用户名: 密码: 验证码:
蝶蛹金小蜂毒液蛋白质组与四个毒液蛋白生理功能的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寄生蜂是农业害虫重要的天敌,在害虫生物防治中发挥重要作用。寄生蜂在产卵的同时,将毒液、多分DNA病毒(PDV)或类病毒颗粒(VLP)等寄生因子一同注入寄主体内,抑制寄主免疫反应或调控寄主生长发育以保护其子代能够成功完成发育。毒液等寄生因子可以用来开发新型免疫抑制剂或用于转基因作物的开发,具有广阔的应用前景。因此,寻找寄生蜂寄生因子,明确寄生因子的功能可以为下一步的开发利用奠定关键基础。目前,仅对少数几个寄生蜂毒液进行了研究,获得的毒液基因也很有限,功能的研究则更少。因此,本研究以菜粉蝶Pieris rapae的蛹期优势内寄生蜂蝶蛹金小蜂Pteromalus puparum为研究对象,采用毒腺转录组和毒液蛋白质组的分析方法解析了蝶蛹金小蜂毒液蛋白的组分。同时选取四个毒液蛋白基因为重点,研究并明确了其基因序列、表达模式与生物学功能。
     1.蝶蛹金小蜂毒液蛋白质组分析
     首先测定了蝶蛹金小蜂雌蜂毒腺/非毒腺组织的转录组,对转录组数据进行了分析。在利用shotgun蛋白质组方法对蝶蛹金小蜂毒液进行分析的基础上,对获得的蛋白质组质谱信息与蝶蛹金小蜂毒腺/非毒腺组织转录组数据库和后生动物门蛋白质数据库作比对分析,鉴定明确了蝶蛹金小蜂毒液蛋白组分中的60个蛋白,其中可分为蛋白酶类、蛋白酶抑制剂、识别或结合蛋白、其他及功能未知蛋白5大类。
     2.蝶蛹金小蜂毒液钙网蛋白的功能及其与寄主菜粉蝶钙网蛋白关系的分析
     蝶蛹金小蜂毒液钙网蛋白氨基酸序列可分为N、P和C三个区域,并且对序列进行进一步分析首次发现在C末端有一个Coiled-coil结构域,原核表达并纯化蝶蛹金小蜂毒液钙网蛋白或缺失Coiled-coil结构域的突变体,制备了兔多克隆抗体。定量PCR检测到蝶蛹金小蜂毒液钙网蛋白基因在各个组织都有表达,在毒腺中表达量最高,而在羽化后第二天的毒腺表达量最高,后表达量降低。Western blotting结果表明钙网蛋白存在于雌蜂各个组织和毒液中,羽化0-6天毒液中都存在,并且差异不明显。融合表达的毒液钙网蛋白和缺失Coiled-coil结构域的突变体能够结合到蝶蛹金小蜂卵表面。融合表达的毒液钙网蛋白能够进入寄主菜粉蝶血细胞,而缺失Coiled-coil结构域的突变体只能少量进入寄主菜粉蝶血细胞。融合表达的毒液钙网蛋白在体外能够抑制寄主菜粉蝶血细胞的延展和包囊,缺失Coiled-coil结构域的突变体也能够抑制寄主菜粉蝶血细胞的延展和包囊,但效果不如野生型融合蛋白。将融合表达的毒液钙网蛋白注射到菜粉蝶体内,定量PCR检测到菜粉蝶血细胞钙网蛋白和清道夫受体基因的表达受到抑制。菜粉蝶钙网蛋白能够被酵母和微珠显著诱导表达,能够促进血细胞的的包囊反应,并且蝶蛹金小蜂寄生后菜粉蝶钙网蛋白表达量降低。
     3.蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂的分离纯化及功能分析
     利用RP-HPLC对蝶蛹金小蜂总毒液进行分离,获得了单个毒液多肽组分,其中2号峰经质谱及N端测序鉴定为Pacifastin丝氨酸蛋白抑制剂。设计引物克隆了蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂的基因,全长365bp,其中开放阅读框225bp,编码74个氨基酸。原核表达Pacifastin丝氨酸蛋白抑制剂并进行纯化,同时化学合成了多肽,利用原核表达纯化的蛋白制备了兔多克隆抗体。定量PCR分析发现蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂基因特异性的在毒腺中表达,在毒腺中以羽化后第2天表达量最高;VWestern blotting结果表明蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂特异性的存在于毒液中,毒液中Pacifastin丝氨酸蛋白抑制剂在羽化后第三天达到最高且持续到第六天。体外测定了融合表达的和化学合成的蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂对适应性寄主和非适应寄主血淋巴中酚氧化酶(PO)和酚氧化酶前体激活(PPO activation)的影响。结果表明,蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂对寄主菜粉蝶和柑橘凤蝶蛹血淋巴PO活性无影响,但显著抑制了2个寄主血淋巴的PPO激活。蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂对非寄主昆虫家蚕的PO活性无影响,抑制血淋巴PPO激活。蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂对非寄主昆虫二化螟血淋巴PO活性及PPO激活均无影响。而有趣的是,蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂能够促进烟草天蛾Manduca sexta血淋巴PPO激活。通过对丝氨酸酶活性的测定,发现蝶蛹金小蜂毒液Pacifastin丝氨酸蛋白抑制剂能够显著抑制胰蛋白酶trypsin活性,而对胰凝乳蛋白酶chymotrypsin和proteinase K活性无影响。
     4.蝶蛹金小蜂毒液Kazal丝氨酸蛋白酶抑制剂的功能分析
     利用转录组所获得的序列设计引物克隆了蝶蛹金小蜂毒液Kazal丝氨酸蛋白酶抑制剂的基因,全长398bp,开放阅读框全长210bp,编码70氨基酸。原核融合表达并纯化了毒液Kazal丝氨酸蛋白酶抑制剂,同时化学合成了毒液Kazal丝氨酸蛋白酶抑制剂,利用原核表达纯化的蛋白制备了兔多克隆抗体。定量PCR检测发现毒液Kazal丝氨酸蛋白酶抑制剂基因在毒腺中特异性表达,且在羽化后第2天表达量最高;VWestern blotting检测发现毒液Kazal丝氨酸蛋白酶抑制剂只存在于毒液中,从羽化到羽化后第6天毒液中都存在。体外证实了融合表达的和化学合成的毒液Kazal丝氨酸蛋白酶抑制剂对寄主菜粉蝶和柑橘凤蝶血淋巴PO活性无影响,对菜粉蝶和柑橘凤蝶血淋巴PPO激活有抑制作用。
     5.蝶蛹金小蜂毒液普通气味结合蛋白的特性分析
     克隆了蝶蛹金小蜂毒液普通气味结合蛋白的基因,全长517bp,开放阅读框为396bp编码332个氨基酸。原核表达毒液普通气味结合蛋白,纯化后制备兔多克隆抗体。定量PCR结果表明蝶蛹金小蜂毒液普通气味结合蛋白基因在毒腺中特异性高表达,在羽化后第二天表达量最高,后表达量逐渐降低;Western blotting检测发现毒液普通气味结合蛋白存在于毒液和毒腺中,在羽化0-6天毒液中毒液普通气味结合蛋白量比较稳定。另外,交配对蝶蛹金小蜂毒液普通气味结合蛋白基因的表达没有影响;而喂食和寄生则能够促进蝶蛹金小蜂毒液普通气味结合蛋白基因的表达。利用毒液普通气味结合蛋白抗体免疫组织化学检测发现蝶蛹金小蜂毒液普通气味结合蛋白均匀的分布在毒腺内。
     本研究通过结合转录组和蛋白质组技术,鉴定了蝶蛹金小蜂毒液的组分,获得了60个毒液蛋白,并选取了毒液钙网蛋白、Pacifastin丝氨酸蛋白抑制剂、Kazal丝氨酸蛋白酶抑制剂和毒液普通气味结合蛋白进行了表达模式及功能研究。本研究增加了对寄生蜂毒液组分的认识,扩展了寄生蜂毒液的作用模式,为下一步拓展利用寄生蜂毒液蛋白用于害虫控制具有指导意义。
