用户名: 密码: 验证码:
空间谱快速算法的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电磁环境的日益恶化,以及低检测概率、低截获概率等通信技术的广泛应用,往往需要在较大的带宽内同时对多个信号进行处理,才能够在大量信号中找到有用信号,因此对空间谱估计算法的时效性也提出了更高的要求。本文研究了空间谱快速算法及实现问题,通过改进算法减少计算量,并合理利用硬件平台,将快速测向算法在FPGA+DSP平台上联合实现。本文的主要内容如下:
     1、研究了基于直线阵的空间谱估计快速算法。针对MUSIC等测向算法大多需要特征分解和谱峰搜索,计算量较大的问题,给出了一种基于传播算子的Root-MUSIC算法,该算法避免了经典MUSIC算法中的特征分解和谱峰搜索,大大减小了计算复杂度;针对该算法存在低信噪比时性能下降严重的缺陷,给出了一种新的快速Root-MUSIC算法,新算法由协方差矩阵直接估计出信号子空间,无需特征分解和谱峰搜索,减小了计算量,同时在低信噪比条件下也能达到较好的测向性能。上述两种算法在损失一定性能的前提下大大减少了计算量,提高了测向时效性。
     2、研究了基于均匀圆阵的空间谱估计快速算法。首先介绍了基于相位模式激励的实值波束空间的MUSIC算法,该算法在阵元数目较大时能够在很大程度上降低计算量,但仍需二维谱峰搜索;在此基础上介绍一种无需二维谱峰搜索的快速测向算法:UCA-ESPRIT算法,但该算法受到阵列孔径及阵元个数的限制,针对此缺陷,本文在傅里叶域的Root-MUSIC算法基础上给出了一种二维快速测向算法,它无需谱峰搜索,计算量相比于经典MUSIC算法大大减小,同时克服了UCA-ESPRIT算法性能受阵列孔径和阵元个数限制的缺点,为了进一步减小算法中多项式求根的计算量,用一种线性搜索的方法来代替多项式求根。
     3、研究了线性搜索算法的快速实现。分析了在编程实现过程中需要考虑的数据量化误差、运算误差及算法的定点编程实现流程;利用MATLAB对算法的各个部分进行定点仿真,根据定点仿真的结果,分别设计了算法各部分进行定点运算FPGA实现结构,并给出了初步的资源和性能评估。
     4、在FPGA+DSP硬件平台上编程实现了线性搜索算法。首先对快速测向处理平台的各个部分进行简要介绍;其次,对算法进行了任务分配,给出了算法在硬件中的详细实现流程;针对线性搜索算法的实现步骤,进行了FPGA及DSP编程仿真和实现,包括:协方差矩阵的计算、特征分解及信源个数判断、多项式系数求解和多项式求根的编程实现。仿真结果验证了本设计的正确性。最后给出了总体资源的需求和性能评估。
With the development of communication technology of low interception and detection probability, and the electromagnetic environment becoming much worse, it is often needed to process multiple signals in a wide bandwidth at one time, which brings about stricter demand for the real-time property and validity of DOA estimation algorithms. This paper focuses on fast DOA estimation algorithms and their realization in order to reduce the computational complexity by improving these algorithms and realize these algorithms on the FPGA plus DSP platform. The main contents can be summarized as follow:
     1、Fast DOA estimation algorithms in ULA are studied. A fast algorithm without eigendecomposition and spectrum peak search is proposed based on propagator method. The algorithm can reduce the computational complexity largely. But this algorithm has bad performance in the condition of low SNR. So, a new fast Root-MUSIC algorithm is presented,which can obtain the signal subspace from the covariance matrix without eigendecompsition and spectrum peak search,and has better performance in the condition of the low SNR as well. These algorithms introduced in this paper do not only reduce the computational complexity, but they also improve the efficiency largely with their performance becoming worse to a certain extent.
