用户名: 密码: 验证码:
柞蚕微孢子虫EST分析、孢壁蛋白NpSWP1基因克隆及柞蚕免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柞蚕(Antheraea pernyi Guerin-Meneville,1855)属于鳞翅目大蚕蛾科,是一种重要的泌丝昆虫。我国年产柞蚕茧约7×104t,占世界野蚕丝总产量的90%以上。柞蚕微粒子病的病原物为柞蚕微孢子虫(Nosema pernyi Wen et Ding),是柞蚕生产中的唯一检疫性病害。该病广泛分布于我国柞蚕产区,给柞蚕生产带来了严重的经济损失,近年来柞蚕微粒子病的发生和蔓延呈现出上升趋势,已成为制约柞蚕产业发展的重要因素之一。因此,开展柞蚕微孢子虫的系统分类学研究、基因信息的获取、孢壁蛋白基因的克隆及柞蚕感染微孢子虫后相关基因表达量的应激变化等研究,对于更深层次了解柞蚕微孢子虫的生物学特征、保障柞蚕产业的健康发展具有重要意义。
     本研究对Percoll纯化的柞蚕微孢子虫进行了光学和电子显微镜的观察;通过提取柞蚕微孢子虫的总RNA,采用SMART法构建全长cDNA文库,并对EST进行分析;通过微管蛋白基因构建系统进化树;首次克隆得到了柞蚕微孢子虫孢壁蛋白NpSWP1基因,并进行了原核表达和Western-blot验证;利用Realtime PCR技术对感染微孢子虫后柞蚕中肠ApTP1和ApHSC70基因的表达谱进行了分析。研究结果如下:
     1.柞蚕微孢子虫的形态学观察:利用Percoll不连续密度梯度(Percoll浓度分别为25%、50%、75%、100%),15000r-min-1离心30min,能够得到纯净度很高的柞蚕微孢子虫孢子。通过光学显微镜观察并结合CCD系统进行孢子大小的测量,纯化的孢子在光镜下由于折光性四周呈现淡蓝色荧光,孢子个体大小均匀,呈卵圆形,孢子大小4.36±0.42μm×1.49±0.19μm,扫描电镜显示孢子表面光滑,透射电镜能够看出成熟的柞蚕微孢子虫孢子壁分为外壁、内壁和原生质膜,孢子具有双核,10-11圈极丝围绕着细胞核,纵切面显示极丝成同心圆结构。
     2.柞蚕微孢子虫的系统发育分析:采用RT-PCR、3'RACE(Rapid amplification of cDNAends)等技术克隆得到了柞蚕微孢子虫的α、β和γ-微管蛋白基因,并利用α、β-微管蛋白序列,分别采用NJ、ML法构建进化树。结果显示,微孢子虫类以一个独立群位于真菌群体中,与真菌的虫霉门关系较近,且与担子菌、球囊菌、壶菌、接合菌及部分子囊菌互为姐妹群。从部分微孢子虫的系统发育分析结果可以看出,20种微孢子虫分为2个分支,柞蚕微孢子虫与其他Nosema属聚为一类。
     3.柞蚕微孢子虫cDNA文库的构建。采用SMART(Switching mechanism at5'-end of RNA transcript)技术构建了柞蚕微孢子虫全长cDNA文库,初始文库滴度4.2×106pfu/mL,文库容量1.0×107pfu,重组率为98.39%。随机挑取32个克隆,经PCR检测插入的片段长度在750-3000bp,平均长度>1000bp。挑选文库中864个克隆进行表达序列标签(EST)测序,得到626条高质量的EST,拼接后得到197条单一基因(unigenes),包含64条重叠群(contigs)和133条单-EST (singlets),冗余度为68.53%。将这些Unigenes与NCBI数据库进行比对,146条Unigenes能够比对到蜜蜂微孢子虫(Nosema ceranae)、家蚕微孢子虫(Nosema bombycis)、兔脑炎微孢子虫(Encephalitozoon cuniculi)等的相关基因。在随机EST测序中克隆获得了一个孢子形成蛋白(sporulation protein)基因,命名为NpSP-1.该基因的cDNA的ORF长度为1014bp,编码337个氨基酸,蛋白质的理论分子质量为39.2kD,等电点5.71。
