用户名: 密码: 验证码:
纳米颗粒对血管内皮细胞的毒性作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代初起,纳米科技得到了迅速发展,已广泛应用于电子、信息、半导体、生物和医药等领域。越来越多的国家开始增加在该领域研究的投资,以期在这个孕育着巨大商机的领域中夺得先机。
     然而,随着研究的深入和发展,纳米材料的生物安全性问题引起越来越多的关注,已有的一些研究证据也表明某些纳米材料对人类的健康的确存在潜在的危害。为保证纳米科技的健康发展,进行纳米技术的生物安全性评估及研究已迫在眉睫。
     本论文以目前大量生产及应用的多壁碳纳米管(MWNTs)和在基因治疗中具有良好应用前景的精氨酸修饰壳聚糖(Arg-CS)基因纳米粒子(ACGN)作为纳米材料模型,选择人体中发挥重要生理功能的血管内皮细胞(VEC)作为研究对象,研究纳米材料与血管内皮细胞相互作用及机制,为纳米材料生物学效应的深入开展提供新的理论依据和实验基础。具体内容主要包括以下几个方面:
     1.血管内皮细胞的分离与培养:自人脐静脉分离血管内皮细胞,采用光镜、电镜和免疫组化等方法进行内皮细胞的形态观察和鉴定。结果表明光镜下内皮细胞呈铺路石状镶嵌排列;免疫组化可见内皮细胞胞浆中人vWF相关抗原呈阳性反应;电镜下可见胞浆中有W-P小体,证实培养的细胞为内皮细胞。
     2.MWNTs的表面效应对VEC的影响:噻唑蓝实验(MTT比色法)结果显示功能化多壁碳纳米管(f-CNTs)与原始多壁碳纳米管(p-CNTs)均对VEC产生一定的毒性作用;与细胞共育24h后,p-CNTs的毒性大于f-CNTs;而共育48及72h后,f-CNTs的毒性大于p-CNTs。透射电镜实验表明,f-CNTs共育细胞内空腔明显多于p-CNTs,而空腔内f-CNTs聚集体紧密程度明显小于p-CNTs。由此推断,表面效应可能是MWNTs对VEC造成毒性损伤的作用机制之一;纳米材料的毒性可能受团聚、形状、化学组成等许多因素的影响。
     3.MWNTs长度对VEC的影响:选择50μm-MWNTs及0.5μm-MWNTs作为实验材料,采用透射电镜、扫描电镜及激光粒度测定仪对碳纳米管进行表征;MTT结果显示,50μm-MWNTs的细胞毒性明显大于0.5μm-MWNTs;流式细胞分析显示长碳纳米管诱导的细胞凋亡率明显高于短碳纳米管,电镜观察显示长碳纳米管对超微结构损伤严重。提示尺寸效应是导致细胞毒性差异的主要原因,其毒性作用可能受其团聚程度影响。
     4.研究Arg-CS介导的TFPI基因转染与血管内皮细胞的相互作用:RT-PCR观察显示Arg-CS可介导TFPI基因进入内皮细胞并得到表达,MTT结果显示Arg-CS/TFPI基因纳米粒子对血管内皮细胞没有明显毒性作用。提示精氨酸修饰的壳聚糖作为基因载体可成功转染脐静脉内皮细胞(HUVEC),基本无毒,是较理想的基因载体。
Since the beginning of 1990's,nano-science and technology gained rapid development,and has been widely applied in the areas of electronics,information and communication,semiconductor,biology and medicine.More and more countries have been putting huge investment in the research and development of nanotechnology for the purpose of taking advantage of the opportunities which could bring huge commercial benefits.
