用户名: 密码: 验证码:
B/2类骨质下种植体宏观结构的生物力学优化设计和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种植义齿因具有传统活动义齿、固定义齿无法比拟的优势,在近十几年中得到了长足的发展,越来越受到患者的青睐。虽然种植修复具有高达90%以上的远期成功率,但临床上仍不时有种植修复失败的病例报道,包括种植体的折断、松动,甚至于最后的脱落等,而颌骨局部负荷过大引起的种植体周围骨吸收是造成种植修复失败的主要原因之一。这就要求种植体在设计和选择上,除了具备良好的生物相容性外,还应具备良好的生物力学传递特性,从而保障种植修复的远期成功率。大量的研究结果表明,影响种植体生物力学传递的因素主要包括:种植体材料、种植体的宏观结构设计、修复体设计、颌骨的解剖形态、颌骨的生物力学特性和咬合力的加载方式等。相对于其它因素而言,种植体的宏观结构对咬合力传导的影响更为明显,并且在临床上更易选择和控制。
     目前,国内市场上主流的种植系统仍以进口产品为主,其价格高昂,在很大程度上限制了其应用。这就迫切要求国内研发单位开发生产出具有自主知识产权的高品质、低价位的种植系统。目前,种植系统的开发设计研究主要集中在种植体的材料、形状、宏观结构、表面微观结构和种植体与上部结构的连接等方面。国内外的学者在这些领域里进行了大量的研究,但关于种植体宏观结构生物力学传递特性的研究多为离散的或单因素的比较分析,这些研究结果对于开发设计带有详尽参数的种植体产品而言,并不具有充分的指导意义。
     本课题旨在借助Pro/E和Ansys Workbench的机械工程优化设计方法,从生物力学角度,模拟不同载荷条件下,对种植于B/2类骨质内的种植体的宏观结构(直径、长度、锥度、螺纹高度、螺纹宽度、螺纹螺距、颈部锥度、末端倒角、穿龈高度等)进行系统的优化设计分析。以期进一步认识种植体宏观结构参数在其生物力学传递中的作用,了解种植体宏观结构各个参数对其生物力学传递影响大小的排序。同时提供种植体开发生产所需的详细宏观结构参数,为临床优化设计开发和选择种植体提供理论参考。
     实验一:应用Pro/E参数化建模软件,绘制种植体、皮质骨、松质骨、冠修复体的三维实体模型,应用Pro/E的自适应装配功能,建立可随种植体宏观结构参数自适应改变的种植体骨块三维实体模型。应用Pro/E与Ansys Workbench软件的无缝双向参数传递功能,将实体模型导入Ansys Workbench软件中划分单元,建立可随种植体宏观结构参数自适应改变的种植体骨块三维有限元模型,力学加载后进行模型准确性的检测。该模型的建立为后期真正意义上的种植体优化设计提供了技术平台。
     实验二:设定种植体直径(D)和长度(L)为设计变量(Design Variable,DV),D变化范围为3.0-5.0mm,L变化范围为6.0-16.0mm,设定颌骨平均主应力(Equivalent应力,EQV应力)峰值和种植体-基台复合体位移峰值为目标函数(Objective Function,OBJ),观察DV变化对OBJ的影响。同时进行OBJ对DV的敏感度分析。结果发现,随着D和L的增加,垂直向(Axial,AX)加载时,皮、松质骨的EQV应力峰值分别降低77.4%和68.4%;颊舌向(Buccolingual,BL)加载时,皮、松质骨的EQV应力峰值分别降低了64.9%和82.8%;AX和BL加载时,种植体-基台复合体位移峰值分别降低了56.9%和78.2%。在各种加载下,当D大于3.9mm同时L大于9.5mm时,单DV的响应曲线切斜率位于-1和0之间。通过OBJ对DV的敏感度分析发现, D比L对OBJ的影响更明显。结果提示,种植体直径比长度更易影响颌骨的应力大小和种植体的稳定性;在临床上选择种植体时,种植体直径应不小于3.9mm,种植体长度应不小于9.5mm。
     实验三:设定种植体锥度(T)为DV,T变化范围为0°-2.5°,OBJ设定同实验二,观察DV变化对OBJ的影响。结果发现,随着T的减小,AX加载时,皮、松质骨的EQV应力峰值分别降低11.1%和22.2%;BL加载时,皮、松质骨的EQV应力峰值分别降低了12.0%和16.6%;AX和BL加载时,种植体-基台复合体位移峰值分别降低了12.6%和12.4%。在各种加载下,当T小于1.2°时,DV的响应曲线切斜率位于-1和0之间。结果提示,种植体的锥度小于1.2°以内为种植体的最优设计。
     实验四:设定种植体颈部锥度(T)和末端倒角(R)为DV,T变化范围为45°-75°, R变化范围为0.5-1.5mm,OBJ设定同实验二,观察指标同实验二。结果发现,随着T和R的变化,AX加载时,皮、松质骨的EQV应力峰值分别降低71.6%和11.0%;BL加载时,皮、松质骨的EQV应力峰值分别降低了69.2%和14.8%;AX和BL加载时,种植体-基台复合体位移峰值分别降低了9.1%和22.8%。在各种加载下,当T介于64°至73°,同时R大于0.8mm时,单DV的响应曲线切斜率位于-1和1之间。通过OBJ对DV的敏感度分析发现,T比R对OBJ的影响更明显。结果提示,种植体颈部锥度介于64°至73°之间,同时末端倒角大于0.8mm时为圆柱状种植体的最优设计。
     实验五:设定种植体螺纹高度(H)和螺纹宽度(W)为DV,H变化范围为0.2-0.6mm,W变化范围为0.1-0.4mm,OBJ设定同实验二,观察指标同实验二。结果发现,随着H和W的变化,AX加载时,皮、松质骨的EQV应力峰值分别降低4.1%和38.7%;BL加载时,皮、松质骨的EQV应力峰值分别降低了16.4%和54.1%;AX和BL加载时,种植体-基台复合体位移峰值分别降低了46.0%和35.2%。在各种加载下,当H介于0.33mm至0.48mm之间,同时W介于0.18mm至0.30mm之间时,单DV的响应曲线切斜率位于-1和1之间。通过OBJ对DV的敏感度分析发现,H比W对OBJ的影响更明显。结果提示,种植体螺纹高度比螺纹宽度更易影响颌骨的应力大小和种植体的稳定性;螺纹高度介于0.33mm至0.48mm,同时螺纹宽度介于0.18mm至0.30mm时为螺纹种植体的最优选择。
