing: towards a cellularcode. Nat Rev Mol Cell Biol,2005,6(5):386-398.
    Maurer B., Stanczyk J., Jüngel A., Akhmetshina A., Trenkmann M., Brock M., Kowal-Bielecka O., Gay R.E., Michel B.A., Distler J.H.W., Gay S. and Distler O.MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis&Rheumatism,2010,62(6):1733-1743.
    McBride D., Carré W., Sontakke S.D., Hogg C.O., Law A., Donadeu F.X. and Clinton M.Identification of miRNAs associated with the follicular–luteal transition in theruminant ovary. Reproduction,2012,144(2):221-233.
    McCarthy J. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev,2011,39(3):150-154.
    McDaneld T., Smith T., Doumit M., Miles J., Coutinho L., Sonstegard T., Matukumalli L.,Nonneman D. and Wiedmann R. MicroRNA transcriptome profiles during swineskeletal muscle development. BMC Genomics,2009,10(1):77.
    Miao X. and Luo Q. Genome-wide transcriptome analysis between Small-tail Han sheep andthe Surabaya fur sheep using high-throughput RNA sequencing. Reproduction,2013,145(6):587-596.
    Milan D., Woloszyn N., Giteau M., Navas A., Yerle M., Rogel-Gaillard C., Chardon P.,Gellin J., Elsen J. and Le Roy P. Toward the identification of RN gene involved inmeat quality in pigs. Animal Genetics,1996,27114.
    Mocellin S. and Rossi C.R.(2007) Principles of gene microarray data analysis. In:Microarray Technology and Cancer Gene Profiling (pp.19-30. Springer.
    Mortazavi A., Williams B.A., McCue K., Schaeffer L. and Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nat Meth,2008,5(7):621-628.
    Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M. and Snyder M. Thetranscriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,320(5881):1344-1349.
    Nie Q., Fang M., Jia X., Zhang W., Zhou X., He X. and Zhang X. Analysis of muscle andovary transcriptome of Sus scrofa: assembly, annotation and marker discovery. DNARes,2011,18(5):343-351.
    Nielsen M., Hansen J.H., Hedegaard J., Nielsen R.O., Panitz F., Bendixen C. and Thomsen B.MicroRNA identity and abundance in porcine skeletal muscles determined by deepsequencing. Anim Genet,2010,41(2):159-168.
    Ozsolak F. and Milos P.M. RNA sequencing: advances, challenges and opportunities. Nat RevGenet,2011,12(2):87-98.
    Pan Q., Shai O., Lee L.J., Frey B.J. and Blencowe B.J. Deep surveying of alternative splicingcomplexity in the human transcriptome by high-throughput sequencing. Nat Genet,2008,40(12):1413-1415.
    Park P.J. ChIP–seq: advantages and challenges of a maturing technology. Nature Rev Genet,2009,10(10):669-680.
    Podolska A., Anthon C., Bak M., Tommerup N., Skovgaard K., Heegaard P., Gorodkin J.,Cirera S. and Fredholm M. Profiling microRNAs in lung tissue from pigs infectedwith Actinobacillus pleuropneumoniae. BMC Genomics,2012,13(1):459.
    Podolska A., Kaczkowski B., Kamp Busk P., S kilde R., Litman T., Fredholm M. and CireraS. MicroRNA expression profiling of the porcine developing brain. PLoS ONE,2011,6(1): e14494.
    Preall J. and Sontheimer E. RNAi: RISC gets loaded. Cell,2005,123(4):543-545.
    Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N.,Levenez F. and Yamada T. A human gut microbial gene catalogue established bymetagenomic sequencing. Nature,2010,464(7285):59-65.
    Ramayo-Caldas Y., Mach N., Esteve-Codina A., Corominas J., Castello A., Ballester M.,Estelle J., Ibanez-Escriche N., Fernandez A., Perez-Enciso M. and Folch J. Livertranscriptome profile in pigs with extreme phenotypes of intramuscular fatty acidcomposition. BMC Genomics,2012,13(1):547.