Parasitoids are natural enemies of numerous insects that as important biological control agent to achieve pest status in agriculture system. Its deposit their eggs within the host insect along with virulence parasitic factors such as venom, polydnaviruse (PDV), virus-like particle (VLP), and teratocyte to interfere with host's immune response or to disrupt host's development to ensure their offspring successful development of in the hemocoel. The parasitic factors such as venom would be potentially valuable resources on developing new environmentally safe insect immune-suppression agents or transgenetic crops with modern biotechnologies. So, searching the parasitoid virulence parasitic factors and determining the functions of parasitic factors would help the next development. Up to date, only some parasitoids venom protein has been documented and only little venom protein has been studied. In this study, we chose Pteromalus puparum (Hymenoptera:Pteromalidae), a predominate pupal endoparasitoid of Pieris rapae (Lepidoptera:Pieridae) as object, combined venom gland transcriptome and venom proteomic method to analysis the constituents of Pteromalus puparum venom. And we selected some venom protein to expression in bacterial, and prepared rabbit polyclonal antibodies, studied their expression pattern and verified their biological function on its host.
     1. The constituents of Pteromalus puparum venom
     We sequenced the transcriptome of P. puparum venom gland and other tissue firstly, and analysed the transcriptome data. Then we used shotgun proteomic method to analysis P. puparum venom protein, the obtained data blasted with the database of P. puparum transcriptome and Metazoa database. And we obtained60venom protein from P. puparum venom, divided them into5types, including enzymes, proteinase inhibitors, recognition or binding proteins, unknown proteins and other.
     2. Functional analysis of calreticulin from Pteromalus puparum venom and its relationship with calreticulin of Pieris rapae
     We found a Coiled-coil domain in C terminal, and expressed the wild-type and the Coiled-coil domain deleted mutant P. puparum CRT (PpCRT) in bacterial and prepared the polyclonal antibody against PpCRT. RT-PCR results showed PpCRT gene expressed highest in venom gland, and the highest expression level in venom gland at after emergency2days. Western blotting analyses showed that PpCRT not only existed in venom but also in all tissues, and PpCRT lasted in venom after emergency. Recombinant His-tag wild-type and mutant PpCRT could unequally bind to P. puparum egg surface. PpCRT entered Pieris rapae hemocytes, and the Coiled-coil domain was important for entering hemocytes. Recombinant PpCRT inhibited host P. rapae hemocyte spreading and cellular encapsulation in vitro, and the Coiled-coil domain of PpCRT affected PpCRT exerting function. Injection PpCRT into P. rapae pupa, real time PCR results showed PpCRT inhibited P. rapae encapsulation-related genes (CRT, scavenger receptor) expression. PrCRT mRNA in hemocytes was significantly induced after injection of yeast or beads, but did not change noticeably after injection of Escherichia coli or Micrococcus lysodeikticus. Recombinant PrCRT enhanced cellular encapsulation by P. rapae hemocytes in vitro, and the N-domain of PrCRT was required for encapsulation. RNAi of PrCRT by dsRNA injection impaired the ability of hemocytes to encapsulate beads. After parasitization by P. puparum, PrCRT mRNA and protein levels in P. rapae pupal hemocytes were significantly suppressed compared to non-parasitized control.