     4.柞蚕微孢子虫孢壁蛋白NpSWP1的克隆及原核表达:从已构建的柞蚕微孢子虫cDNA文库中筛选出一条孢壁蛋白EST序列,并结合相近物种进行同源性分析,利用RT-PCR和3'RACE技术克隆得到了一个柞蚕孢壁蛋白基因,命名为NpSWP1(GenBank登录号:KJ573111)。该基因ORF长837bp,编码278个氨基酸,推测的蛋白分子量(Mw)32.02kD,等电点(pI)7.02。通过Blastp分析,与家蚕微孢子虫孢壁蛋白MSWP1的氨基酸序列同源性达到了79%,预测该蛋白也是一种孢子内壁蛋白。将该基因与原核表达载体pEASY(?)-E1Expression vector相连,并转化到感受态细胞Transetta (DE3), SDS-PAGE结果表明,IPTG诱导5h,重组质粒能够表达约32kD的融合蛋白,与预期结果相近。Western-blot检测显示,只有经过诱导的菌液能够杂交产生约32kD的条带。
     5.柞蚕ApHSC70基因的表达谱分析:从健康和感病柞蚕中肠转录组数据中筛选了一条热休克蛋白HSP70基因,利用RT-PCR技术克隆得到了一个柞蚕热休克蛋白HSP70基因,命名为ApHSC70(GenBank登录号:KJ437496),该基因的开放阅读框(ORF)长1959bp,编码652个氨基酸,预测蛋白质分子质量为71.49kD,等电点pI值为5.38,具有细胞质特征基序。实时荧光定量PCR检测该基因在添食柞蚕微孢子虫后的应激变化,结果显示:在感染的0-12h内表达量变化不大,15h含量升高,21h达到最高。
     6.柞蚕ApTP1基因的表达谱分析:人工添食柞蚕微孢子虫的条件下,研究柞蚕中肠一个类胰蛋白酶基因对微孢子虫入侵的应激变化。通过RT-PCR技术克隆的到了该基因,命名为ApTP1(GenBank登录号:KF779933),该基因ORF长774bp,编码257个氨基酸,预测前20个氨基酸为信号肽,蛋白质的分子量为27.7kD,等电点为10.5。结构预测显示ApTP1蛋白具有典型的胰蛋白酶功能结构域Tryp-SPc (trypsin-like serineprotease),含有3对二硫键, IVGG保守序列。同源比对及系统进化关系结果表明,柞蚕类胰蛋白酶与天蚕(A ntheraea yamamai)的同源性最高,为93%,与其他昆虫的同源关系在30%-70%之间。原核表达和Western-blot研究表明,融合蛋白的表达及鉴定与预测的28kD大小一致。半定量PCR检测显示ApTP1在柞蚕各发育时期及5龄幼虫的各组织中均表达,其中在柞蚕发育的4个阶段中以幼虫期的表达水平相对较高,各组织中以中肠组织的表达水平相对较高。Realtime PCR检测显示ApTPl基因的表达量在诱导后1-3h内变化不大,6h的表达量最高。
The Chinese oak silkworm (Antheraea pernyi Guerin-Meneville,1855) belongs to Lepidoptera:Saturniidae which is the most well known wild silkmoths. The annual output of silkworm cocoons from China is about7×104t accounts for90%of world production. Nosema pernyi (Wen et Ding) is a lethal pathogen of microsporidiosis in Antheraea pernyi which is the only quarantine disease in sericultural production. This disease is widely distributed in most sericultural areas and cost economic losses. In recent years, microsporidiosis occurring and spreading rate rised. Carry on the systematics research, obtaining genes information, cloning spore wall protein gene and the pattern of genetic expressions in midgut of A. pernyi after N. pernyi infection, these researches have significant role in studing biological characteristics of N. pernyi and guarantee the healthy development of sericultrual industry.