    Rao P.K., Kumar R.M., Farkhondeh M., Baskerville S. and Lodish H.F. Myogenic factors thatregulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA,2006,103(23):8721-8726.
    Riuzzi F., Sorci G., Sagheddu R. and Donato R. HMGB1–RAGE regulates muscle satellitecell homeostasis through p38-MAPK-and myogenin-dependent repression of Pax7transcription. J Cell Sci,2012,125(6):1440-1454.
    Ro S., Park C., Young D., Sanders K.M. and Yan W. Tissue-dependent paired expression ofmiRNAs. Nucleic Acids Res,2007,35(17):5944-5953.
    Roberts A., Pimentel H., Trapnell C. and Pachter L. Identification of novel transcripts inannotated genomes using RNA-Seq. Bioinformatics,2011,27(17):2325-2329.
    Rocha D. and Plastow G. Commercial pigs: an untapped resource for human obesity research?Drug Discov Today,2006,11(11-12):475-477.
    Rothschild M.F. From a sow’s ear to a silk purse: real progress in porcine genomics.Cytogenet Genome Res2003,10295–99.
    Roush S. and Slack F.J. The let-7family of microRNAs. Trends Cell Biol,2008,18(10):505-516.
    Rozen S. and Skaletsky H.(1999) Primer3on the WWW for general users and for biologistprogrammers#. In: T Bioinformatics Methods and Protocols, pp.365-386.
    Ruby J.G., Stark A., Johnston W.K., Kellis M., Bartel D.P. and Lai E.C. Evolution,biogenesis, expression, and target predictions of a substantially expanded set ofDrosophila microRNAs. Genome Res,2007,17(12):1850-1864.
    Saban R. and Lin H.-K. How far are we from a urothelial gene chip? J Urology,2006,175(1):14-15.
    Sammeth M., Foissac S. and Guigó R. A general definition and nomenclature for alternativesplicing events. PLoS Comput Biol,2008,4(8): e1000147.
    Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N.,Schwikowski B. and Ideker T. Cytoscape: a software environment for integratedmodels of biomolecular interaction networks. Genome Res,2003,13(11):2498-2504.
    Sharbati S., Friedlander M., Sharbati J., Hoeke L., Chen W., Keller A., Stahler P., RajewskyN. and Einspanier R. Deciphering the porcine intestinal microRNA transcriptome.BMC Genomics,2010,11(1):275.
    Soifer H.S., Sano M., Sakurai K., Chomchan P., S trom P., Sherman M.A., CollingwoodM.A., Behlke M.A. and Rossi J.J. A role for the Dicer helicase domain in theprocessing of thermodynamically unstable hairpin RNAs. Nucleic Acids Res,2008,36(20):6511-6522.
    Spurlock M.E. and Gabler N.K. The development of porcine models of obesity and themetabolic syndrome. J Nutr,2008,138(2):397-402.
    STRING. http://string-db.org.
    Su A., Wiltshire T., Batalov S., Lapp H., Ching K., Block D., Zhang J., Soden R., HayakawaM. and Kreiman G. A gene atlas of the mouse and human protein-encodingtranscriptomes. Proc Natl Acad Sci USA,2004,1016062-6067.
    Su A.I., Cooke M.P., Ching K.A., Hakak Y., Walker J.R., Wiltshire T., Orth A.P., Vega R.G.,Sapinoso L.M., Moqrich A., Patapoutian A., Hampton G.M., Schultz P.G. andHogenesch J.B. Large-scale analysis of the human and mouse transcriptomes. ProcNatl Acad Sci USA,2002,99(7):4465-4470.
    Sultan M., Schulz M.H., Richard H., Magen A., Klingenhoff A., Scherf M., Seifert M.,Borodina T., Soldatov A. and Parkhomchuk D. A global view of gene activity andalternative splicing by deep sequencing of the human transcriptome. Science,2008,321(5891):956-960.