     3. Isolation and functional analysis of Pacifastin type serine protease inhibitor from Pteromalus puparum venom
     We isolated the Pteromalus puparum venom by RP-HPLC, and obtained a single venom component. After MS/MS and N sequence, we identified the No.2peak as P. puparum venom Pacifastin type serine protease inhibitor (PpPI). We cloned the full sequence of PpPI, expressed in bacterial and purified, prepared the rabbit polyclonal antibody. RT-PCR results indicated PpPI gene special expression in venom gland and the highest expression level in venom gland at after emergency2days. Western blotting results showed PpPI special existed in venom protein and the highest level in venom at after emergency3days. We tested the recombinant or chemical synthesis PpPI effect on host or non-host hemolymph PO activity or PPO activation. Results showed PpPI had no effect on hemolymph PO activity, and inhibited the hemolymph PPO activation of host Pieris rapae and Papilio xuthus. PpPI also had no effect on hemolymph PO activity, inhibited the hemolymph PPO activation of non-host Bombyx mori. PpPI had no effect on hemolymph PO activity and PPO activation of non-host Chilo supperssalis. Interesting, PpPI enhanced the hemolymph PPO activation of non-host Manduca sexta. Through serine proteinase assay, PpPI inhibited trypsin activity, but had no effect on chymotrypsin and ptoteinase K activity.
     4. Functional analysis of Kazal type serine proteinase inhibitor from Pteromalus puparum venom
     We cloned the full sequence of P. puparum venom Kazal type serine proteinase inhibitor (PpKazal), expressed in bacterial and purified, prepared the rabbit polyclonal antibody. RT-PCR results showed PpKazal gene special expression in venom gland and the highest expression level in venom gland at after emergency2days. Western blotting results showed PpKazal special existed in venom protein, and lasted in venom through adult period. PpKazal had no effect on hemolymph PO activity, and inhibited the hemolymph PPO activation of host Pieris rapae and Papilio xuthus.
     5. Characterization of general odorant binding protein from Pteromalus puparum venom
     We cloned the full sequence of P. puparum venom general odorant binding protein (PpGOBP), expressed in bacterial and prepared the rabbit polyclonal antibody. PpGOBP gene special expression in venom gland and the highest expression level in venom gland at after emergency2days. PpGOBP existed in venom gland and venom, and its expression stable in venom at adult stage. Compared with non-mated, PpGOBP gene expression in venom gland after mated had no significant difference. After feeding honey or parasitized, PpGOBP gene expression in venom gland was siginificant promoted. Using PpGOBP polyclonal antibody, we detected PpGOBP located in venom gland.
     Combined transcriptome and ptoteomic methods, we idenfified the constituents of Pteromalus puparum venom and obtained60venom proteins. We selected calreticulin, Pacifastin type serine protease inhibitor, Kazal type serine proteinase inhibitor and general odorant binding protein to study their expression pattern and biological functions. This study made a great contribution to gain insights into understanding parasitoid venom components and made the foundation for exploiting venom protein for agricultal insect control.
引文
蔡峻,2000.蝶蛹金小蜂对寄主免疫调控机理的初步研究.浙江大学博士学位论文.
    潘健,余虹,陈学新,何俊华,2004.寄生蜂毒液的研究概况.中国生物防治,150-155.
    唐启义,冯明光,2007.实用统计分析及DPS数据统计分析系统.北京:科学出版社.
    王桂荣,郭予元,吴孔明,2002.昆虫触角气味结合蛋白的研究进展.昆虫学报,45:131-137.
    吴玛莉,2008.蝶蛹金小蜂毒液的生理功能及活性成分分离纯化的研究.浙江大学博士学位论文.
    张忠,2005.蝶蛹金小蜂和丽蝇蛹集金小蜂毒液的生化特性与生理功能.浙江大学博士学位论文.
    张忠,叶恭银,胡萃,2005.两种金小蜂毒液对菜粉蝶蛹血细胞延展、存活及包囊作用的影响.昆虫学报47,551-561.
    朱家颖,2009.蝶蛹金小蜂毒液分子特性及其调控寄主分子机理的研究.浙江大学博士学位论文.
    朱家颖,叶恭银,胡萃,2008a.寄生蜂调控寄主分子机制的研究进展.植物保护学报,563-568.
    朱家颖,叶恭银,胡萃,2008b.寄生蜂毒液蛋白的研究进展.植物保护学报,35:270-278.
    Abt, M., Rivers, D.B.,2007. Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J. Invertebr. Pathol.94,108-118.
    Asgari, S.,2006. Venom proteins from polydnavirus-producing endoparasitoids:Their role in host-parasite interactions. Arch. Insect Biochem. Physiol.61,146-156.
    Asgari, S., Rivers, D.B.,2010. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol.56,313-335.
    Asgari, S., Schmidt, O.,2002. A coiled-coil region of an insect immune suppressor protein is involved in binding and uptake by hemocytes. Insect Biochem. Mol. Biol.32,497-504.
    Asgari, S., Theopold, U., Wellby, C., Schmidt, O.,1998. A protein with protective properties against the cellular defense reactions in insects. Proc. Natl. Acad. Sci. U. S.A.95,3690-3695.
    Asgari, S., Zareie, R., Zhang, G.M., Schmidt, O.,2003a. Isolation and characterization of a novel venom protein from an endoparasitoid, Cotesia rubecula (Hym: Braconidae). Arch. Insect Biochem. Physiol.53,92-100.
    Asgari, S., Zhang, G., Schmidt, O.,2003b. Polydnavirus particle proteins with similarities to molecular chaperones, heat-shock protein 70 and calreticulin. J. Gen. Virol.84,1165-1171.
    Asgari, S., Zhang, G., Zareie, R., Schmidt, O.,2003c. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol.33,1017-1024.