     实验六:设定种植体螺纹螺距(P)为DV,P变化范围为0.5-1.6mm,OBJ设定同实验三,观察指标同实验三。结果发现,随着P的变化,AX加载时,皮、松质骨的EQV应力峰值分别降低6.7%和55.2%;BL加载时,皮、松质骨的EQV应力峰值分别降低了2.7%和22.4%;AX和BL加载时,种植体-基台复合体位移峰值分别降低了22.3%和13.0%。在各种加载下,当P大于0.8mm时,DV的响应曲线切斜率位于-1和1之间。结果提示,螺纹种植体螺距最优设计应不小于0.8mm。
     实验七:建立了12种包含不同螺纹形态种植体的颌骨骨块三维有限元模型,三种矩形(S)、三种V形(V)、三种支撑形(B)和三种反支撑形(R)螺纹形态。对所有模型进行颌骨应力分布和种植体-基台复合体位移峰值的比较。结果表明,AX加载下S-2、V-3、B-3、R-1、R-2和R-3螺纹形态表现出较好的应力分布状态, BL加载下S-1、S-2、V-3、B-3、R-2和R-3螺纹形态表现出较好的应力分布状态。结果提示S-2、V-3、B-3、R-2和R-3螺纹形态均适用于圆柱形种植体。
     实验八:建立了包含单、双、三螺纹种植体的颌骨骨块三维有限元模型,观察指标同实验七。结果表明,AX加载下,双螺纹皮、松质骨的EQV应力峰值比单螺纹分别增加了10.4%和9.2%;BL加载下,双螺纹皮质骨的EQV应力峰值比单螺纹增加了9.1%,三螺纹松质骨的EQV应力峰值比单螺纹减少了14.2%。结果提示,单螺纹为圆柱状种植体的最优螺纹设计。
     实验九:设定种植体穿龈高度(H)为DV,H变化范围为1.0-4.0mm,OBJ设定同实验三,观察指标同实验三。结果发现,随着H的变化,AX加载时,皮质骨的EQV应力峰值降低了4.7%;BL加载时,皮、松质骨的EQV应力峰值分别降低了17.3%和18.5%;在AX和BL加载下,种植体-基台复合体位移峰值分别降低了4.1%和48.9%。在各种加载下,当H介于1.7mm和2.8mm之间时,DV的响应曲线切斜率位于-1和1之间。结果提示,种植体穿龈高度最优设计应介于1.7mm和2.8mm之间。
     综上所述,依照宏观结构参数对种植体生物力学传递影响的大小排序如下:种植体直径、长度、螺纹高度、颈部锥度、螺纹螺距、穿龈高度、锥度、螺纹宽度、末端倒角。从生物力学角度得出优化的种植体宏观结构参数范围如下:种植体直径大于3.9mm,长度大于9.5mm,螺纹高度介于0.33mm至0.48mm之间,颈部锥度介于64°至73°之间,螺纹螺距大于0.8mm,穿龈高度介于1.7mm和2.8mm之间,锥度小于1.2°,螺纹宽度介于0.18mm至0.30mm之间,同时末端倒角大于0.8mm。
With the outstanding advantages of the implant denture, the implant restoration has been improved dramatically in the recent decades. And more and more patients prefer to choose this new prosthodontics. Most of the studies have shown multiyear success rates of more than 90% for implants placed in patients. However implant failures were reported occasionally, including the implant fracture, loose, till the falling off. And one of main causes of implant failure is excessive load on the interface of implant and bone caused by stress centralizing, which induces the absorption of the bone around implant. To maximize the chance for long-term implant stability and function, the design and selection of dental implant should base on better biomechanics compatibility except better biocompatibility. Lots of researches have demonstrated that the factors influencing implant biomechanics transmission of occlusal forces include implant material, shape, macrostructure, anatomy shape of jaw bone, biomechanics characteristic of jaw bone and complex forces loading. And implant macrostructure plays a more important role in implant biomechanics transmission than other factor and it is more easily controlled and selected in clinical experience.