     This research observed purified spores of N. pernyi using light and electron microscope; total RNA was extracted for cDNA library construction using SMART technology and ESTs were analysed; phylogenetic trees were constuctied based on tubulin genes; one spore wall protein of N. pernyi was cloned and prokaryotic expression was successfully induced; Realtime PCR technology were used to investigate the genes of ApTPl and ApHSC70expression patterns in the midgut of A. pernyi after N. pernyi infection. The results were as follows:
     1. Morphological study of N. pernyi spores. Purified spores of N. pernyi can be obtained using differential centrifugation and Percoll density gradient centrifugation (discontinuous density gradient Percoll:25%,50%,75%and100%) at15000r-min-1for30min. Using light microscope and CCD system, we tested the size of spores. Purified spores were surrounded by blue-fluorescence due to refractivity under light microscope. Uniformity spores were oval like, and the mean length and width measurements for N. pernyi were4.36±0.42μm and1.49±0.19μm, respectively. Using a scanning electron microscope, the spots have a smooth surface. Transmission electron microscopy of longitudinal sections and cross-sections of spores revealed that the spore wall consisted of exospore, endospore and plasma membrane. The diplokaryotic nuclei occupied the center of the spore and were surrounded by10-11turns of the polar tube.
     2. Phylogenetic study of N. pernyi. Using RT-PCR,3'RACE technology, α,β and y-tubulin genes of N. pernyi were cloned. Neighbour-Joining and Maximum Likelihood were used to construct a phylogenetic tree. Phylogenetic analysis shows that the microsporidia are a single group in the fungi that are most closely related to the Entomophthoromycota, and are sistergroups to the Basidiomycota, Chytridiomycota, Zygomycota, Glomeromycota and some of the Ascomycota. N. pernyi, together with other Nosema spp., belongs to one of two groups in the microsporidia.
     3. cDNA library of N. pernyi. Using SMART (switching mechanism at5'end of RNA transcript) technology, we constructed a full-length cDNA library of N. pernyi. The identification results of library construction quality showed that the titer of primary library was4.2×106pfu/mL, the library capacity was1.0×107pfu with98.39%recombinant. PCR amplification of32randomly picked clones revealed that the inserted cDNA fragments ranged from750to3000bp with an average length of1000bp. These data indicated that a successful cDNA library of N. pernyi has been constructed in this research. From864randomly selected and sequenced clones,626high-quality ESTs were generated. These ESTs were assembled into197Unigenes including64Contigs (38.49%) and133Singlets (61.51%). The redundancy rate is68.53%. Among these Unigenes which had homology with submitted sequences in the NCBI database, about146Unigenes were similarity to known mRNAs of Nosema ceranae, Nosema bombycis, and Encephalitozoon cuniculi with BLASTn and BLASTx analysis. A full-length gene encode Sporulation Protein (named NpSP-1) has got from the cDNA library. This cDNA contained an ORF of1014bp coding for a protein of337amino acids. The predicted molecular weight and isoelectric point of this protein was39.2kD and5.71, respectively.
     4. NpSWPl cloning and prokaryotic expression. From the constructed cDNA library of N. pernyi, an EST of annotated spore wall protein was seletcted. Using RT-PCR and3'RACE technology, a spore wall protein gene named NpSWPl (GenBank accession number: KJ573111) from N. pernyi were cloned by screening the EST information and analyzing homological genes. This cDNA contained an ORF of837bp coding for a protein of278amino acids. The predicted molecular weight and isoelectric point of this protein was32.02kD and7.02, respectively. Thought Blastp analysis, the deduced amino acid sequence of NpSWP1shared79%identity with NbSWP1(GenBank accession number:EOB12097) in Nosema bombycis, and inferred NpSWP1to be an endosporal protein. Recombinant plasmid of NpSWP1-E1Vector was transferred into Transetta (DE3) and the target protein was expressed. According to SDS-PAGE result, the molecular weight of the target protein was32kD under the condition of IPTG for5h. Western-blot showed that the target gene was about32kD, and it has been successfully expressed in E. coli.
     5. Expression pattern analysis of ApHS70. From the transcriptomic research of midgut tissues from healthy larvae and N. pernyi infected larvae, HSP70gene was seletcted. Using RT-PCR technology, a HSP70gene of A. pernyi was cloned (named ApHSC70, GenBank accession numbers:KJ437496). The ORF is1959bp and encodes652amino acids with predicted molecular mass of71.49kD and theoretical isoelectric point of5.38, which contains cytoplasmic characteristics motif. Quantitative Real time PCR (qRT-PCR) was employed to further identify the expression pattern of ApHSC70gene in the midgut of A. pernyi after N. pernyi infected. qRT-PCR indicated that ApHSC70gene content in the midgut of A. pernyi little changed during0-12h, content begin rised at15h and reached the maximum expression at21h.