    Balgopal, M.M., Dover, B.A., Goodman, W.G., Strand, M.R.,1996. Parasitism by Microplitis demolitor induces alterations in the juvenile hormone titers and juvenile hormone esterase activity of its host, Pseudoplusia includens.J. Insect Physiol.42,337-345.
    Beckage, N.E., Gelman, D.B.,2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol.49,299-330.
    Beckage, N.E., Reed, D.A., Gelman, D.B.,1998a. Manipulation of fifth-instar host (Manduca sexta) ecdysteroid levels by the parasitoid wasp Cotesia congregata. J. Insect Physiol.44,833-843.
    Beckage, N.E., Reed, D.A., Gelman, D.B., Kelly, T.J.,1998b. Effects of parasitization by Cotesia congregata on the brain-prothoracic gland axis of its host, Manduca sexta. J. Insect Physiol.44,323-332.
    Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S.,2004. Improved prediction of signal peptides:SignalP 3.0. J. Mol. Biol.340,783-795.
    Bradleigh Vinson, S., Malva, C., Paola, V., Sordetti, R., Falabella, P., Pennacchio, F., 1998. Prothoracic gland inactivation in Heliothis virescens (F.) (Lepidoptera: Noctuidae) larvae parasitized by Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae). J. Insect Physiol.44,845-857.
    Breugelmans, B., Simonet, G, van Hoef, V., Van Soest, S., Vanden Broeck, J.,2009. Pacifastin-related peptides:Structural and functional characteristics of a family of serine peptidase inhibitors. Peptides 30,622-632.
    Brown, J.J., Friedlander, M.,1995. Influence of parasitism on spermatogenesis in the codling moth, Cydia pomonella L. J. Insect Physiol.41,957-963.
    Cai, J., Ye, G.Y., Hu, C.,2004. Parasitism of Pieris rapae (Lepidoptera:Pieridae) by a pupal endoparasitold, Pteromalus puparum (Hymenoptera:Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol.50, 315-322.
    Casida, J.E., Quistad, C.B.,1998. Golden age of insecticide research:past, present, or future? Annu. Rev. Entomol.43,1-16.
    Colinet, D., Dubuffet, A., Cazes, D., Moreau, S., Drezen, J.-M., Poiri, M.,2009. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol.33,681-689.
    Colinet, D., Schmitz, A., Depoix, D., Crochard, D., Poirie, M.,2007. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathol. 3,2029-2037.
    Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M.,2005. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21,3674-3676.
    Consoli, F.L., Vinson, S.B.,2004. Host regulation and the embryonic development of the endoparasitoid Toxoneuron nigriceps (Hymenoptera:Braconidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol.137,463-473.
    Crawford, A.M., Brauning, R., Smolenski, G., Ferguson, C., Barton, D., Wheeler, T.T., Mcculloch, A.,2008. The constituents of Microctonus sp. parasitoid venoms. Insect Mol. Biol.17,313-324.
    Dahlman, D.L., Rana, R.L., Schepers, E.J., Schepers, T., DiLuna, F.A., Webb, B.A., 2003. A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. Insect Mol. Biol. 12,527-534.
    Dani, M.P., Edwards, J.P., Richards, E.H.,2005. Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca. Comp Biochem Physiol B Biochem Mol Biol 141,373-381.
    Dantuma, N.P., Potters, M., De Winther, M.P.J., Tensen, C.P., Kooiman, F.P., Bogerd, J., Van der Horst, D.J.,1999. An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J. Lipid Res.40, 973-978.
    de Graaf, D.C., Aerts, M., Brunain, M., Desjardins, C.A., Jacobs, F.J., Werren, J.H., Devreese, B.,2010a. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol. Biol.19,11-26.
    de Graaf, D.C., Brunain, M., Scharlaken, B., Peiren, N., Devreese, B., Ebo, D.G., Stevens, W.J., Desjardins, C.A., Werren, J.H., Jacobs, F.J.,2010b. Two novel proteins expressed by the venom glands of Apis mellifera and Nasonia vitripennis share an ancient Clq-like domain. Insect Mol. Biol.19,1-10.
    Digilio, M.C., Isidoro, N., Tremblay, E., Pennacchio, F.,2000. Host castration by Aphidius ervi venom proteins. J. Insect Physiol.46,1041-1050.
    Dong, K., Zhang, D., Dahlman, D.L.,1996. Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virescens larvae parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol.32,237-248.
    Doury, G., Bigot, Y., Periquet, G.,1997. Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J. Insect Physiol.43,69-81.
    Edwards, J.P., Bell, H.A., Audsley, N., Marris, G.C., Kirkbride-Smith, A., Bryning, G., Frisco, C., Cusson, M.,2006. The ectoparasitic wasp Eulophus pennicornis (Hymenoptera:Eulophidae) uses instar-specific endocrine disruption strategies to suppress the development of its host Lacanobia oleracea (Lepidoptera: Noctuidae). J. Insect Physiol.52,1153-1162.
    Espagne, E., Dupuy, C., Huguet, E., Cattolico, L., Provost, B., Martins, N., Poirie, M., Periquet, G., Drezen, J.M.,2004. Genome sequence of a polydnavirus:Insights into symbiotic virus evolution. Science 306,286-289.
    Falabella, P., Riviello, L., Caccialupi, P., Rossodivita, T., Teresa Valente, M., Luisa De Stradis, M., Tranfaglia, A., Varricchio, P., Gigliotti, S., Graziani, F., Malva, C. Pennacchio, F.,2007. A gamma-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem Mol. Biol.37, 453-465.
    Fang, Q., Wang, F., Gatehouse, J.A., Gatehouse, A.M.R., Chen, X.-X., Hu, C., Ye, G.-Y.,2011. Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-type lectin gene expression. PLoS One 6, e26888.
    Fang, Q., Wang, L., Zhu, J.Y., Li, Y.M., Song, Q.S., Stanley, D.W., Akhtar, Z.R., Ye, G.Y.,2010. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 11.