    Suzuki A., Kojima N., Ikeuchi Y., Ikarashi S., Moriyama N., Ishizuka T. and Tokushige H.Carcass composition and meat quality of Chinese purebred and European×Chinesecrossbred pigs. Meat Sci,1991,29(1):31-41.
    Tang Z., Li Y., Wan P., Li X., Zhao S., Liu B., Fan B., Zhu M., Yu M. and Li K. LongSAGEanalysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs.Genome Biol,2007,8(6): R115.
    Te Pas M.F.W., Wit A.W., Priem J., Cagnazzo M., Davoli R., Russo V. and Pool M.Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J MuscleRes Cell Motil.,2005,26(2-3):157-165.
    Trang P., Medina P.P., Wiggins J.F., Ruffino L., Kelnar K., Omotola M., Homer R., BrownD., Bader A.G., Weidhaas J.B. and Slack F.J. Regression of murine lung tumors bythe let-7microRNA. Oncogene,2010,29(11):1580-1587.
    Trapnell C., Pachter L. and Salzberg S.L. TopHat: discovering splice junctions with RNA-Seq.Bioinformatics,2009,25(9):1105-1111.
    Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J., Salzberg S.L.,Wold B.J. and Pachter L. Transcript assembly and quantification by RNA-Seq revealsunannotated transcripts and isoform switching during cell differentiation. Nat Biotech,2010,28(5):511-515.
    UCSC. Pig genome (Sscrofa10.2). http://www.ensembl.org/Sus_scrofa/Info/Index.
    Velculescu V.E., Zhang L., Vogelstein B. and Kinzler K.W. Serial analysis of geneexpression. Science,1995,270(5235):484-487.
    Velculescu V.E., Zhang L., Zhou W., Vogelstein J., Basrai M.A., Bassett Jr D.E., Hieter P.,Vogelstein B. and Kinzler K.W. Characterization of the yeast transcriptome. Cell,1997,88(2):243-251.
    Vivanco I. and Sawyers C.L. The phosphatidylinositol3-Kinase-AKT pathway in humancancer. Nat Rev Cancer,2002,2(7):489-501.
    Walters E., Wolf E., Whyte J., Mao J., Renner S., Nagashima H., Kobayashi E., Zhao J.,Wells K., Critser J., Riley L. and Prather R. Completion of the swine genome willsimplify the production of swine as a large animal biomedical model. BMC MedGenomics,2012,5(1):55.
    Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S.F.,Schroth G.P. and Burge C.B. Alternative isoform regulation in human tissuetranscriptomes. Nature,2008,456(7221):470-476.
    Wang L., Feng Z., Wang X., Wang X. and Zhang X. DEGseq: an R package for identifyingdifferentially expressed genes from RNA-seq data. Bioinformatics,2010,26(1):136-138.
    Wang T., Jiang A., Guo Y., Tan Y., Tang G., Mai M., Liu H., Xiao J., Li M. and Li X. Deepsequencing of the transcriptome reveals inflammatory features of porcine visceraladipose tissue. Int J Biol Sci,2013,9(6):550-556.
    Wang Z., Gerstein M. and Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. NatRev Genet,2009,10(1):57-63.
    Wen M., Shen Y., Shi S. and Tang T. miREvo: an integrative microRNA evolutionaryanalysis platform for next-generation sequencing experiments. BMC Bioinformatics,2012,13(1):140.
    Wernersson R., Schierup M., Jorgensen F., Gorodkin J., Panitz F., Staerfeldt H.-H.,Christensen O., Mailund T., Hornshoj H., Klein A., Wang J., Liu B., Hu S., Dong W.,Li W., Wong G., Yu J., Wang J., Bendixen C., Fredholm M., Brunak S., Yang H. andBolund L. Pigs in sequence space: A0.66X coverage pig genome survey based onshotgun sequencing. BMC Genomics,2005,6(1):70.