     2、Fast DOA estimation algorithms in UCA are studied. The real beamspace-MUSIC algorithm based on the phase mode excitation can reduce the computational complexity when the number of array element is large. But it needs 2-D spectrum peak search. With an eye to this, a UCA-ESPRIT algorithm without 2-D spectrum search is introduced. However, the performance of this algorithm is limited by the aperture of the array and the number of sensors. So, a fast algorithm for 2-D direction-of-arrival (DOA) estimation is given on the basis of FD Root-MUSIC algorithm. This algorithm utilizes the method of finding the roots of multinomial instead of spectrum peak search. As a result, it has a lower computational complexity in comparison with the MUSIC algorithm and it is free of the aperture of the array and the number of sensors limitation. Meanwhile, in order to reduce the computational complexity farther the algorithm applies the linear search method instead of finding the multinomial roots.
     3、Fast realization of the linear search algorithm is studied. Firstly, the problem of quantification errors and calculation errors is analyzed before the algorithm is realized on hardware platform, and the flow of fixed-point simulation is introduced. Then, based on the result of fixed-point simulation in MATLAB, the realization structure of fixed-point data in FPGA is designed. Finally, a preliminary assessment of the amount of necessary hardware resources together with the performance of this algorithm is presented.
     4、Program of the linear search algorithm in FPGA plus DSP platform is studied. Firstly, every part of the process platform is introduced. Secondly, assignment allocation on this platform is fixed according to characteristics of hardware and algorithm, and the detailed realization flow chart is given. Then, the algorithm is carried out by programming and simulation in FPGA plus DSP platform, including: calculation of covariance matrix, eigendecomposition, judging the number of signals, finding the coefficients of polynomial and roots of the polynomial. And simulation results verify the design. Finally, resources utilization and performance for the spatial spectrum direction-finding algorithm are evaluated on the present platform.
引文
[1] R&S. Digital HF/VHF/UHF Scanning Direction Finder R&S DDF0xA [EB/OL].:德国罗德与施瓦茨公司官方网站, 2006.
    [2] R&S. AMMOS Automatic Modular Monitoring of Signals [EB/OL].:德国罗德与施瓦茨公司官方网站, 2008.
    [3]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2005:19-139.
    [4] Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
    [5] Kay S M, Marple S L. Spectrum analysis-a modern perspective. Proc of the IEEE. 1981,11.
    [6] Burg J P. Maximum entropy spectral analysis. Proc of the 37th meeting of the annual SEG. Oklahoma City, 1967.
    [7] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc of IEEE. 1969, 57(8): 134-139.
    [8] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans AP, 1986, 34(3): 276-280.
    [9] Kumaresan R, Tufts D W. Estimating the angle-of-arrival of multiple plane waves. IEEE Trans. Aerospace Electronic System, 1983, 336-339.
    [10] Rao B D, Hari K V S. Performation analysis of root-MUSIC. IEEE Trans. On ASSP, 1989, 37(12): 1939-1949.
    [11] Zoltowski M D, Kautz G, Silverstein S D. Beamspace root-MUSIC. IEEE Trans. On Signal Processing, 1993, 41(1): 344-364.
    [12] Paulraj A, Roy R, Kailath T. Estimation of signal parameters via rotational invariance techniques-ESPRIT. Proc 19th Asilomar Conf, Pacific Grove, CA, Nov, 1985.
    [13] Tayem N, Kwon H M. Conjugate ESPRIT. IEEE Trans. On Antennas and Propagation, 2004, 52(10): 2618-2624.
    [14] Haardt M, Nossek J A. Unitary ESPRIT how to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. On Signal Processing, 1995, 43(5): 1232-1242.
    [15] Gao F, Gershman A B. A generalized ESPRIT approach to direction of arrival estimation. IEEE Signal Processing Letters, 2005, 12(3): 254-257.
    [16] Stoica P, Nehorai A. MUSIC, Maximum likelihood and Cramer-Rao bound. In Proc. ICASSP, 1988, 2296-2299.