    Ferkovich, S.M., Gupta, P.,1998. Interaction of calyx fluid and venom from Microplitis croceipes (Braconidae) on developmental disruption of the natural host, Heliocoverpa zea, and two atypical hosts, Galleria mellonella and Spodoptera exigua. J. Insect Physiol.44,713-719.
    Fliegel, L., Burns, K., MacLennan, D.H., Reithmeier, R.A., Michalak, M.,1989. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem.264,21522-21528.
    Franssens, V., Simonet, G., Breugelmans, B., Van, S., van, H., Vanden, B.,2008. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Peptides 29,235-241.
    Gamo, S., Tomida, J., Dodo, K., Keyakidani, D., Matakatsu, H., Yamamoto, D., Tanaka, Y.,2003. Calreticulin mediates anesthetic sensitivity in Drosophila melanogaster. Anesthesiology 99,867-875.
    Gatehouse, J.A.,2008. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol.146,881-887.
    Gold, L.I., Eggleton, P., Sweetwyne, M.T., Van Duyn, L.B., Greives, M.R., Naylor, S.M., Michalak, M., Murphy-Ullrich, J.E.,2010. Calreticulin:non-endoplasmic reticulum functions in physiology and disease. FASEB J.24,665-683.
    Grimmelikhuijzen, C.J.P., Cazzamali, G., Williamson, M., Hauser, F.,2007. The promise of insect genomics. Pest Manag. Sci.63,413-416.
    Hamdaoui, A., Wataleb, S., Devreese, B., Chiou, S., Broeck, J., Van Beeumen, J., De Loof, A., Schoofs, L.,1998. Purification and characterization of a group of five novel peptide serine protease inhibitors from ovaries of the desert locust, Schistocerca gregaria. FEBS Letters 422,74-78.
    Hu, J., Yu, X., Fu, W., Zhang, W.,2008. A Helix pomatia lectin binding protein on the extraembryonic membrane of the polyembryonic wasp Macrocentrus cingulum protects embryos from being encapsulated by hemocytes of host Ostrinia furnaclis. Dev. Comp. Immunol.32,356-364.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P.S., Sigrist, C.J.,2008. The 20 years of PROSITE. Nucleic Acids Res.36, D245-249.
    Iseli, C., Jongeneel, C.V., Bucher, P.,1999. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf..Intell. Syst. Mol. Biol.138-148.
    James C,2010. Global status of commercialized biotech/GM crops:2010. ISAAA Brief No.42. ISAA:Ithaca, NY.
    Jiang, L., Peng, L., Zhang, Y., Chen, J., Zhang, D., Liang, S.,2009. Expression, purification and characterization of a group of lectin-like peptides from the spider Ornithoctonus huwena. Peptides 30,669-674.
    Jones, D., Sawicki, G., Wozniak, M.,1992. Sequence, structure, and expression of a wasp venom protein with a negatively charged signal peptide and a novel repeating internal structure. J. Biol. Chem.267,14871-14878.
    Kellenberger, C., Ferrat, G., Leone, P., Darbon, H., Roussel, A.,2003. Selective inhibition of trypsins by insect peptides:Role of P6-P10 loop. Biochemistry 42, 13605-13612.
    Khan, S.A., Zafar, Y, Briddon, R.W., Malik, K.A., Mukhtar, Z.,2006. Spider venom toxin protects plants from insect attack. Transgenic Res.15,349-357.
    King, G.F.,2007. Modulation of insect Ca2+ channels by peptidic spider toxins. Toxicon 49,513-530.
    Kinuthia, W., Li, D.M., Schmidt, O., Theopold, U.,1999. Is the surface of endoparasitic wasp eggs and larvae covered by a limited coagulation reaction? J. Insect Physiol.45,501-506.
    Kong, H.J., Cho, H.K., Park, E.M., Hong, G.E., Kim, Y.O., Nam, B.H., Kim, W.J., Lee, S.J., Han, H.S., Jang, I.K., Lee, C.H., Cheong, J., Choi, T.J.,2009. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol.26,109-114.
    Krishnan, A., Nair, P.N., Jones, D.,1994. Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J. Biol. Chem.269,20971-20976.
    Kuhn-Nentwig, L.,2003. Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol. Life Sci.60,2651-2668.
    Kuraishi, T., Manaka, J., Kono, M., Ishii, H., Yamamoto, N., Koizumi, K., Shiratsuchi, A., Lee, B.L., Higashida, H., Nakanishi, Y.,2007. Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp. Cell Res.313, 500-510.
    Labrosse, C., Carton, Y., Dubuffet, A., Drezen, J.M., Poirie, M.,2003. Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J. Insect Physiol.49,513-522.
    Labrosse, C., Eslin, P., Doury, G., Drezen, J.M., Poiri, M.,2005a. Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi:a Rho-GAP protein as an important factor. J. Insect Physiol. 51,161-170.
    Labrosse, C., Stasiak, K., Lesobre, J., Grangeia, A., Huguet, E., Drezen, J.M., Poirie, M.,2005b. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera:Figitidae)- Drosophila melanogaster interaction. Insect Biochem. Mol. Biol.35,93-103.
    Lapointe, R., Wilson, R., Vilaplana, L., O'Reilly, D.R., Falabella, P., Douris, V., Bernier-Cardou, M., Pennacchio, F., Iatrou, K., Malva, C., Olszewski, J.A.,2005. Expression of a Toxoneuron nigriceps polydnavirus-encoded protein causes apoptosis-like programmed cell death in lepidopteran insect cells. J. Gen. Virol. 86,963-971.
    Lawrence, P.O.,2005. Non-poly-DNA viruses, their parasitic wasps, and hosts. J. Insect Physiol.51,99-101.