     However,the bio-safety of nanomaterials has been drawing increasing attention of scientists and environmental protection organization.Preliminary studies showed that some kinds of nano-scale materials might have negative impact on human beings.Greater effort is urgently needed on the evaluation of the bio-safety of nano-scale materials for the healthy development of nanotechnology.The current study was aimed at investigating the interactions between nanomaterials and the vascular endothelial cells,which includes the following four parts:
     1.Isolation and identification of vascular endothelial cells(VECs) from human umbilical vein.The morphologic observation and evaluation of ECs were made with light microscopy,electron microscopy and immunohistochemistry.The results showed that the isolated VECs arrayed like pitching stones under light microscope.W-P corpuscles were observed in the cytoplasm under electron microscope and immunostaining of the cells with antibody againstⅧfactor demonstrated positive reaction,suggesting that the isolated cells were VECs.
     2.Study on the effect of surface chemistry of MWNT on the cytotoxicity.It was demonstrated that the cytotoxicity of p-CNTs was greater than that of f-CNTs at 24 h of exposure.However it was on the contrary at 48 h and 72 h of exposure.Transmission electron microscopic observation showed that there were much more CNT aggregates in the cells in contact with f-CNTs,but the p-CNT aggregates were much more condensed than f-CNTs aggregates.These observations suggested that the modification of CNTs have effects on cellular function that can not be attribute to one factor alone,but are more likely the combined result of several unfavorable interactions.
     3.Study of the effect of the length of MWCNTs on the cytotoxicity.(MWCNTs). The results showed that the 50μm-long MWCNTs induced more severe damages to the vascular endothelial cells(VECs) in comparison to the 0.5μm-long MWCNTs.It was also demonstrated that the long CNTs at 50μg/mL induced significantly higher number of apoptotic cells than the short MWCNTs.It provided the first evidence that CNT aggregates with a dimension of up to 10μm×6.25μm were internalized by VECs and caused severe damages,which is postulated as a new mechanism underlying the cellular injuries induced by aggregated CNTs.
     4.Evaluation of the arginine modified chitosan(Arg-CS) as gene carriers for introducing tissue factor pathway inhibitor(TFPI) gene into VECs.The level of TFPI mRNA was tested using RT-PCR ant the in vitro cytotoxicity of Arg-CS/DNA complexes was determined by MTT assay.The results showed that Arg-CS/pIRES-TFPI DNA complexes were nontoxic to the VECs and successfully mediated the expression of TFPI gene in the cells.
引文
[1]Shiekh FA,Miller VM,Lieske JC.Do calcifying nanoparticles promote nephrolithiasis?A review of the evidence[J].Clin Nephrol,2009,71(1):1-8.
    [2]Wu X,Liu H,Liu J,et al.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J].Nat Biotechnol,2003,21(1):41-46.
    [3]Zhang Y,Kohler N,Zhang M.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake[J].Biomaterials,2002,23(7):1553-1561.
    [4]Gao X,Cui Y,Levenson RM,et al.In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nat Biotechnol,2004,22(8):969-976.
    [5]Weissleder R,Elizondo G,Wittenberg J,et al.Ultrasmall superparamagnetic iron oxide:characterization of a new class of contrast agents for MR imaging[J].Radiology,1990,175(2).489-493.
    [6]Price RL,Waid MC,Haberstroh KM,et al.Selective bone cell adhesion on formulations containing carbon nanofibers[J].Biomaterials,2003,24(11):1877-1887.
    [7]Elias KL,Price RL,Webster TJ.Enhanced functions of osteoblasts on nanometer diameter carbon fibers[J].Biomaterials,2002,23(15):3279-3287.
    [8]Zanello LP,Zhao B,Hu H,et al.Bone cell proliferation on carbon nanotubes[J].Nano Lett,2006,6(3):562-567.
    [9]Viceconti M,Ricci S,Pancanti A,et al.Numerical model to predict the long-term mechanical stability of cementless orthopaedic implants[J].Med Biol Eng Comput,2004,42(6):747-753.
    [10]Hong SI,Rhim JW.Antimicrobial activity of organically modified nano-clays[J].J Nanosci Nanotechnol,2008,8(11):5818-5824.