     6. Expression pattern analysis of ApTP1. Under the condition of artificial feeding N. pernyi, a trysin-like serine proteases protein expression pattern was studied. Using RT-PCR, ApTP1(GenBank accession number:KF779933) was cloned. This gene contained an ORF of774bp coding for a protein of257amino acids. The predicted molecular weight and isoelectric point of this protein was27.7kD and10.5, respectively. ApTP1had the common characteristics of trypsin-like serine proteases with the catalytic active centers of histidine, aspartic acid and serine. The predicted protein constructed of six conservative cysteines and a20-residue signal peptide sequence. Thought Blastp analysis, the deduced amino acid sequence of ApTP1shared930identity with Antheraea yamamai, the homology of other species ranged from30%to70%. Recombinant plasmid of ApTP1-E1Vector was transferred into E. coli and the expressed protein was28kD the same as forecast. Semiquantitative PCR detection indicated that ApTP1is expressed in all stage and tissues of5th larvae, but the highest expression was the instar of larvae, the tissues of midgut has the highest expression in5th instar. qRT-PCR indicated that ApTP1changed little from1to3h, and6h reach the highest level.
引文
1.常团结,陈蕾,路子显,等.2002.棉铃虫幼虫中肠类胰蛋白酶基因的克隆及在大肠杆菌中的表达[J].48(6):790-796.
    2.陈全梅,马振刚,王晓欢,等.家蚕感受神经膜蛋白基因SNMP1的序列分析及原核表达[J].蚕业科学,2013,39(2):0231-0239.
    3.陈忠斌,杨静,王华,等.2003.应用抑制性消减杂交技术筛选流感病毒感染宿主应答基因[J].中国生物化学与分子生物学报,19(2):156-161.
    4.程道军,夏庆友,周泽扬,等.2004.家蚕cDNA文库构建及大规模EST测序[J].蚕业科学,29(4):335-339.
    5.邓真华,姜义仁,杨瑞生,等.2010.应用PCR技术检测柞蚕微孢子虫[J].蚕业科学,36(2):359-362.
    6.邓真华,姜义仁,秦利,等.2010.柞蚕微粒子病研究现状及展望[J].中国蚕业,1:5-8.
    7.丁杰,问锦曾.1992.中国柞蚕微粒子病病原的研究[J].蚕业科学,18(2):88-92.
    8.丁杰,问锦曾.1994.中国柞蚕微粒子病病原研究续报[J].蚕业科学,1994,20(3):161-165.
    9.丁杰,宿桂梅,张禹,等.1998.柞蚕微粒子虫对柞蚕幼虫组织细胞的侵染及增殖规律研究[J].辽宁农业科学,4:6-10.
    10.丁岚.2012.齐口裂腹鱼胰蛋白酶原前体cDNA的克隆、表达与序列分析[D].重庆:重庆师范大学.
    11.董辉,李越中,胡玮.2002.γ-微管蛋白研究进展[J].生物化学与生物物理进展,29(5):686-690.
    12.董育新,刘惠霞.1998.昆虫胰蛋白酶及其基因表达[J].昆虫知识,4:022.
    13.冯文荣.2011.文昌鱼胰蛋白酶基因的鉴定、表达和功能研究[D].青岛:中国海洋大学.
    14.傅诚杰,缪炜,沈韫芬,万明亮.2004.两种缘毛类纤毛虫胞质Hsp70基因序列的克隆及其系统发育分析[J].动物学研究,25(4):298-303.
    15.高璐,左洪亮,姜春来,等.2012.斜纹夜蛾蜕皮响应基因E75D的克隆,原核表达分析及microRNA作用位点预测[J].昆虫学报,55(5):510-519.
    16.高永珍,黄可威.1999.家蚕病原性微孢子虫的超微结构研究[J].蚕业科学,25(3):163-169.
    17.郭锡杰,黄可威.1995,家蚕病原性微孢子虫孢子表面蛋白的选择性分离与总蛋白比较分析.蚕业科学,21(4):238-242.