    Leluk, J., Schmidt, J., Jones, D.,1989. Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon 27,105-114.
    Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y, Li, S., Shan, G., Kristiansen, K., Yang, H., Wang, J.,2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res.20,265-272.
    Li, S., Falabella, P., Kuriachan, I., Vinson, S.B., Borst, D.W., Malva, C., Pennacchio, F.,2003. Juvenile hormone synthesis, metabolism, and resulting haemolymph titre in Heliothis virescens larvae parasitized by Toxoneuron nigriceps. J. Insect Physiol.49,1021-1030.
    Liang, Z., SottrupJensen, L., Aspan, A., Hall, M., Soderhall, K.,1997. Pacifastin, a novel 155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc. Natl. Acad. Sci. U. S. A.94,6682-6687.
    Ling, E.J., Rao, X.J., Ao, J.Q., Yu, X.Q.,2009. Purification and characterization of a small cationic protein from the tobacco hornworm Manduca sexta. Insect Biochem. Mol. Biol.39,263-271.
    Liu, H., Jiravanichpaisal, P., Cerenius, L., Lee, B., Sorderhall, I., Soderhall, K.,2007. Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. J. Biol. Chem. 282,33593-33598.
    Livak, K.J., Schmittgen, T.D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25,402-408.
    Lupas, A., Van Dyke, M., Stock, J.,1991. Predicting coiled coils from protein sequences. Science 252,1162-1164.
    McFarlane, A.A., Orriss, G.L., Stetefeld, J.,2009. The use of coiled-coil proteins in drug delivery systems. Eur. J. Pharmacol.625,101-107.
    Maiti, I.B., Dey, N., Pattanaik, S., Dahlman, D.L., Rana, R.L., Webb, B.A.,2003. Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol. J.1,209-219.
    Mehlo, L., Gahakwa, D., Nghia, P.T., Loc, N.T., Capell, T., Gatehouse J.A., Gatehouse A.M.R., Christou, P.,2005. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc. Natl. Acad. Sci. USA 102, 7812-7816.
    Mer, G., Kellenberger, C., Koehl, P., Stote, R., Sorokine, O., Van Dorsselaer, A., Luu, B., Hietter, H., Lefevre, J.,1994. Solution structure of PMP-D2, a 35-residue peptide isolated from the insect Locusta migratoria. Biochemistry 33,15397-15407.
    Michel, G.H., Murayama, N., Sada, T., Nozaki, M., Saguchi, K., Ohi, H., Fujita, Y., Koike, H., Higuchi, S.,2000. Two N-terminally truncated forms of C-type natriuretic peptide from habu snake venom. Peptides 21,609-615.
    Mio, K., Mio, M., Arisaka, F., Sato, M., Sato, C.,2010. The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog. Biophys. Mol. Biol.103,111-121.
    Moreau, S.J., Cherqui, A., Doury, G., Dubois, F., Fourdrain, Y, Sabatier, L., Bulet, P., Saarela, J., Prevost, G., Giordanengo, P.,2004. Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera:Braconidae). Insect Biochem. Mol. Biol.34,485-492.
    Moreau, S.J., Dingremont, A., Doury, G., Giordanengo, P.,2002. Effects of parasitism by Asobara tabida (Hymenoptera:Braconidae) on the development, survival and activity of Drosophila melanogaster larvae. J. Insect Physiol.48,337-347.
    Moreau, S.J.M., Guillot, S.,2005. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol. 35,1209-1223.
    Morris, M.T., Coppin, A., Tomavo, S., Carruthers, V.B.,2002. Functional analysis of Toxoplasma gondii protease inhibitor 1. J. Biol. Chem.277,45259-45266.
    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.,2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621-628.
    Moutevelis, E., Woolfson, D.N.,2009. A periodic table of coiled-coil protein structures. J. Mol. Biol.385,726-732.
    Nakamatsu, Y., Tanaka, T.,2003. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera:Eulophidae) regulates the physiological state of Pseudaletia separata (Lepidoptera:Noctuidae) host as a food resource. J. Insect Physiol.49,149-159.
    Nakamatsu, Y., Tanaka, T.,2004. Correlation between concentration of hemolymph nutrients and amount of fat body consumed in lightly and heavily parasitized hosts(Pseudaletia separata). J. Insect Physiol.50,135-141.
    Nicholson, G.M.,2007. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 49,490-512.
    Ostwald, T.J., MacLennan, D.H.,1974. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem.249,974-979.
    Parkinson, N., Conyers, C., Smith, I.,2002a. A venom protein from the endoparasitoid wasp Pimpla hypochondriaca is similar to snake venom reprolysin-type metalloproteases. J. Invertebr Pathol.79,129-131.
    Parkinson, N., Richards, E.H., Conyers, C., Smith, I.,Edwards, J.P.,2002b. Analysis of venom constituents from the parasitoid wasp Pimpla hypochondriaca and cloning of a cDNA encoding a venom protein. Insect Biochem. Mol. Biol.32, 729-735.
    Parkinson, N., Smith, I., Audsley, N., Edwards, J.P.,2002c. Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca and cloning of the cDNA encoding one of the subunits. Insect Biochem. Mol. Biol.32,1769-1773.
    Parkinson, N., Smith, I., Weaver, R., Edwards, J.P.,2001. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol.31,57-63.
    Parkinson, N.M., Conyers, C., Keen, J., MacNicoll, A., Smith, I., Audsley, N., Weaver, R.,2004. Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol.34,565-571.
    Parkinson, N.M., Conyers, C.M., Keen, J.N., MacNicoll, A.D., Smith, I., Weaver, R.J., 2003. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp. Biochem. Physiol. C 134,513-520.