    [11]Li XS,Li WQ,Wang WB.Using targeted magnetic arsenic trioxide nanoparticles for osteosarcoma treatment[J].Cancer Biother Radiopharm,2007,22(6):772-778.
    [12]Davis SS.Biomedical applications of nanotechnology-implications for drug targeting and gene therapy[J].Trends Biotechnol,1997,15(6):217-224.
    [13]Lambert G,Fattal E,Couvreur P.Nanoparticulate systems for the delivery of antisense oligonucleotides[J].Adv Drug Deliv Rev,2001,47(1):99-112.
    [14]Truong-Le VL,Walsh SM,Schweibert E,et al.Gene transfer by DNA-gelatin nanospheres[J].Arch Biochem Biophys,1999,361(1):47-56.
    [15]Navarro J,Oudrhiri N,Fabrega S,et al.Gene delivery systems:Bridging the gap between recombinant viruses and artificial vectors[J].Adv Drug Deliv Rev,1998,30(1-3):5-11.
    [16]Pouton CW,Seymour LW.Key issues in non-viral gene delivery[J].Adv Drug Deliv Rev,1998,34(1):3-19.
    [17]Cristiano RJ.Targeted,non-viral gene delivery for cancer gene therapy[J].Front Biosci,1998,3:D1161-1170.
    [18]Sengolge G,Hod WH,Sunder-Plassmann G.Intravenous iron therapy:well-tolerated,yet not harmless[J].Eur J Clin Invest,2005,35 Suppi 3:46-51.
    [19]Panos I,Acosta N,Heras A.New drug delivery systems based on chitosan[J].Curr Drug Discov Technol,2008,5(4):333-341.
    [20]常津,尤永平,等.一种新型纳米基因载体的制备及体外实验[J].中国生物医学工程学报,2002,21(6):515-519,529.
    [21]Gao S,Dagnaes-Hansen F,Nielsen EJ,et al.The Effect of Chemical Modification and Nanopartiele Formulation on Stability and Biodistribution of siRNA in Mice[J].Mol Ther,2009.
    [22]Luo D,Saltzman WM Enhancement of transfeetion by physical concentration of DNA at the cell surface[J].Nat Biotechnol,2000,18(8):893-895.
    [23]Lipski AM,Pino CJ,Haselton FR,et al.The effect of silica nanoparticle-modified surfaces on cell morphology,cytoskeletai organization and function[J].Biomaterials,2008,29(28):3836-3846.
    [24]Ido A,Nakata K,K-at-o Y,et'al.Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter[J].Cancer Res,1995,55(14):3105-3109.
    [25]杨菁,宋存先,等.载反义mcp-1纳米粒子的制备及应用[J].医学研究通讯,2002,31(4):11-14.
    [26]Tseng WC,Jong CM.Improved stability of polycationie vector by dextran-grafted branched polyethylenimine[J].BiomacromolecuLes,2003,4(5):1277-1284.
    [27]Prato M,Kostarelos K,Bianco A.Functionalized carbon nanotubes in drug design and discovery[J].Acc Chem Res,2008,41(1):60-68.
    [28]厉周,黄宗海,崔大祥,et al.聚酰胺-胺型树枝状高聚合物介导survivin反义寡核苷酸抑制结直肠癌裸鼠皮下移植瘤生长的作用[J].南方医科大学学报,2008,28(11):1935-1938.
    [29]Pan B,Cui D,Xu P,et al.Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems[J].Nanotechnology,2009,20(12):125101.
    [30]Warheit DB,Laurence BR,Reed KL,et al.Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J].Toxicol Sci,2004,77(1):117-125.
    [31]Lam CW,James JT,McCluskey R,et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicol Sci,2004,77(1):126-134.
    [32]Meng J,Song L,Kong H,et al.[Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven][J].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2007,24(1):55-60.
    [33]Bottini M,Bruckner S,Nika K,et al.Multi-walled carbon nanotubes induce T lymphocyte apoptosis[J].Toxicol Lett,2006,160(2):121-126.