     At present, the mainstream implant systems are imported from abroad in the domestic market primarily and limit their application to a great extent for their high price. It is imperative that domestic researchers and manufacturers develop high quality implant products but with the lower price. Previous implant design and development researches mainly concentrated on implant materials, shape, macrostructure, surface microstructure, and implant-superstructure connection. Lots of domestic and foreign scholars have conducted massive studies in these domains. Nevertheless, many of the studies about biomechanics characteristic of implant macrostructure were discrete and independent. And these findings were insufficient to instruct us to develop and design implant with exhaustive parameters.
     The main aim of the present study, through the Pro/E and Ansys Workbench mechanical engineering optimum technology, was to systematically optimize implant macrostructure parameters (such as implant diameter, length, taper, thread height, thread width, thread pitch, neck taper, end filet, transgingival height) in type B/2 bone by biomechanics consideration. And this study was also to make us a better understanding about the role and effect order of each implant macrostructure parameter in biomechanics transmission. At the same time, present study was designed to provide us the detailed macrostructure parameters that were necessary to develop implant product and provided us the theoretical references for the clinical design and selection of dental implant.
     In experiment 1, 3D models of thread dental implant,cortical bone, cancellous bone and superstructure were constructed by Pro/E software. And the implant-bone complexes were assembled based on implant parameters by self-adapting assembled programme of Pro/E. Then the models were imported to Ansys Workbench software by bidirectional parameters transmitting of the two software. Self-adapting assembled 3D finite element analysis (FEA) models of dental implant-bone complexes were rebuild and the accuracy of the models was also evaluated. The self-adapting assembled models provide the technical platform for further implant optimum design and analysis.
     In experiment 2, implant diameter (D) and implant length (L) were set as DV. D ranged from 3.0mm to 5.0mm, and L ranged from 6.0mm to 16.0mm. The Max EQV stresses in jaw bone and Max displacements in implant-abutment complex were set as OBJ. The effect of DV to OBJ and the sensitivities of the OBJ to DV were evaluated. The results showed that, under AX load, the Max EQV stresses in cortical and cancellous bones decreased by 77.4% and 68.4% respectively with D and L increasing. And under BL load, those decreased by 64.9% and 82.8% respectively. The Max displacement of implant-abutment complex decreased by 56.9% and 78.2% under AX and BL load respectively. When D exceeded 3.9mm and L exceeded 9.5mm, the tangent slope rate of OBJ response curves ranged from -1 to 0. The OBJ were more sensitive to D than to L. The results imply that the stresses in jaw bone and stability of implant are affected more easily by implant diameter than implant length. Implant diameter exceeding 3.9mm and implant length exceeding 9.5mm are optimal selection for a cylinder implant.
     In experiment 3, implant taper (T) was set as DV. T ranged from 0°to 2.5°. OBJ setting and evaluation were same as experiment 2. The results showed that, under AX load, the Max EQV stresses in cortical and cancellous bones decreased by 11.1% and 22.2% respectively with T decreasing. And under BL load, those decreased by 12.0% and 16.6% respectively. The Max displacement of implant-abutment complex decreased by 12.6% and 12.4% under AX and BL load respectively. When T was less than 1.2°, the tangent slope rate of OBJ response curves ranged from -1 to 0. The results imply that implant taper less than 1.2°is optimal selection for dental implant.