    Wickramasinghe S., Rincon G., Islas-Trejo A. and Medrano J. Transcriptional profiling ofbovine milk using RNA sequencing. BMC Genomics,2012,13(1):45.
    Winter J., Jung S., Keller S., Gregory R.I. and Diederichs S. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol,2009,11(3):228-134.
    Xiao S., Jia J., Mo D., Wang Q., Qin L., He Z., Zhao X., Huang Y., Li A. and Yu J.Understanding PRRSV infection in porcine lung based on genome-wide transcriptomeresponse identified by deep sequencing. PLoS ONE,2010,5(6): e11377.
    Xie S.-S., Li X.-Y., Liu T., Cao J.-H., Zhong Q. and Zhao S.-H. Discovery of porcinemicroRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS ONE,2011,6(1): e16235.
    Ye L., Su X., Wu Z., Zheng X., Wang J., Zi C., Zhu G., Wu S. and Bao W. Analysis ofdifferential miRNA expression in the duodenum of Escherichia coli F18-Sensitive and-resistant weaned piglets. PLoS ONE,2012,7(8): e43741.
    Young M.D., Wakefield M.J., Smyth G.K. and Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol,2010,11(2): R14.
    Yuan C., Wang X., Geng R., He X., Qu L. and Chen Y. Discovery of cashmere goat (Caprahircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics,2013,14(1):511.
    Zhang B., Pan X., Cobb G.P. and Anderson T.A. microRNAs as oncogenes and tumorsuppressors. Dev Biol,2007,302(1):1-12.
    Zhang C., Wang G., Wang J., Ji Z., Dong F. and Chao T. Analysis of differential geneexpression and novel transcript units of ovine muscle transcriptomes. PLoS ONE,2014,9(2): e89817.
    Zhang C., Wang G., Wang J., Ji Z., Liu Z., Pi X. and Chen C. Characterization andcomparative analyses of muscle transcriptomes in Dorper and Small-Tailed Han sheepusing RNA-seq technique. PLoS ONE,2013,8(8): e72686.
    Zhang G., Guo G., Hu X., Zhang Y., Li Q., Li R., Zhuang R., Lu Z., He Z. and Fang X. DeepRNA sequencing at single base-pair resolution reveals high complexity of the ricetranscriptome. Genome Res,2010,20(5):646-654.
    Zhao S., Hulsegge B., Harders F., Bossers R., Keuning E., Hoekman A., Hoving‐Bolink R.and te Pas M. Functional analysis of inter‐individual transcriptome differentialexpression in pig longissimus muscle. J Anim Breed Genet,2013,130(1):72-78.
    Zhao X., Mo D., Li A., Gong W., Xiao S., Zhang Y., Qin L., Niu Y., Guo Y., Liu X., Cong P.,He Z., Wang C., Li J. and Chen Y. Comparative analyses by sequencing oftranscriptomes during skeletal muscle development between pig breeds differing inmuscle growth rate and fatness. PLoS ONE,2011,6(5): e19774.
    Zhao Y., Samal E. and Srivastava D. Serum response factor regulates a muscle-specificmicroRNA that targets Hand2during cardiogenesis. Nature,2005,436(7048):214-220.
    Zhou L., Chen J., Li Z., Li X., Hu X., Huang Y., Zhao X., Liang C., Wang Y., Sun L., Shi M.,Xu X., Shen F., Chen M., Han Z., Peng Z., Zhai Q., Chen J., Zhang Z., Yang R., Ye J.,Guan Z., Yang H., Gui Y., Wang J., Cai Z. and Zhang X. Integrated profiling ofmicroRNAs and mRNAs: microRNAs located on Xq27.3associate with clear cellrenal cell carcinoma. PLoS ONE,2010,5(12): e15224.
    Zytnicki M. and Quesneville H. S-MART, A software toolbox to aid RNA-seq data analysis.PLoS ONE,2011,6(10): e25988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700