    [34]Shvedova AA,Castranova V,Kisin ER,et al.Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells[J].J Toxicol Environ Health A,2003,66(20):1909-1926.
    [35]Zhu S,Oberdorster E,Haasch ML.Toxicity of an engineered nanoparticle (fullerene,C60) in two aquatic species,Daphnia and fathead minnow[J].Mar Environ Res,2006,62 Suppl:S5-9.
    [36]Tsuchiya T,Oguri I,Yamakoshi YN,et al.Novel harmful effects of[60]fullerene on mouse embryos in vitro and in vivo[J].FEBS Lett,1996,393(1):139-145.
    [37]Ferin J,Oberdorster G,Penney DP.Pulmonary retention of ultrafine and fine particles in rats[J].Am J Respir Cell Mol Biol,1992,6(5):535-542.
    [38]Kiss B,Biro T,Czifra G,et al.Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells[J].Exp Dermatol,2008,17(8):659-667.
    [39]Renwick LC,Donaldson K,Clouter A.Impairment of alveolar macrophage phagocytosis by ultrafine particles[J],Toxicol Appl Pharmacol,2001,172(2):119-127.
    [40]Andersson U,Wang H,Palmblad K,et al.High mobility group 1 protein(HMG-1)stimulates proinflammatory cytokine synthesis in human monocytes[J].J Exp Med,2000,192(4):565-570.
    [41]Dick CA,Brown DM,Donaldson K,et al.The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types[J].Inhal Toxicol,2003,15(1):39-52.
    [42]Bruchez M,Jr.,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016.
    [43]Kirchner C,Liedl T,Kudera S,et al.Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J].Nano Lett,2005,5(2):331-338.
    [44]Jain MP,Choi AO,Neibert KD,et al.Probing and preventing quantum dot-induced cytotoxicity with multimodal alpha-lipoic acid in multiple dimensions of the peripheral nervous system[J].Nanomed,2009,4(3):277-290.
    [45]Lovric J,Bazzi HS,Cuie Y,et al.Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots[J].J Mol Med,2005,83(5):377-385.
    [46]Su Y,He Y,Lu H,et al.The cytotoxicity of cadmium based,aqueous phase-Synthesized,quantum dots and its modulation by surface coating[J].Biomaterials,2008.
    [47]Male KB,Lachance B,Hrapovic S,et al.Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy[J].Anal Chem,2008,80(14):5487-5493.
    [48]Mansour(?)S,Lavigne P,Corsi K,et al.Chitosan-DNA nanoparticles as non-viral vectors in gene therapy:strategies to improve transfection efficacy[J].Eur J Pharm Biopharm,2004,57(1):1-8.
    [49]Zhang X,Yu C,Xushi,et al.Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo[J].Biochem Biophys Res Commun,2006,341(1):202-208.
    [50]Koping-Hoggard M,Varum KM,Issa M,et al.Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers[J].Gene Ther,2004,11(19):1441-1452.
    [51]Enriquez de Salamanca A,Diebold Y,Calonge M,et al.Chitosan nanoparticles as a potential drug delivery system for the ocular surface:toxicity,uptake mechanism and in vivo tolerance[J].Invest Ophthalmol Vis Sci,2006,47(4):1416-1425.
    [52]Kim TH,lhm JE,Choi YJ,et al.Efficient gene delivery by urocanic acid-modified chitosan[J].J Control Release,2003,93(3):389-402.
    [53]Yoo HS,Lee JE,Chung H,et al.Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery[J].J Control Release,2005,103(1):235-243.
    [54]Wong K,Sun G,Zhang X,et ai.PEl-g-chitosan,a novel gene delivery system with transfeetion efficiency comparable to polyethylenimine in vitro and after liver administration in vivo[J].Bioconjug Chem,2006,17(1):152-158.
    [55]Boudreaux DS,Chance RR,Elsenbaumer RL,et al.New class of soliton-supporting polymers:Theoretical predictions[J].Phys Rev B Condens Matter,1985,31(1):652-655.