     In experiment 4, implant neck taper (T) and end fillet (R) were set as DV. T ranged from 45°to 75°, and R ranged from 0.5mm to 1.5mm. OBJ setting and evaluation were same as experiment 2. The results showed that, under AX load, the Max EQV stresses in cortical and cancellous bones decreased by 71.6% and 11.0% respectively with T and R variation. And under BL load, those decreased by 69.2% and 14.8% respectively. The Max displacement of implant-abutment complex decreased by 9.1% and 22.8% under AX and BL load respectively. When T ranged from 64°to 73°and R exceeded 0.8mm, the tangent slope rate of OBJ response curves ranged from -1 to 1. The OBJ were more sensitive to T than to R. The results imply that implant neck taper ranging from 64°to 73°and end fillet exceeding 0.8mm are optimal selection for a cylinder implant.
     In experiment 5, implant thread height (H) and thread width (W) of implant were set as DV. H ranged from 0.2mm to 0.6mm, and W ranged from 0.1mm to 0.4mm. OBJ setting and evaluation were same as experiment 2. The results showed that, under AX load, the Max EQV stresses in cortical and cancellous bones decreased by 4.1% and 38.7% respectively with H and W variation. And under BL load, those decreased by 16.4% and 54.1% respectively. The Max displacement of implant-abutment complex decreased by 46.0% and 35.2% under AX and BL load respectively. When H ranged from 0.33mm to 0.48mm and W ranged from 0.18mm to 0.30mm, the tangent slope rate of OBJ response curves ranged from -1 to 1. The OBJ were more sensitive to H than to W. The results imply that the stresses in jaw bone and stability of implant are affected more easily by thread height than thread width. Thread height ranging from 0.33mm to 0.48mm and thread width ranging from 0.18mm to 0.30mm are optimal selection for a screwed implant.
     In experiment 6, thread pitch (P) was set as DV. P ranged from 0.5mm to 1.6mm. OBJ setting and evaluation were same as experiment 3. The results showed that, under AX load, the Max EQV stresses in cortical and cancellous bones decreased by 6.7% and 55.2% respectively with P variation. And under BL load, those decreased by 2.7% and 22.4% respectively. The Max displacement of implant-abutment complex decreased by 22.3% and 13.0% under AX and BL load respectively. When P exceeded 0.8mm, the tangent slope rate of OBJ response curves ranged from -1 to 1. The results imply that thread pitch exceeding 0.8mm is optimal selection for a screwed implant.
     In experiment 7, twelve 3D FEA models with an implant of different thread shape were created: three square designs (S), three V-shaped designs (V), three buttress designs (B), and three reverse buttress designs (R). The stress distributions in jaw bones and Max displacement of implant-abutment complex were compared. The results showed that, under AX load, S-2, V-3, B-3, R-1, R-2, and R-3 showed better stress distribution than others. And under BL load, S-1, S-2, V-3, B-3, R-2, and R-3 showed better stress distribution than others. The results imply that S-2, V-3, B-3, R-1, R-2, and R-3 thread shapes all appear to be suitable for use in a cylinder implant.
     In experiment 8, three 3D FEA models with an implant of single-thread, double-thread, and triple-thread were created. The Max EQV stresses in jaw bones and Max displacement of implant-abutment complex were compared. The results showed that, under AX load, the Max EQV stresses in cortical bone and cancellous bone of double-thread implant increased by 10.4% and 9.2% compared with that of single-thread implant respectively. Under BL load, the Max EQV stresses in cortical bone of double-thread implant increased by 9.1% and Max EQV stresses in cancellous bone of triple-thread implant decreased by 14.2% compared with that of single-thread implant respectively. The results imply that single-thread implant appears to be suitable for use in a screwed implant.
     In experiment 9, implant transgingival height (H) was set as DV. H ranged from 1.0mm to 0.4mm. OBJ setting and evaluation were same as experiment 3. The results showed that, under BL load, the Max EQV stresses in cortical and cancellous bones decreased by 17.3% and 18.5% respectively with H variation. And under AX load, the Max EQV stresses in cortical bone decreased by 4.7%. The Max displacement of implant-abutment complex decreased by 4.1% and 48.9% under AX and BL load respectively. When H ranged from 1.7mm to 2.8mm, the tangent slope rate of OBJ response curves ranged from -1 to 1. The results imply that implant transgingival height ranging from 1.7mm to 2.8mm is optimal selection for a cylinder implant.