    18.郭锡杰,黄可威,沈中元.1994.不同来源微粒子孢子间血清学关系的比较研究[J].蚕业科学,20(3):154-157.
    19.韩政,赵龙龙,陈光,等.2010.热激蛋白与昆虫的耐热性关系研究进展[J].山西农业科学,38(8):92-94.
    20.贺元莉.2012.家蚕微粒子病组织病理学研究及数字化家蚕构建初探[D].重庆:西南大学.
    21.黄自然,卢蕴良.1964.蓖麻蚕(Philosemia cynthie ricini)微孢子虫之研究[J].蓖麻蚕微粒子论文集.第一集:103-119.
    22.纪冬,辛绍杰.2009.实时荧光定量PCR的发展和数据分析.生物技术通讯,4(20):598-600.
    23.姜义仁,邓真华,王伯阳,等.2011.柞蚕微孢子虫分离纯化方法[J].应用昆虫学报,48(2):452-456.
    24.姜义仁,宋佳,秦玉磷,等.2012.柞蚕感染微孢子虫后血淋巴免疫应答蛋白质的分离与鉴定[J].昆虫学报,55(10):1119-1131.
    25.姜义仁.2012.柞蚕微孢子虫检测及感染柞蚕中肠转录组及蛋白质组学研究[D].沈阳:沈阳农业大 学.
    26.李冬梅.2002.防治柞蚕微粒子病有效药剂筛选试验初报[J].黑龙江农业,3:34.
    27.李健男,王爱荣,王林美,等.2005.柞蚕微孢子虫(Nosema pernyi)对柞蚕卵巢初代培养细胞的侵染与增殖[J].沈阳农业大学学报,36(4):451-453
    28.李健男,吴玉林,王式媛.1995.柞蚕微孢子虫在柞蚕体内增殖的组织病理学研究[J].沈阳农业大学学报,26(2):188-192.
    29.李健男.1988.柞蚕微粒子病血清学诊断的研究-玻片凝集法及SPA法[J].沈阳农业大学学报,19(1):38-42.
    30.李田,潘国庆,党晓群,等.2009.重度感染家蚕微孢子虫的家蚕丝腺cDNA文库构建及EST测序分析.蚕业科学,35(2):320-327.
    31.李艳红,刘含登,吴正理,等.2007.家蚕微孢子虫单克隆抗体的制备及鉴定[J].蚕业科学,33(1):138-141.
    32.李志强,陈国生,王茂先,等.2003.昆虫体液免疫的分子生物学.生命的化学,23(5):348-351.
    33.梁利群,李绍戊,常玉梅,等.2006.抑制消减杂交技术在鲤鱼抗寒研究中的应用[J].中国水产科学,13(2):193-199.
    34.廖模祥,刘吉平,郝娟,等.2011.2种野外昆虫来源微孢子虫的超微结构及生活史观察[J].蚕业科学,37(1):134-137.
    35.刘含登.2011.家蚕微孢子虫(Nosema bombycis)基因组学研究一核糖体蛋白基因及rDNA序列特征分析[D].西南大学.
    36.刘吉平,曾玲.2006.微孢子虫生物多样性研究的述评[J].昆虫知识,43(2):153-158.
    37.刘吉平,卢铿明,徐兴耀,等.1995.单抗免疫金银染色法诊断家蚕微孢子虫的研究[J].广东蚕业,29(3):30-35.
    38.刘加彬,潘国庆,程道军,等.2004.家蚕微孢子虫cDNA文库的构建及部分EST同源性分析.蚕业科学,30(4):363-366.
    39.刘淑敏,高玉章,宋有忠,等.1992.应用微波防治柞蚕微粒子病的研究[J].辽宁农业科学,5:14-17.
    40.刘志刚,张其中,张占会,等.2012.近江牡蛎HSC70基因对溶藻弧菌感染的反应[J].中国水产科学,19(3):500-508.
    41.鲁兴萌,吴忠长.2000.家蚕微粒子虫(Nosema bombycis)感染家蚕的病理学研究[J].浙江大学学报:农业与生命科学版,26(5):547-550.
    42.罗海斌,曹辉庆,魏源文,等.2012.干旱胁迫下甘蔗苗期根系全长cDNA文库构建及EST序列分析[J].南方农业学报,43(6):733-737.