    [56]Yoo H,Sazani P,Juliano RL.PAMAM dendrimers as delivery agents for antisense oligonucleotides[J].Pharm Res,1999,16(12):1799-1804.
    [57]Roberts JC,Bhalgat MK,Zeta RT.Preliminary biological evaluation of polyamidoamine(PAMAM) Starburst dendrimers[J].J Biomed Mater Res,1996,30(1):53-65.
    [58]El-Sayed M,Kiani MF,Naimark MD,et al.Extravasation of poly(amidoamine)(PAMAM) dendrimers across microvascular network endothelium[J].Pharm Res,2001,18(1):23-28.
    [59]Ahn CH,Chae SY,Bae YH,et ai.Biodegradable poly(ethylenimine) for plasmid DNA delivery[J].J Control Release,2002,80(1-3):273-282.
    [60]Nimesh S,Chandra R.Guanidinium-grafted polyethylenimine:an efficient transfecting agent for mammalian cells[J].Eur J Pharm Biopharm,2008,68(3):647-655.
    [61]王翔,闫蕾,贾光,et al.纳米材料潜在健康影响的研究进展[J].毒理学杂志,2005,19(1):15-17.
    [62]Rahman Q,Lohani M,Dopp E,et al.Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts[J].Environ Health Perspect,2002,110(8):797-800.
    [63]Desai UA,Pallos J,Ma AA,et al.Biologically active molecules that reduce polyglutamine aggregation and toxicity[J].Hum Mol Genet,2006,15(13):2114-2124.
    [64]Oberdorster E.Manufactured nanomaterials(fullerenes,C60)induce oxidative stress in the brain of juvenile largemouth bass[J].Environ Health Perspect,2004,112(10):1058-1062.
    [65]Yoshikawa T,Nabeshi H,Yoshioka Y.[Evaluation of biological influence of nano-materials using toxicokinetic and toxicoproteomic approach][J].Yakugaku Zasshi,2008,128(12):1715-1725.
    [66]Alexis F,Pridgen E,Molnar LK,et al.Factors affecting the clearance and biodistribution of polymeric nanoparticles[J].Mol Pharm,2008,5(4):505-515.
    [67]Gray E,Thomas S,Mistry Y,et al.Inhibition of tissue factor and cytokine released].Haemostasis,1996,26 Suppl 1:92-95.
    [68]Chen X,Aledia AS,Ghajar CM,et al.Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature[J].Tissue Eng Part A,2009,15(6):1363-1371.
    [69]Guilpain P,Mouthon L.Antiendothelial cells autoantibodies in vasculitis-associated systemic diseases[J].Clin Rev Allergy Immunol,2008,35(1-2):59-65.
    [70]Nemmar A,Hoylaerts MF,Hoet PH,et al.Possible mechanisms of the cardiovascular effects of inhaled particles:systemic translocation and prothrombotic effects[J].Toxicol Lett,2004,149(1-3):243-253.
    [71]Seaton A,Donaldson K.Nanoscience,nanotoxicology,and the need to think smalI[J].Lancet,2005,365(9463):923-924.
    [72]Yamawaki H,Pan S,Lee RT,et al.Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells[J].J Clin Invest,2005,115(3):733-738.
    [73]Yamawaki H,Lehoux S,Berk BC.Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo[J].CircuLation,2003,108(13):1619-1625.
    [74]Martinet W,De Bie M,Schrijvers DM,et al.7-ketocholesterol induces protein ubiquitination,myelin figure formation,and light chain 3 processing in vascular smooth muscle cells[J].Arterioscler Thromb Vasc Biol,2004,24(12):2296-2301.
    [75]Bravo R,Macdonald-Bravo H.Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle:association with DNA replication sites[J].J Cell Biol,1987,105(4):1549-1554.
    [76]Charo IF,Taubman MB.Chemokines in the pathogenesis of vascular disease[J].Circ Res,2004,95(9):858-866.