    Parkinson, N.M., Weaver, R.J.,1999. Noxious components of venom from the pupa-specific parasitoid Pimpla hypochondriaca. J. Invertebr Pathol.73,74-83.
    Patthy, A., Amir, S., Malik, Z., Bodi, A., Kardos, J., Asboth, B., Graf, L.,2002. Remarkable phylum selectivity of a Schistocerca gregaria trypsin inhibitor:the possible role of enzyme-inhibitor flexibility. Arch. Insect Biochem. Physiol.398, 179-187.
    Pennacchio, F., Strand, M.R.,2006. Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol.51,233-258.
    Periquet, G., Bigot, Y., Doury, G.,1997. Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J. Insect Physiol.43,69-81.
    Persson, S., Rosenquist, M., Sommarin, M.,2002. Identification of a novel calreticulin isoform (Crt2) in human and mouse. Gene 297,151-158.
    Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., Quackenbush, J.,2003. TIGR gene indices clustering tools (TGICL):a software system for fast clustering of large EST datasets. Bioinformatics 19,651-652.
    Price, D.R., Bell, H.A., Hinchliffe, G., Fitches, E., Weaver, R., Gatehouse, J.A.,2009. A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth Lacanobia oleracae. Insect Mol. Biol.18, 195-202.
    Pszenny, V., Angel, S.O., Duschak, V.G., Paulino, M., Ledesma, B., Yabo, M.I., Guarnera, E., Ruiz, A.M., Bontempi, E.J.,2000. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii. Mol. Biochem. Parasitol.107,241-249.
    Quistad, G.B., Nguyen, Q., Bernasconi, P., Leisy, D.J.,1994. Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor. Insect Biochem. Mol. Biol.24,955-961.
    Rahbe, Y., Digilio, M.C., Febvay, G., Guillaud, J., Fanti, P., Pennacchio, F.,2002. Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. J. Insect Physiol. 48,507-516.
    Ramirez, G., Valck, C., Ferreira, V.P., Lopez, N., Ferreira, A.,2011. Extracellular Trypanosoma cruzi calreticulin in the host-parasite interplay. Trends Parasitol.27, 115-122.
    Rao, X.J., Ling, E.J., Yu, X.Q.,2010. The role of lysozyme in the prophenoloxidase activation system of Manduca sexta:An in vitro approach. Dev. Comp. Immunol. 34,264-271.
    Ribeiro, C.H., Lopez, N.C., Ramirez, G.A., Valck, C.E., Molina, M.C., Aguilar, L. Rodriguez, M., Maldonado, I., Martinez, R., Gonzalez, C., Troncoso, R., Lavandero, S., Gingras, A.R., Schwaeble, W., Ferreira, A.,2009. Tiypanosoma cruzi calreticulin:A possible role in Chagas' disease autoimmunity. Mol. Immunol.46,1092-1099.
    Richards, E.H., Parkinson, N.M.,2000. Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. J. Invertebr. Pathol.76,33-42.
    Rimphanitchayakit, V., Tassanakajon, A.,2010. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev. Comp. Immunol.34,377-386.
    Rivers, D.B., Dani, M.P., Richards, E.H.,2009. The mode of action of venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera:Ichneumonidae) involves Ca2+-dependent cell death pathways. Arch. Insect Biochem. Physiol.71, 173-190.
    Rivers, D.B., Hink, W.F., Denlinger, D.L.,1993. Toxicity of the venom from Nasonia vitripennis (Hymenoptera:Pteromalidae) toward fly hosts, nontarget insects, different developmental stages, and cultured insect cells. Toxicon 31,755-765.
    Rivers, D.B., Ruggiero, L., Hayes, M.,2002. The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera:Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera:Sarcophagidae). J. Insect Physiol.48,1053-1064.
    Roussel, A., Mathieu, M., Dobbs, A., Luu, B., Cambillau, C., Kellenberger, C.,2001. Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity. J. Biol. Chem.276,38893-38898.
    Schafellner, C., Marktl, R.C., Nussbaumer, C., Schopf, A.,2004. Parasitism-induced effects of Glyptapanteles liparidis (Hym.:Braconidae) on the juvenile hormone titer of its host, Lymantria dispar:the role of the parasitoid larvae. J. Insect Physiol.50,1181-1189.
    Shelby, K.S., Cui, L., Webb, B.A.,1998. Polydnavirus-mediated inhibition of lysozyme gene expression and the antibacterial response. Insect Mol. Biol.7, 265-272.
    Silerova, M., Kauschke, E., Prochazkova, P., Joskova, R., Tuckova, L., Bilej, M., 2007. Characterization, molecular cloning and localization of calreticulin in Eisenia fetida earthworms. Gene 397,169-177.
    Simonet, G., Claeys, I., Broeck, J.V.,2002. Structural and functional properties of a novel serine protease inhibiting peptide family in arthropods. Comp. Biochem. Physiol. B 132,247-255.
    Simonet, G., Claeys, I., Van Soest, S., Breugelmans, B., Franssens, V., De Loof, A., Broeck, J.V.,2004. Molecular identification of SGPP-5, a novel pacifastin-like peptide precursor in the desert locust. Peptides 25,941-950.
    Stettler, P., Trenczek, T., Wyler, T., Pfister-Wilhelm, R., Lanzrein, B.,1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J. Insect Physiol.44,817-831.
    Stoltzfus, J.R., Horton, W.J., Grotewiel, M.S.,2003. Odor-guided behavior in Drosophila requires calreticulin. J. Comp. Physiol., A 189,471-483.
    Strand, M.R., Pech, L.L.,1995. Immunological basis for compatibility in parasitoid host relationships. Annu. Rev. Entomol.40,31-56.
    Tabashnik, B.E., Gassmann, A.J., Crowder, D.W., Carriere, Y.,2008. Insect resistance to Bt crops:evidence versus theory. Nat. Biotechnol.26,199-201.