    43.吕要斌,梁广文,曾玲.2002.家蚕的一种微孢子虫对小菜蛾的致病力测定[J].植物保护学报,29(4):320-324.
    44.马兰,李灿,刘莹.2012.10株微孢子虫Hsp70基因克隆及系统发育分析[J].江西农业学报,24(7):146-150.
    45.马文静,马纪.2012.小胸鳖甲热激蛋白基因(Mphsp70)的克隆,序列分析及温度对其表达的影响[J].应用昆虫学报,49(2):439-447.
    46.明建华,谢骏,刘波,等.2009.团头鲂HSP70 cDNA的克隆、序列分析以及热应激对其mRNA表达的影响[J].中国水产科学,(5):635-648.
    47.宁媛媛,尤民生,王成树,2009.昆虫免疫识别与病原物免疫逃避机理研究进展[J].昆虫学报,52(2):567-575.
    48.潘国庆,谭小辉,党晓群.等.2009.家蚕微孢子虫孢壁蛋白SWP25、SWP30、SWP32的表达谱分析[J].蚕业科学,35(2):0328-0332.
    49.潘敏慧,万永继,鲁成,等.2003.家蚕内网虫属微孢虫核糖体小亚单位RNA(SSUrRNA)核心序列的克隆和序列分析[J]动物学报,49(3):414-420.
    50.祁云霞,刘永斌,荣威恒.2011.转录组研究新技术RNA-Seq及其应用[J].遗传,33(11):1191-1202.
    51.秦利.2003.中国柞蚕学[M].北京:中国科学文化出版社.
    52.秦利,姜德富,石生林,等.2011.柞蚕蚕种学[M].北京:北京师范大学出版社.
    53.秦松柏,樊东,李春杰,等.2008.小卷蛾斯氏线虫p-微管蛋白基因的克隆与序列分析[J].东北林业大学学报,36(7):72-74.
    54.屈贤铭,祁国荣,黄自然.1984.注射大肠杆菌或超声波诱导家蚕及蓖麻蚕产生抗菌物质的比较研究[J].昆虫学报,27(3):275-279.
    55.冉红凡,潘文亮,冯书亮,等.2003.影响微孢子虫对棉铃虫幼虫致病力的因子[J].中国生物防治,19(4):162-165.
    56.饶国栋,张建国,2013.植物微管蛋白基因研究进展[J].世界林业研究,26(3):17-20.
    57.沈波,田海生.2002.淡色库蚊抗药性相关胰蛋白酶基因cDNA全长克隆与序列分析[J].生物化学与生物物理学报:英文版,34(1):28-32.
    58.宋佳,姜义仁,王勇,等.2013.不同微生物诱导柞蚕溶菌酶基因的表达分析[J].蚕业科学,39(4):0695-0710.
    59.谭明,谷福,梁爱华,1998.γ-微管蛋白:微管蛋白超家族的新成员[J].山西大学学报(自然科学版),21(3):297-302.
    60.唐啸尘,黄自然,宁波,等.1999.柞蚕微孢子虫单克隆抗体的研制及诊断[J].蚕业科学,25(4):221-224.,
    61.万嘉群.1998.用酶标抗体法检测蚕微粒子孢子[J].中国动物检疫,15(1):6-7.
    62.万森,何永强,张海燕,等.2008.家蚕成品卵微粒子病McAb-ELISA检测方法的研究[J].蚕桑通报,39(4):13-16.
    63.王爱荣,李健男,刘向国,等.2002.柞蚕微孢子虫孢子人工发芽的研究[J].沈阳农业大学学报,33(4):281-284.
    64.王伯阳,姜义仁,杨瑞生,等.2011.柞蚕微孢子虫3种孢壁蛋白的提取与鉴定[J].蚕业科学,37(2):330-336.
    65.王伯阳,姜义仁,臧敏,等.2012.柞蚕微孢子虫胶体金免疫层析检测法[J].蚕业科学,38(1):97-101.
    66.王芳,段玉玺,陈立杰,等.2012.胞囊线虫侵染后小粒黑豆抑制消减杂交cDNA文库的构建及EST分析[J].中国农业科学,45(006):1106-1115.
    67.王进产,菅复春,张龙现,等.2007.基于18S rRNA和HSP70基因序列的隐孢子虫种系发育分析[J].畜牧兽医学报,38(9):947-953.