    [77]Mills NL,Donaldson K,Hadoke PW,et al.Adverse cardiovascular effects of air pollution[J].Nat Clin Pract Cardiovasc Med,2009,6(1):36-44.
    [78]Reichlin T,Wild A,Durrenberger M,et al.Investigating native coronary artery endothelium in situ and in cell culture by scanning force microscopy[J].J Struct Biol,2005,152(1):52-63.
    [79]王建民,刘荫秋.正常脐静脉离体后不同时间内皮某些物质含量的变化[J]第三军医大学学报,1995,17(1):86-86.
    [80]程满根.血管内皮细胞单克隆抗体研究[J].国外医学:生理病理科学与临床分册,1989,9(3):138-141.
    [81]Jaffe EA,Nachman RL,Becker CG,et al.Culture of human endothelial cells derived from umbilical veins,Identification by morphologic and immunologic criteria[J].J Clin Invest,.1973,52(11):2745-2756.
    [82]Cheung AL.Isolation and culture of human umbilical vein endothelial cells (HUVEC)[J].Curr Protoc Microbiol,2007,Appendix 4:Appendix 4B.
    [83]Dvorak HF,Brown LF,Detmar M,et al.Vascular permeability factor/vascular endothelial growth factor,microvascular hyperpermeability,and angiogenesis[J].Am J Pathol,1995,146(5):1029-1039.
    [84]Favot L,Keravis T,Holl V,et al.VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors[J].Thromb Haemost,2003,90(2):334-343.
    [85]Gimbrone MA,Jr.,Cotran RS,Folkman J.Human vascular endothelial cells in culture.Growth and DNA synthesis[J].J Cell Biol,1974,60(3):673-684.
    [86]Truax JF,Cochran FR.Identification and partial characterization of an acidic sphingomyelinase(SMase)from cultured human umbilical vein endothelial cells(HUVEC)[J].Inflamm Res,1995,44 Suppl 2:S135-136.
    [87]Royo T,Martinez-Gonzalez J,Vilahur G,et al.Differential intracellular trafficking of von Willebrand factor(vWF)and vWF propeptide in porcine endothelial cells lacking Weibel-Palade bodies and in human endothelial cells[J].Atherosclerosis,2003,167(1):55-63.
    [88]Marrs B,Andrews R,Rantell T,et al.Augmentation of acrylic bone cement with multiwall carbon nanotubes[J].J Biomed Mater Res A,2006,77(2):269-276.
    [89]Portney NG,Ozkan M.Nano-oncology:drug delivery,imaging,and sensing[J]Anal Bioanal Chem,2006,384(3):620-630.
    [90]Venkatesan N,Yoshimitsu J,Ito Y,et al.Liquid filled nanoparticles as a drug delivery tool for protein therapeutics[J].Biomaterials,2005,26(34):7154-7163.
    [91]Lee YJ,Yi H,Kim WJ,et al.Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes[J].Science,2009,324(5930):1051-1055.
    [92]Foldvari M,Bagonluri M.Carbon nanotubes as functional excipients for nanomedicines:Ⅱ.Drug delivery and biocompatibility issues[J].Nanomedicine,2008,4(3):183-200.
    [93]Lovat V,Pantarotto D,Lagostena L,et al.Carbon nanotube substrates boost neuronal electrical signaling[J].Nano Lett,2005,5(6):1107-1110.
    [94]Kang S,Mauter MS,Elimelech M.Microbial cytotoxicity of carbon-based nanomaterials:implications for river water and wastewater enffluent[J].Environ Sci Technol,2009,43(7):2648-2653.
    [95]Meyer DE,Curran MA,Gonzalez MA.An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of hanoproducts[J].Environ Sci Technol,2009,43(5):1256-1263.
    [96]Belyanskaya L,Weigel S,Hirsch C,et al.Effects of carbon nanotubes on primary neurons and glial cells[J].Neurotoxicology,2009.