    [17] Ottersten B, Viberg M, Stoica P, Nehorai A. Exact and large sample ML techniques for parameter estimation and detection in array processing. In Haykin, Litva, and shepherd, editors, Radar array processing, Springer Verlag, Berlin, 1993: 99-151.
    [18] Cadzow J A. A high resolution direction of arrival algorithm for narrow band coherent and incoherent sources. IEEE Trans. On ASSP, 1988, 36(7):965-979.
    [19] Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimationmethods compared to the Cramer-Rao bounds. IEEE Trans. On ASSP, 1989,37(11): 1703-1720.
    [20] Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. On ASSP, 1988, 36(10): 1553-1559.
    [21] Marcos S, Benidir M. On a high resolution array processing method non-based on the eigenanalysis approach. International Conference on Acoustics, Speech, and Signal Processing. New Mexico, USA. IEEE Press, 1990, 5(4 ): 2955-2958.
    [22] Davila C.E and Azmoodeh M. Efficient estimation of the signal subspace without eigendecomposition. IEEE Trans, 2000, SP-42(1):236-239.
    [23] Gershman A.B. Direction of arrival estimation using generalized minimum norm approach. Electronics Letters, 1991, 27(16): 1485-1486.
    [24] Xu G. and Kailath T. Fast subspace decomposition. IEEE Trans. on Signal Processing, 1994, 42(3): 539-551.
    [25] Tufts D. and Melissinos C.D. Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies. IEEE Trans. on Acoust, Speech, Signal Processing, 1986, AS SP 34(10): 1046-1053.
    [26] Karhunen J.T. and Joutsenalo J. Sinusoidal frequency estimation by signal subspace approximation. IEEE Trans. On Acoust, Speech, Signal Processing, 1992, 40(12): 2961-2972.
    [27]黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981.
    [28]包志强,吴顺君,张林让.一种信源个数与波达方向联合估计的新算法[J].电子学报,2006,34(12):2171-2174.
    [29]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究.通信学报(Journal on Communications), 2006, 27(9):89~95.
    [30]孙学军,张高毅,唐斌,甘泉.基于二次虚拟内插的圆阵接收2D-DOA分离估计.电子与信息学报(Journal of Electronics and Information Technology), 2008, 30(8):1890-1892.
    [31]于红旗,黄知涛,周一宇,徐欣.一种基于逐次搜索的快速MUSIC方法.现代雷达(Modern Radar). 2008, 30(9):47-51.
    [32] Davies D E N. A transformation between the phasing techniques required for linear and circular aerial arrays. Proc, IEEE. 1965, 112(11): 2041-2045.
    [33] Friedlander B. Direction finding using spatial smoothing with interpolated transaction. IEEE Trans, 2000, 23(1): 234-254.
    [34] Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Trans. Signal Processing, 1994, 42(9): 2395-2407.
    [35]张乐.信号子空间分解的FPGA实现[D].成都:电子科技大学.2003:14-25.
    [36]郑洪.MUSIC算法在高速处理器上的快速实现[D].成都:电子科技大学.2004:34-39.
    [37]陈昊.空间谱估计算法的高速实现[D].成都:电子科技大学.2003:12-16.
    [38]徐天赐.智能天线阵列与DAO估计算法的研究及FPGA实现[D].大连:大连海事大学.2006:37-51.
    [39]郑洪,肖先赐.MUSIC算法在高速并行处理机上的实现[J].电子科技大学学报.2005, 34(6):760-762.
    [40] R&S.R&S DDF255-高度集成的精确测向设备[J].中国无线电,2008,10:65.
    [41] Mrcm. EPSILON-Modular Automated Wideband System for HF Reconnaissance [EB/OL].:德国Mrcm公司官方网站, 2003.
    [42]平良子.模块化自动宽带短波侦察系统EPSILON[J].电信技术研究,2004,20(5):58-60.
    [43]平良子.MRCM公司的MRR8000系列宽带接收机[J].电信技术研究,2006,6:49-51.