     To conclude, the effect order of each implant macrostructure parameter in biomechanics transmission are shown as follows: implant diameter, length, thread height, neck taper, thread pitch, transgingival height, taper, thread width, end fillet. The range of optimum macrostructure parameters are: implant diameter exceeding 3.9mm, length exceeding 9.5mm, thread height ranging from 0.33mm to 0.48mm, neck taper ranging from 64°to 73°, thread pitch exceeding 0.8mm, transgingival height ranging from 1.7mm to 2.8mm, taper less than 1.2°, thread width ranging from 0.18mm to 0.30mm, and end fillet exceeding 0.8mm.
引文
1. 宿玉成主编.现代口腔种植学.北京:人民卫生出版社,2004∶ 1 03-157.
    2. Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981, 10(6):387–416.
    3. Van Steenberghe D, Lekholm U, Bolender C, et al. Applicability of osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study on 558 fixtures. Int J Oral Maxillofac Implants. 1990, 5(3):272–281.
    4. Buser D, Weber HP, Bragger U, et al. Tissue integration of one-stage ITI implants: 3-year results of a longitudinal study with hollow-cylinder and hollowscrew implants. Int J Oral Maxillofac Implants. 1991, 6(4):405–412.
    5. Adell R, Eriksson B, Lekholm U, et al. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990, 5(4):347–359.
    6. Albrektsson T, Dahl E, Enbom L, et al. Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol. 1988, 59(5):287–296.
    7. Spiekermann H, Jansen VK, Richter EJ. A 10-year follow-up study of IMZ and TPS implants in the edentulous mandible using bar-retained overdentures. Int J Oral Maxillofac Implants. 1995, 10(2):231–243.
    8. Mericske-Stern R, Steinlin Schaffner T, Marti P, et al. Peri-implant mucosal aspects of ITI implants supporting overdentures. A five-year longitudinal study. Clin Oral Implants Res. 1994, 5(1):9–18.
    9. Nevins M, Langer B. The successful application of osseointegrated implants to the posterior jaw: a long-term retrospective study. Int J Oral Maxillofac Implants. 1993, 8(4):428–432.
    10. Henry PJ, Laney WR, Jemt T, et al. Osseointegrated implants for single-tooth replacement: a prospective 5- year multi- center study. Int J Oral Maxillofac Implants. 1996, 11(4):450–455.
    11. Jemt T, Lekholm U, Grondahl K. 3-year followup study of early single implant restorations ad modum Branemark. Int J Periodontics Restorative Dent. 1990, 10(5):340–349.
    12. Schmitt A, Zarb GA. The longitudinal clinical effectiveness of osseointegrated dental implants for single-tooth replacement. Int J Prosthodont. 1993, 6(2): 197–202.
    13. Fugazzotto PA, Gulbransen HJ, Wheeler SL, et al. The use of IMZ osseointegrated implants in partially and completely edentulous patients: success and failure rates of 2,023 implant cylinders up to 60 months in function. Int J Oral Maxillofac Implants. 1993, 8(6):617–621.
    14. Saadoun AP, LeGall ML. Clinical results and guidelines on Steri-Oss endosseous implants. Int J Periodontics Restorative Dent. 1992, 12(6):486–495.
    15. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol. 1991, 62(1):2–4.
    16. Swanberg DF, Henry MD. Avoiding implant overload. Implant Soc. 1995, 6(1):12– 49.
    17. Bahat O. Treatment planning and placement of implants in the posterior maxillae: report of 732 consecutive Nobelpharma implants. Int J Oral Maxillofac Implants.1993, 8(2):151–161.
    18. Esposito M,Hirsch JM,Lekholm U,et al. Biological factors contributing to failures of osseointegrated oral implants(Ⅱ ) . Etiopathogenesis. Eur J Oral Sci, 1998, 106(3): 721-764
    19. Duyck J, Naert I. Failure of oral implants: aetiology, symptoms and influencing factors. Clin Oral Investig. 1998, 2(3): 102-114
    20. Esposito M, Hirsch JM, Lekholm U, et al. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int J Oral Maxillofac Implants. 1999, 14(4): 473-490
    21. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants. 2000, 15(1): 76-94
    22. Ogiso M, Yamashita Y, Matsumoto T. The process of physical weakening and dissolution of the HA-coated implants in bone and soft tissue. J Dent Res. 1998, 77(6): 1426-1434
    23. 王野平,单莉英,顾云峰.口腔种植技术中的工程问题探讨.生物医学工程学杂志. 2000,17(3)∶ 328-332
    24. Schenk RK, Buser D. Osseointegration: a reality. Periodontol 2000. 1998, 17(1):22–35.
    25. Rieger MR, Adams WK, Kinzel GL, et al. Finite element analysis of bone adapted and bone-bonded endosseous implants. J Prosthet Dent. 1989, 62(4):436– 440.