    [97]Li D,Yuan L,Yang Y,et al.Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes[J].Sci China C Life Sci,2009,52(5):479-482.
    [98]Ye SF,Wu YH,Hou ZQ,et al.ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes[J].Biochem Biophys Res Commun,2009,379(2):643-648.
    [99]Brook RD,Franklin B,Cascio W,et al.Air pollution and cardiovascular disease:a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association[J],Circulation,2004,109(21):2655-2671.
    [100]Nielsen SO,Ensing B,Ortiz V,et al.Lipid bilayer perturbations around a transmembrane nanotube.a coarse grain molecular dynamics study[J],Biophys J,2005,88(6):3822-3828.
    [101]Vivekchand SR,Sudheendra L,Sandeep M,et al A study of polyaniline-carbon nanotube composites[J].J Nanosci Nanotechnol,2002,2(6):631-635.
    [102]Suarez B,Moliner-Martinez Y,Cardenas S,et al.Monitoring of carboxylic carbon nanotubes in surface water by using multiwalled carbon nanotube-modified filter as preconcentration unit[J].Environ Sci Technol,2008,42(16):6100-6104.
    [103]Li X,Gao H,Scrivens WA,et al.Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites[J|.J Nanosci Nanotechnol,2007,7(7):2309-2317.
    [104]Blake R,Gun'ko YK,Coleman J,et al.A generic organometallic approach toward ultra-strong carbon nanotube polymer composites[J].J Am Chem Soc,2004,126(33):10226-10227.
    [105]Nimmagadda A,Thurston K,Nollert MU,et al.Chemical modification of SWNT alters in vitro cell-SWNT interactions[J].J Biomed Mater Res A,2006,76(3):614-625.
    [106]Shi Kam NW,Jessop TC,Wender PA,et al.Nanotube molecular transporters:internalization of carbon nanotube-protein conjugates into Mammalian cells[J].J Am Chem Soc,2004,126(22):6850-6851.
    [107]Dumortier H,Lacotte S,Pastorin G,et al.Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells[J].Nano Lett,2006,6(7):1522-1528.
    [108]Isobe H,Tanaka T,Maeda R,et al.Preparation,purification,characterization,and cytotoxicity assessment of water-soluble,transition-metal-free carbon nanotube aggregates[J].Angew Chem Int Ed Engl,2006,45(40):6676-6680.
    [109]Pulskamp K,Diabate S,Krug HF.Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants[J].Toxicol Lett,2007,168(1):58-74.
    [110]Zhu L,Chang DW,Dai L,et al.DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J].Nano Lett,2007,7(12):3592-3597.
    [111]Lindberg HK,Falck GC,Suhonen S,et al.Genotoxicity of nanomaterials.DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro[J].Toxicol Lett,2009,186(3):166-173.
    [112]Monteiro-Riviere NA,Nemanich RJ,Inman AO,et al.Multi-walled carbon nanotube interactions with human epidermal keratinocytes[J].Toxicol Lett,2005,155(3):377-384.
    [113]Fu K,Huang W,Lin Y,et al.Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution[J].J Nanosci Nanotechnol,2002,2(5):457-461.
    [114]Azamian BR,Davis JJ,Coleman KS,et al.Bioelectrochemical single-walled carbon nanotubes[J].J Am Chem Soc,2002,124(43):12664-12665.
    [115]Du Z,Yu Y,Wang J.Selective isolation of acidic proteins with a thin layer of multiwalled carbon nanotubes functionalized with polydiallyldimethylammonium chloride[J].Anal Bioanal Chem,2008,392(5):937-946.
    [116]Zhou H,Mu Q,Gao N,et al.A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding,cytotoxicity,and immune response[J].Nano Lett,2008,8(3):859-865.
    [117]Cui D,Tian F,Ozkan CS,et al.Effect of single wall carbon nanotubes on human HEK293 cells[J].Toxicol Lett,2005,155(1):73-85.