    [44]赵永波.稳健的阵列信号处理技术及其应用[D].西安:西安电子科技大学,2000.
    [45] Marcos S, Marsal A, Benider M. Performances Analysis of the Propagator Method for Source Bearing Estimation [J]. Signal Processing, 1995, 42(2):121-138.
    [46]余继周,陈定昌.一种DOA估计的快速子空间算法[J],现代电子技术, 2004,28(12):90-92.
    [47]熊轶.基于特征子空间的波达方向估计算法研究[D].武汉:华中科技大学,2007:35-36.
    [48]马洪,杨琳琳,黎英云.二维快速子空间DOA估计算法[J].华中科技大学学报(自然科学版).武汉.2008,36(4):20-23
    [49]杨琳琳.空间谱估计算法研究[D].武汉:华中科技大学,2007:23-27.
    [50] Neff C A and Reif J H. An Efficient Algorithm for the Complex Roots Problem. Journal of Complexity, 1996, 12(2):81-115.
    [51] Fuchs J J . On the application of the global matched filter to DOA estimation with uniform circular arrays [J]. IEEE Trans on SP , 2001 , 49 (4) : 702 - 709.
    [52] Mat hews C P , Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular array [J]. IEEE Trans on SP , 1994 , 42 (9) : 2395 - 2407.
    [53] Mat hews C P , Zoltowski M D. Performance analysis of t he UCA-ESPRIT algorithm for circular ring arrays [J]. IEEE Trans on SP , 1994 , 42 (9) : 2535 - 2539.
    [54] Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Tran. Signal Processing, 1994, 42(9): 2395-2407.
    [55]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究[J].通信学报,2007,27(9):89-95.
    [56] Davies D E N, Rudge A W. Ed. The Handbook of Antenna Design. London, UK, Peregrinus, 1983.
    [57] M. D.Zoltowski, C. P. Mathews. Closed-form 2-D angle estimation with uniform circular arrays via phase mode excitation and ESPRIT.in 27th Asilomar IEEE Conf: Signals. Syst. Comput. 1993, 1(1): 169-173.
    [58] M. D. Zoltowski, M. Haardt, C. P. Mathews. Closed-form 2D angle estimation with rectangulac arrays in element space or beamspace viaunitary ESPRIT. IEEE Trans. 1996,44(1):326-328.
    [59] Michael. R, Alex. B. Direction-of-Arrival Estimation for Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain MUSIC Methods. IEEE Tran. Signal Processing, 2009, 57(2): 588-599.
    [60]梁碧宇,张传林.对称双边对角矩阵特征值问题的计算[J].高等学校计算数学学报,2003,25(3):271-275.
    [61]吴瑛,张莉,张冬玲等.数字信号处理[M].西安:西安电子科技大学出版社,2009:271-284.
    [62] Volder J E. The CORDIC trigonometric computing technique[J]. IRE Trans. Electronic Computers, 1959, EC-8(3):330-334.
    [63] Xilinx. Fast Fourier Transform v7.0 [EB/OL].:美国Xilinx公司官方网站, 2010.
    [64]田耕,徐文波,胡彬等.FPGA开发指南-逻辑设计篇[M].北京:人民邮电出版社,2008:344-356.
    [65] Xilinx. DS255 Multiplier v11.0 [EB/OL].:美国Xilinx公司官方网站, 2010.
    [66] Agilent Technologies. Agilent HFBR-53D5 Technical DATA [EB/OL].:美国安捷伦公司官方网站, 1999.
    [67] Agilent Technologies. Agilent HDMP-1032/1034 Transmitter/Receiver Chip Set Data Sheet [EB/OL].:美国安捷伦公司官方网站, 2000.
    [68]孟会,刘雪峰.PCI Express总线技术分析[J].机算机工程,2006,32(23):253-258.
    [69]林锦棠,敖发良.PCI Express研究及基于FPGA的实现[J].微机算机信息,2008,24(10-2):185-187.
    [70]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:205-210,229-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700