    26. 董玉英, 董福生. 人工种植牙生物力学研究进展. 中国口腔种植学杂志.1999, 4(1):39-42.
    27. 李湘霞, 韩科. 关于牙种植体的有限元研究进展. 现代口腔医学杂志.1999, 13(4):295-297.
    28. Mailath G, Stoiber B, Watzek G, Matejka M. Bone resorption at the entry of osseointegrated implants-a biomechanical phenomenon. Finite element study [in German]. Z Stomatol 1989, 86(4):207-216.
    29. Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990, 16(1):6-11.
    30. 邹敬才,刘宝林,唐文杰. 人工种植牙直径对骨界面应力分布影响.口腔领面外科杂志,1996,6(1):104-106.
    31. Ivanoff, C.J., Grondahl, K., Sennerby, L., Bergstrom, C. Lekholm, U. Influence ofvariations in implants diameters: a 3- to 5-year retrospective clinical report. Int J Oral Maxillofac Implants, 1999, 14(2): 173–180.
    32. Renouard, F., Arnoux, J.-P. Sarment, D.P. Five-mm-diameter implants without a smooth surface collar: report on 98 consecutive placements. Int J Oral Maxillofac Implants.1999, 14(1): 101–107.
    33. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis.Clin Oral Implants Res. 2005, 16(4):486-94.
    34. Meijer HJA, Kuiper JH, Starmans FJM, Bosman F. Stress distribution around dental implant : influence of superstructure, length of implants and height of mandible. J Prosthetic Dent.1992, 68(1):92-102
    35. Lum LB. A biomechanical rationale for the use of short implants. J Oral Implantol. 1991,17(2):126-131.
    36. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prostheses placement to the first annual checkup. Int J Oral Maxill Implants. 1991, 6(3):270-276
    37. 王宝彦,李晓红,刘蒸. 一段式螺旋型种植体有限元应力分析.实用口腔医学. 2001, 18(1):394-396.
    38. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995, 10(3):326-334.
    39. Quirynen M, Naert I, van Steenberghe D, et al. The cumulative failure rate of the Branemark system in the overdenture, the fixed partial, and the fixed full prosthesis design: A prospective study on 1273 fixtures. J Head Neck Pathol. 1991, 10(1):43–53.
    40. Lekholm U, van Steenberghe D, Herrmann I, et al. Osseointegrated implants in thetreatment of partially edentulous patients. A prospective 5-year multicenter study. Int J Oral Maxillofac Implants.1994, 9(6):627–635.
    41. Buser D, Mericske-Stern R, Bernard JP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res. 1997, 8(3):161–172.
    42. ten Bruggenkate CM, Asikainen P, Foitzik C, et al. Short (6-mm) nonsubmerged dental implants: results of a Multicenter clinical trial of 1 to 7 years. Int J Oral Maxillofac Implants. 1998, 13(6):791–798.
    43. Ferrigno N, Laureti M, Fanali S, et al. A long-term follow-up study of non-submerged ITI implants in the treatment of totally edentulous jaws. Part I: ten-year life table analysis of a prospective multicenter study with 1286 implants. Clin Oral Implants Res. 2002, 13(3):260–273.
    44. Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000, 5(1):22–31.
    45. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part 1: horizontal loading. J Oral Implantol. 1992, 18(4): 343–348.
    46. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003, 12(4):306-17.
    47. Clelland NL, lsmail YH, Zaki HS, et al. Three-dimensional finite element strews analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants. 1991, 6(4):391-398.
    48. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants. 1989, 4 (4):330-340.
    49. Patra AK,Depaolo JM,Souza KS,Detolla D,et a1.Guidelines for analysis and redesign of dental implants.Implant Dent.1998.7(4):355-368.
    50. Rieger MR, Mayberry M, Bross MO. Finite element analysis of six endosseous implants. J Prosthet Dent. 1990, 63(6):671-676.
    51. Reiger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent 1990, 63(4):457-465.
    52. Brunski JB. Biomechanical considerations in dental implant design. Int J Oral Implantol. 1988, 5(1):31-34.
    53. Misch CE. Implant design considerations for the posterior regions of the mouth. Implant Dent. 1999, 8(4):376–386.
    54. Misch CE. Contemporary Implant Dentistry, 2nd ed. St. Louis: Mosby; 1999
    55. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975, 8(6):393–405.
    56. Cowin SC. Bone Mechanics. Boca Raton: CRC Press; 1989.
    57. Hoshaw, S.J., Brunski, J.B., Cochran, G.V.B., Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants. 1994, 9(6):345-360.