    Tanaka, K., Lapointe, R., Barney, W.E., Makkay, A.M., Stoltz, D., Cusson, M., Webb B.A.,2007. Shared and species-specific features among ichnovirus genomes. Virology 363,26-35.
    Tanaka, T., Agui, N., Hiruma, K.,1987. The parasitoid Apanteles kariyai inhibits pupation of its host, Pseudaletia separata, via disruption of prothoracicotropic hormone release. Gen. Comp. Endocrinol.67,364-374.
    Tanaka, T., Tagashira, E., Sakurai, S.,1994. Reduction of testis growth of Pseudaletia separata larvae after parasitization by Cotesia kariyai. Arch. Insect Biochem. Physiol.26,111-122.
    Taylor, T., Jones, D.,1990. Isolation and characterization of the 32.5 kDa protein from the venom of an endoparasitic wasp. Biochim. Biophys. Acta 1035,37-43.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.,1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25,4876-4882.
    Tian, C.H., Wang, L., Ye, G.Y., Zhu, S.Y.,2010. Inhibition of melanization by a Nasonia defensin-like peptide implications for host immune suppression. J. Insect Physiol.56,1857-1862.
    Vincent, B., Kaeslin, M., Roth, T., Heller, M., Poulain, J., Cousserans, F., Schaller, J., Poirie, M., Lanzrein, B., Drezen, J.-M., Moreau, S.,2010. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics 11, 693.
    Vinson, S.B.,1990. How parasitoids deal with the immune system of their host:An overview. Arch. Insect Biochem. Physiol.13,3-27.
    Visser, B.J., Labruyere, W.T., Spanjer, W., Piek, T.,1983. Characterization of two paralysing protein toxins (A-MTX and B-MTX), isolated from a homogenate of the wasp Microbracon hebetor (Say). Comp. Biochem. Physiol. B 75,523-530.
    Vitale, A.,2009. Calreticulins are not all the same. Proc. Natl. Acad. Sci. U. S. A.106, 13151-13152.
    Wagstaff, S.C., Sanz, L., P., Harrison, R.A., Calvete, J.J.,2009. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J. Proteomics 71,609-623.
    Whetstone, P.A., Hammock, B.D.,2007. Delivery methods for peptide and protein toxins in insect control. Toxicon 49,576-596.
    Webb, B.A., Strand, M.R., Dickey, S.E., Beck, M.H., Hilgarth, R.S., Barney, W.E., Kadash, K., Kroemer, J.A., Lindstrom, K.G., Rattanadechakul, W., Shelby, K.S., Thoetkiattikul, H., Turnbull, M.W., Witherell, R. A.,2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347, 160-174.
    Wu, M.L., Ye, G.Y., Zhu, J.Y., Chen, X.X., Hu, C.,2008. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J. Invertebr. Pathol.99, 186-191.
    Ye, J., Fang, L., Zheng, H., Zhang, Y, Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L.,2006. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res.34, W293-297.
    Yuan, C., Jin, Q., Tang, X., Hu, W., Cao, R., Yang, S., Xiong, J., Xie, C., Xie, J., Liang, S.,2007. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J. Proteome Res.6, 2792-2801.
    Zeng, X.C., Wang, S., Nie, Y., Zhang, L., Luo, X.,2012. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch:gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 33,44-51.
    Zhang, G., Lu, Z.Q., Jiang, H., Asgari, S.,2004a. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem. Mol. Biol.34, 477-483.
    Zhang, G., Schmidt, O., Asgari, S.,2004b. A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J. Biol. Chem.279,41580-41585.
    Zhang, G., Schmidt, O., Asgari, S.,2006a. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev. Comp. Immunol.30,756-764.
    Zhang, G.M., Schmidt, O., Asgari, S.,2006b. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev. Comp. Immunol.30,756-764.
    Zhang, Z., Ye, G.Y., Cai, J., Hu, C.,2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera:Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon 46,337-349.
    Zhang, Z., Ye, G.Y., Hu, C.,2004c. Effects of venom from two pteromalid wasps Pteromalus puparum and Nasonia vitripennis (Hymenoptera:Pteromalidae) on the spreading, viability and encapsulation capacity of Pieris rapae hemocytes. Acta Entomol. Sinica 47,551-561.
    Zheng, Q.L., Chen, J., Nie, Z.M., Lv, Z.B., Wang, D., Zhang, Y.Z.,2007. Expression, purification and characterization of a three-domain Kazal-type inhibitor from silkworm pupae (Bombyx mori). Comp. Biochem. Physiol. B 146,234-240.
    Zhu, J.Y., Fang, Q., Wang, L., Hu, C., Ye, G.Y.,2010a. Proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch. Insect Biochem. Physiol.75,28-44.
    Zhu, J.Y., Ye, G.Y., Dong, S.Z., Fang, Q., Hu, C.,2009a. Venom of Pteromalus puparum (Hymenoptera:Pteromalidae) induced endocrine changes in the hemolymph of its host, Pieris rapae (Lepidoptera:Pieridae). Arch. Insect Biochem. Physiol.71,45-53.
    Zhu, J.Y., Ye, G.Y., Fang, Q., Hu, C.,2010b. Alkaline phosphatase from venom of the endoparasitoid wasp, Pteromalus puparum. J. Insect Sci.10,14.
    Zhu, J.Y., Ye, G.Y., Fang, Q., Hu, C., Akhtar, Z.R.,2009b. cDNA of an arylphorin-type storage protein from Pieris rapae with parasitism inducible expression by the endoparasitoid wasp Pteromalus puparum. Insect Sci.16, 227-236.
    Zhu, J.Y., Ye, G.Y., Hu, C.,2008. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera:Pteromalidae). Toxicon 51,1391-1399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700