用户名: 密码: 验证码:
干涉仪快速测向算法的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉仪测向算法作为一种快速测向算法,具有算法简单、灵敏度高等优点,因而被广泛应用在各种测向系统中。干涉仪测向算法可分为相位干涉仪测向算法和相关干涉仪测向算法两种。相位干涉仪因其实现简单、测向速度快,而被目前多数短波宽带测向设备所采用,但是该算法对天线幅相误差敏感,抗扰性较差。相关干涉仪测向算法具有抗幅相误差能力强,受天线阵形限制较少等优点,将其应用到短波宽带测向系统中能够克服相位干涉仪所存在的问题,但是相关干涉仪测向算法的运算量很大,仅采用DSP进行实现很难做到实时处理。针对这一问题,在某项目中拟采用FPGA和DSP相结合的运算模式,本文根据项目要求,在验证平台上实现了频域相关干涉仪算法,完成了算法的验证和系统资源的评估,为项目的进行奠定了基础。文章内容如下:
     1、研究了相位干涉仪及其解模糊算法。首先,对长短基线法、虚拟基线法和立体基线法三种常用解模糊算法进行了研究。然后,针对长短基线法、虚拟基线法阵形受限以及立体基线法抗噪声能力不强的问题,给出一种基于复相关运算的解模糊算法。仿真结果表明该算法适用于多种天线阵,且抗噪性能优于立体基线法。
     2、研究了相关干涉仪测向算法。首先,研究了时域和频域两种常用的相关干涉仪测向算法的基本原理。然后,针对相关干涉仪测向算法在利用FPGA实现时需要消耗大量芯片资源的问题,给出了一种改进算法——最小间距法,并评估了传统相关干涉仪算法与最小间距法所占用的FPGA资源量,比较了两种算法各自的处理时间,结果表明最小间距法在资源使用和处理时间上都有所改善。
     3、完成了相关干涉仪测向算法在验证平台上的设计实现。首先,介绍了短波宽带测向系统,并对其中相关干涉仪的处理结构进行了设计。其次,给出了相关干涉仪测向算法的实现步骤,对FPGA和DSP相结合的实现模式进行了分析,完成在两种芯片中的任务划分。然后,详细介绍了FPGA内部各个功能模块的作用,并具体介绍了各功能模块的设计流程。最后,给出了系统指标,并对系统的测向性能进行了测试,测试结果表明文中验证系统可实现对跳速低于100Hops/s、带宽低于500kHz的短波跳频信号的实时测向。
The algorithm of interferometer as a fast algorithm of direction finding has been widely used in many kinds of direction finding systems, because of its advantages such as high speed, simplicity and high sensitivity. It includes phase interferometer and correlation interferometer. Phase interferometer is adopted in most shortwave broad band direction finding equipments since it could be actualized both easily and fast. However, it is sensitive to gain-phase error, and has poor anti-interference performance. The algorithm of correlation interferometer direction finding, which has the virtue of good anti-interference performance together with broad adaptability in different antenna array types, could overcome the problems in phase interferometer algorithm when using it in shortwave broad band direction finding systems. But due to the correlation interferometer' large computation real time processing is hardly realized if only use DSP. To solve the problem, a realization mode through making use of FPGA and DSP is brought in some project. According to requirement of the project, the algorithm of correlation interferometer is realized on the validation platform by this mode. The validation of algorithm and evaluation of resource are finished. This provides a foundation of this project. The main content is as follows:
     1. Studies phase interferometer and its relevant algorithm for solving ambiguity. Firstly, long-short baseline method, virtual baseline method and spatial baseline method which is commonly used phase algorithms of interferometer are studied in this paper. Then, because of the problems that arrays of long-short baseline method and virtual baseline method are limited, and that spatial baseline method has poor anti-noise performance, a new algorithm of solving ambiguity based on complex correlative computing is described. The emulation thows that this new ambiguity is suitable for many kinds of arrays and has better anti-noise performance than spatial baseline method.
     2. Researches algorithm of correlation interferometer direction finding. First of all, the principle of correlation interferometer is discussed in both time domain and spectrum domain. Secondly, in order to tackle the problem that correlation interferometer needs to consume a mass of chip resources when it is implemented on FPGA, this paper presents an improved algorithm, which is minimum distance method. And then the evaluation and comparison of resource consumption is presented when the two algorithms are carried out on FPGA. And the minimum distance method is proved that it can use lower resource and work faster by the results.
     3. Completes the design of correlation interferometer direction finding on the validation platform and actualizes it. First the shortwave broad band direction finding system is introduced, and the structure of the algorithm of correlation interferometer is designed. Second this paper presents the steps of implementing correlation interferometer, and analyzes the implement mode based on FPGA and DSP, achieves assignment allocation on FPGA and DSP, and detailedly introduces the function modules and design in internal FPGA. Last parameters of the direction finding system are listed, and performance of the direction finding system is tested. According to the results, the system could actualize real time direction finding for shortwave signals whose hopping rate is lower than 100, and bandwidth is lower than 500 kHz.
引文
[1]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999.
    [2]肖秀丽.干涉仪测向原理[J].中国无线电,2006,(5):43-49.
    [3]严发.浅谈相关干涉仪测向机的设计思想[J].中国无线电管理,2003,(7):68-69.
    [4]田耘,徐文波,张延伟.无线通信FPGA设计[M].北京:电子工业出版社,2008.
    [5]平良子.模块化自动宽带短波侦察系统EPSILON[J].电信技术研究,2004,20(5):58-60.
    [6] Mrcm. EPSILON-Modular Automated Wideband System for HF Reconnaissance [EB/OL]:德国Mrcm公司官方网站, 2003.