    58. Bumgardner JD, Boring JG, Cooper RC Jr, et al. Preliminary evaluation of a new dental implant design in canine models. Implant Dent. 2000, 9(3):252–260.
    59. 刘鸿文,陈瀚,吴士艳等. 材料力学(上册). 北京:人民教育出版社. 1979∶ 1 32-133.
    60. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw: experience from a ten year period. Scand J Plast Reconstr Surg Suppl. 1977, 16:1-132.
    61. Misch CE, Bidez MW, Sharawy M.A bioengineered implant for a predeterminedbone cellular response to loadingforces. A literature review and case report. J Periodontol. 2001, 72(9):1276-1286.
    62. Misch CE, Degidi M. Five-Year Prospective Study of Immediate/Early Loading of FixedProstheses in Completely Edentulous Jaws with a Bone Quality-Based Implant System. Clin Implant Dent Relat Res, 2003, 5(1):17-27.
    63. Steigenga JT. The effect of implant thread geometry on strength of osseointegration and the bone implant contact, master’s thesis. Ann Arbor, Universi ty of Michigan, 2003.
    64. Sykaras N, Iacopino AM, Marker VA, et al. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000, 15(5):675–690.
    65. 张彦,邓悦,赵俊. 双螺纹设计对种植体稳定性的影响中华中西医杂志. 2006,7(22):2020-2023.
    66. Frost HM. The mechanostat: a prosposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987, 2(2):73-85.
    67. Valen M, Locante WM. LaminOss immediate-load implants: I. Introducing osteocompression in dentistry. J Oral Implantol. 2000, 26(3):177–184.
    68. Block CM, Tillmanns HW, Meffert RM. Histologic evaluation of the LaminOss osteocompressive dental screw: a pilot study. Compend Contin Educ Dent 1997, 18(7):676–685.
    69. Kim WT, Cha YF, Oh SJ, et al. The three dimensional finite element analysis of stress according to implant thread design under the axial load. J Korean Assoc Oral Maxillofac Surg. 2001, 27(2): 3 - 8.
    70. 兰泽栋,林珠,李宁.支抗种植体外形影响骨界面应力分布的研究.实用口腔医学杂志 200l,l7(3):246-248
    71. 杨德圣,刘洪臣,董军,刘海亮. 骨质量和种植体螺纹对种植稳定性影响的三维有限元分析. 口腔颌面修复学杂志,2005,6(2):118-120
    72. Misch CE, Degidi M. Five-Year Prospective Study of Immediate/early Loading of FixedProstheses in Completely Edentulous Jaws with a Bone Quality-Based Implant System. Clin Implant Dent Relat Res. 2003, 5(1):17-28.
    73. 黄辉,马轩样,张少峰.螺纹顶角对牙柱状螺旋根骨内种植体应力分布的影响.实用口腔医学杂志. 1996,12(2):119-123
    74. J. P. Geng, Q. S. Ma, W. Xu, K. B. C. Tan, G. Liu. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004; 31(3): 233-239.
    75. S. Hansson, M. Werke. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomechanics. 2003, 36(9) :1247–1258
    76. Lozada J.Eight year clinical evaluation of HA—coated implants.J Dent Symp. 1993,1(1):67-69
    77. Siegele DS,Soltsz U.Numerical investigations of the influence of implant shape on stress distribution in the jaw bone.Int J Oral Maxillofac Implants.1989, 4(4):333-340.
    78. 梁栋科,朱瑞富,李木森,王建华,宿庆财,吕宇鹏. 牙种植体颈部及肩台的三维有限元应力分析. 机械工程材料,2003,27(6):16-18
    79. 蔡新,郭兴文,张旭明主编. 工程结构优化设计. 北京:中国水利水电出版社. 2003:1-20.
    80. 孙靖民主编. 机械结构优化设计. 哈尔滨:哈尔滨工业大学出版社. 2004:25-75.
    81. R.L.福克斯著,张建中译. 工程设计的优化方法. 北京:科学出版社.1984:15-60.
    82. 严烈主编. 中文 Pro/ENGINEER Wildfire 2.0 应用基础教程. 北京:冶金工业出版社.2004:25-75.
    83. 詹友刚主编. Pro/ENGINEER 中文野火版教程通用模块.北京:清华大学出版社.2003:1-15.
    84. 小飒工作室主编.最新经典 Ansys 及 Workbench 教程.北京:电子工业出版社.2004:749-762.
    85. 刘萍主编. 数值计算方法.北京:人民邮电出版社.2003:15- 45.