    [118]Bajwa N,Li X,Ajayan PM,et al.Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J].J Nanosci Nanotechnol,2008,8(11):6054-6064.
    [119]Price RL,Ellison K,Haberstroh KM,et al.Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts[J].J Biomed Mater Res A,2004,70(1):129-138.
    [120]Wang H,Li Y,Zuo Y,et al.Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J].Biomaterials,2007,28(22):3338-3348.
    [121]Shearer MC,Fawcett JW.The astrocyte/meningeal cell interface--a barrier to successful nerve regeneration?[J].Cell Tissue Res,2001,305(2):267-273.
    [122]Mattson MP,Haddon RC,Rao AM.Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J].J Mol Neurosci,2000,14(3):175-182.
    [123]Magrez A,Kasas S,Salicio V,et al.Cellular toxicity of carbon-based nanomaterials[J].Nano Lett,2006,6(6):1121-1125.
    [124]Hei TK,Xu A,Huang SX,et al.Mechanism of fiber carcinogenesis:from reactive radical species to silencing of the beta igH3 gene[J].Inhal Toxicol,2006,18(12):985-990.
    [125]Poland CA,Duffin R,Kinloch I,et al.Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J].Nat Nanotechnol,2008,3(7):423-428.
    [126]Takagi A,Hirose A,Nishimura T,et al.Induction of mesothelioma in p53+/-mouse by intraperitoneal application of multi-wall carbon nanotube[J].J Toxicol Sci,2008,33(1):105-116.
    [127]Hirano S,Kanno S,Furuyama A.Multi-walled carbon nanotubes injure the plasma membrane of macrophages[J].Toxicol Appl Pharmacol,2008,232(2):244-251.
    [128]Yamawaki H,Iwai N.Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis:carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells[J].Circ J,2006,70(1):129-140.
    [129]Donaldson K,Aitken R,Tran L,et al.Carbon nanotubes:a review of their properties in relation to pulmonary toxicology and workplace safety[J].Toxicol Sci,2006,92(1).5-22.
    [130]Zhu Y,Zhao Q,Li Y,et al.The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus[J].J Nanosci Nanotechnol,2006,6(5):1357-1364.
    [131]Sato Y,Yokoyama A,Shibata K,et al.Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo[J].Mol Biosyst,2005,1(2):176-182.
    [132]Nel A,Xia T,Madler L,et al.Toxic potential of materials at the nanolevel[J].Science,2006,311(5761):622-627.
    [133]Manna SK,Sarkar S,Barr J,et al.Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes[J].Nano Lett,2005,5(9):1676-1684.
    [134]Kang S,Pinault M,Pfefferle LD,et al.Single-walled carbon nanotubes exhibit strong antimicrobial activity[J].Langmuir,2007,23(17):8670-8673.
    [135]Hagigit T,Nassar T,Behar-Cohen F,et al.The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions[J].Eur J Pharm Biopharm,2008,70(1):248-259.
    [136]Jean M,Smaoui F,Lavertu M,et al.Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies[J].Gene Ther,2009.
    [137]Kothari H,Kaur G,Sahoo S,et al.Plasmin enhances cell surface tissue factor activity in mesothelial and endothelial cells[J].J Thromb Haemost,2009,7(1):121-131.
    [138]Huang M,Khor E,Lim LY.Uptake and cytotoxicity of chitosan molecules and nanoparticles:effects of molecular weight and degree of deacetylation[J].Pharm Res,2004,21(2):344-353.
    [139]Fischer D,Li Y,Ahlemeyer B,et al.In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis[J].Biomaterials,2003,24(7):1121-1131.
    [140]Ewert K,Ahmad A,Evans HM,et al.Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery[J].J Med Chem,2002,45(23):5023-5029.
    [141]Corsi K,Chellat F,Yahia L,et al.Mesenchymal stem cells,MG63 and HEK293 transfection using chitosan-DNA nanoparticles[J].Biomaterials,2003,24(7):1255-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700