    [7]罗德与施瓦茨公司.R&S DDF 255-高度集成的精确测向设备[J].中国无线电,2008,(10):65.
    [8]武继兵.R&S DDF 255:高性能的监测和测向一体化系统方案[J].中国无线电,2009,(8):70-71.
    [9]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版设,2004.
    [10]何文光.相关干涉仪测向的关键技术的研究与实现[D].华南理工大学.2005.
    [11]李炳荣,曲长文,平殿发.单信道相关干涉仪测向技术研究[J].通信对抗,2006,(4):21-23.
    [12]董传刚,赵国庆.对相关干涉仪测向算法的改进[J].电子科技,2008,21(3):56-58.
    [13] Jacobs E, Ralstion E W. Ambiguity resolution in interferometry[J]. IEEE Trans on Aerospace and Electionics, 1981, 17(6): 766-779.
    [14] Elie J. Baghdady. Hybrid interferometery for high-resolution DOA measurement [J]. IEEE National Aerospace and Electionics, 1989, (4): 2092-2093.
    [15]司伟建,初萍.干涉仪测向解模糊方法[J].应用科技,2007,34(9):54-57.
    [16]谌丽,陈昊,肖先赐.五元均匀圆阵干涉仪加权测向算法及解相位模糊的条件[J].电子对抗,2004,(1):8-12.
    [17]安效君.改进的干涉仪测向方法研究[J].无线电电工程,2009,39(3):59-61.
    [18]李兴华,顾尔顺.干涉仪解模糊技术研究[J].现代防御技术,2008,36(3):92-96.
    [19]蒋学金,高遐,沈扬.一种多基线相位干涉仪设计方法.电子信息对抗技术,2008,23(4):39-45.
    [20]李勇,赵国伟,李滔.一种机载单站相位干涉仪解模糊算法[J].传感技术学报,2006,19(6):2600-2602.
    [21] McCormick W S, Tsui J B Y, Bakke V L. A noise insensitive solution to an ambiguity problem in spectral estimation[J]. IEEE Trans on Aerospace and Electionics, 1989, 25(5): 729-732.
    [22]王崇厚.相关干涉仪及其应用[J].中国无线电管理, 2001, (8): 28~30.
    [23]杜龙先.单通道相关干涉仪测向原理[J].中国无线电管理,2000,2(1):40-43.
    [24]贾立哲,魏利辉.相关干涉仪测向算法的FPGA设计实现[J].无线电工程,2006, 36(12):40~42.
    [25] Hung E. Matrix-construction calibration method for antenna arrays [J]. IEEE Trans on AES, 2000, 36(3): 819-828.
    [26] Flanagan B P, Bell K L. Improved array self-calibration with large sensor position errors for closed space sources [J]. Proceedings of IEEE Sensor Array and Multichannel Workshop, 2000, 484-488
    [27]李淳,廖桂生,李艳斌.改进的相关干涉仪测向处理方法[J].西安电子科技大学学报(自然科学版),2006,33(3):400~403.
    [28]刘芬,明望,陶松.相关处理在干涉仪测向中的应用[J].电子科学技术评论,2005,(6):31-33.
    [29]王广松,戴旭初.基于频域相关的宽带干涉仪测向新算法[J].航天电子对抗,2006,22(4):52-61.
    [30] Doron M A, Weiss A J, Messer H. Maximum likehood direction finding of wideband sources [J]. IEEE Trans on SP. 1993, 41(1): 411-414.
    [31] Joe Chen, Ralph E. Maximum-likehood source location and unknowm sensor location estimation for wideband signals in the near-field [J]. IEEE Trans on SP.
    [32]程云鹏,张凯院,徐仲.矩阵论[M].西北工业大学,2006.
    [33]梅文华,王淑波,邱永红,杜兴民.跳频通信[M].北京:国防工业出版社,2005.
    [34] Agilent Technologies. Agilent HFBR-53D5 Technical DATA [EB/OL].:美国安捷伦公司官方网站, 1999.
    [35] Agilent Technologies. Agilent HDMP-1032/1034 Transmitter/Receiver Chip Set Data Sheet [EB/OL].:美国安捷伦公司官方网站, 2000.
    [36] Altera公司Razak Mohammed All TS Anil Kuma.PCI Express—High Speed Serial Interface Standard[J].技术长廊,2007,(3):112-114.
    [37]马鸣锦,朱剑冰,何红旗,杜威.PCI、PCI-X和PCI Express的原理及体系结构[M].北京:清华大学出版社,2007.
    [38]孟会,刘雪峰.PCI Express总线技术分析[J].机算机工程,2006,32(23):253-258.
    [39]林锦棠,敖发良.PCI Express研究及基于FPGA的实现[J].微机算机信息,2008,24(10-2):185-187.
    [40]孙航,胡灵博,于联锋,樊彧.Xilinx可编程逻辑器件应用与系统设计[M].北京:电子工业出版社,2008.
    [41]田耘,徐文波,胡彬.Xilinx ISE Design Suite 10.x FPGA开发指南[M].北京:人民邮电出版社,2008.
    [42]王隽.基于EDA仿真工具ModelSim的研究[J].导航,2007.
    [43] Xilinx. Block Memory Generator v3.2 [EB/OL].:美国Xilinx公司官方网站, 2009.
    [44] Xilinx. Fast Fourier Transform v7.0 [EB/OL].:美国Xilinx公司官方网站, 2009.
    [45] Xilinx. Complex Multiplier v3.0 [EB/OL].:美国Xilinx公司官方网站, 2009.
    [46] Xilinx. Adder/Subtracter v11.0 [EB/OL].:美国Xilinx公司官方网站, 2009.
    [47] Xilinx. DS255 Multiplier v11.0 [EB/OL].:美国Xilinx公司官方网站, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700