    86. 齐欢,王小平主编. 系统建模与仿真. 北京:清华大学出版社.2004:215-268
    87. Lekholm U, Zarb GA. Patient selection and preparation. In: Braemark P-I, Zarb GA, Albrektsson T (eds). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985.
    88. Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop. 1978, (135):192–217.
    89. Borchers L, Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res. 1983, 62(2):155-159.
    90. Chen J, Lu X, Paydar N, Akay HU, Roberts WE. Mechanical simulation of the human mandible with and without an endosseous implant. Med Eng Phys. 1994, 16(1):53–61.
    91. Lewinstein I, Banks-Sills L, Eliasi R. Finite element analysis of a new system (IL) for supporting an implant-retained cantilever prosthesis. Int J Oral Maxillofac Implants. 1995, 10(3):355-366.
    92. Eriko Kitamura, Roxana Stegaroiu, Shuichi Nomura, Osamu Miyakawa. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Impl Res. 2004, 15(4):401-412.
    93. Tada S, Stegaroiu R, Kitamura E, et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants:a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2003, 18(3):357-368.
    94. Carr AB, Laney WR. Maximum occlusal force levels in patients with osseointegrated oral implant prostheses and patients with complete dentures. Int J Oral Maxillofac Implants. 1987, 2(2):101–108.
    95. Dean JS, Throckmorton GS, Ellis E III, et al. A preliminary study of maximum voluntary bite force and jaw muscle efficiency in pre-orthognathic surgery patients. J Oral Maxillofac Surg. 1992, 50(12):1284–1288.
    96. Braun S, Bantleon HP, Hnat WP, et al. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod. 1995, 65(5):367–372.
    97. Braun S, Hnat WP, Freudenthaler JW, et al. A study of maximum bite force during growth and development. Angle Orthod. 1996, 66(4):261–264.
    98. Van Eijden TM. Three-dimensional analyses of human bite-force magnitude and moment. Arch Oral Biol. 1991, 36(7): 535–539.
    99. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: an analysis using statics. Part two: axial loading. J Oral Implantol. 1992, 18(4): 349–353.
    100. Raadsheer MC, van Eijden TM, van Ginkel FC, et al. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res. 1999, 78(1):31–42.
    101. Morneburg TR, Proschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002, 15(1):20–27.
    102. Fontijn-Tekamp FA, Slagter AP, van’t Hof MA, et al. Bite forces with mandibular implant-retained overdentures. J Dent Res. 1998, 77(10):1832–1839.
    103. Cochran DL. The scientific basis for clinical experiences with Straumann implants including the ITI dental implant system: A consensus report. Clin Oral Implant Res. 2000, 11(1):33–58.
    104. Hojjatie B, Anusavice KS. Three dimensional finite element analyses of glass ceramic dental crowns. J Biomechanics. 1990, 23(11):1157–1166.
    105. Zhou X, Zhao Z, Zhao M, Fan Y. The boundary design of mandibular model by means of the three-dimensional finite element method. West China J Stomatol. 1999,17(1):29-32.
    106. Teixeira ER, Sato Y, Shindoi N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil. 1998, 25(4):299-303.
    107. Brunski JB. In vivo response to biomechanical loading at the bone/dental - implant interface. Adv Dent Res. 1999, 13:99–119.
    108. Hans Van Oosterwyck , Joke Duyck , Jos Vander Sloten , et al.The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res. 1998, 9(6): 407-418.
    109. Joke Duyck, Ignace Naert, Hans Jacob R?nold, Jan Eirik Ellingsen, Hans Van Oosterwyck, Jos Vander Sloten .The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001, 12(3):207-218
    110. Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: An experimental study in rabbits. Clin Implant Dent Relat Res. 2000, 2(3):120–128.
    111. 魏斌. 牙颌系统三维有限元建模方法的进展. 口腔材料器械杂志, 2002,11(2):86-87
    112. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: A review of the literature. J Prosthet Dent, 2001,85(6):585-98.
    113. Haldun Iplikcioglu, Kivanc Akca. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent, 2002; 30(1):41-46
    114. Cullinane D.M., Einhorn T.A.(2002) Biomechanics of bone. In: Bilezikian, J.P., Raisz, L.G. & Gideon, A.R., eds. Principles of bone biology. (2nd edition), San Diego, CA: Academic Press.
    115. Palmer, R.M., Smith, B.J., Palmer, P.J. Floyd, P.D. A prospective study of Astra single tooth implants. Clin Oral Implants Res. 1997, 8(3): 173–179.
    116. Holmgren, E.P., Seckinger, R.J., Kilgren, L.M. Mante, F. Evaluating parameters of osseointegrated dental implants using finite element analysis – a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol.1998, 24(2): 80–88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700