    68.王林玲,陈克平,姚勤,等.2006.柞蚕微孢子核糖体基因和转录间隔区的序列及系统进化分析[J].中国农业科学,39(8):1674-1679.
    69.王林玲,林海静,王钰,等.2012.家蚕热休克蛋白70家族基因的染色体定位及表达特征[J].蚕业科学,38(4):0617-0623.
    70.王林玲.2007.柞蚕微孢子虫核糖体基因及家蚕、柞蚕微孢子虫蛋白质组以及侵染家蚕后中肠的比较蛋白质组学研究[D].镇江:江苏大学.
    71.王薇,韩岚岚,赵奎军,2009.昆虫热休克蛋白Hsp70的研究进展[J].东北农业大学学报.40(11):129-132.
    72.王勇,姜义仁,王晓惠,等.2014.柞蚕微孢子虫全长cDNA文库的构建及EST分析[J].蚕业科学,40(02):0265-0271.
    73.韦亚东,张国政,陆长德.2005.家蚕微孢子虫原位杂交诊断技术研究[J].蚕业科学,31(1):64-68.
    74.问锦曾.1975.微孢子虫对玉米螟生存率及繁殖力的影响[J].昆虫学报,18(1):42-46.
    75.问锦曾.1984.影响玉米螟微孢子虫病田间传播的因素[J].昆虫学报,27(4):468-470.
    76.问锦曾.1986.玉米螟微孢子虫病发生的流行的考察[J].生物防治通报,2(2):87-88.
    77.吴玉林,郭殿荣,李健男.1993.热汤浴卵防治柞蚕微粒子病的研究[J].沈阳农业大学学报,24(1):38-42.
    78.吴正理,李艳红,宋元达.2009.微孢子虫蛋白质及其与宿主互作的研究进展.蚕业科学,35(4):921-928.
    79.吴正理.2008.家蚕微孢子虫(Nosema bombycis)孢壁蛋白的研究—三种主要蛋白成分的鉴定与克隆分析[D].重庆:西南大学.
    80.向恒,潘国庆,陶美林,等.2010.家蚕微孢子虫全基因组分析支持微孢子虫与真菌的亲缘关系[J].蚕业科学,36(3):442-446.
    81.谢俪.2007.家蚕微孢子虫总蛋白双向电泳及质谱技术分析平台的构建[D].重庆:西南大学.
    82.宿桂梅,丁杰.2002.柞蚕微孢子虫生命力及抵抗力的研究[J].北方蚕业,95(4):31-32.
    83.宿桂梅,丁杰.2003.柞蚕微孢子虫对柞蚕组织细胞的侵染及组织病变观察[J].北方蚕业,98(3):34-35.
    84.徐建强,张聪,于金凤,等.2012.小麦赤霉病菌α-微管蛋白原核表达及纯化研究[J].植物病理学报,42(3):252-259.
    85.徐启茂,吴玉林,李健男,等.1999.应用水解酶复合剂及IBP防治柞蚕微粒子病的研究[J].沈阳农业大学学报,30(2):128-131.
    86.徐兴耀,宁波,孙京臣,等.1998.家蚕微孢子虫单抗体金银染色法检测技术的研究[J].蚕业科学,24(1):11-14.
    87.徐耀军,陈大光.2006.柞蚕微粒子病上升的原因和防治措施[J].特种经济动植物,9(8):15-16.
    88.徐忠东,吴琴,1999.微管蛋白的研究进展[J].安徽教育学院学报,(2):73-74.
    89.闫硕,刘小侠,韩娜娜,等.2012.棉铃虫β-微管蛋白基因cDNA序列的克隆与序列分析[J].应用昆虫学报,49(1):130-137.
    90.杨成君.2008.人参cDNA文库构建、EST与相关基因表达分析及EST-SSR标记建立[D].东北林业大学.
    91.杨柳,潘国庆,刘含登,等.2009.家蚕微孢子虫细菌人工染色体文库的构建[J].蚕业科学,35(2):0314-0319.
    92.杨琼,李夫涛,吴福泉,等.2007.一种从甜菜夜蛾分离的微孢子虫的生物学特性研究[J].蚕业科学,33(1):57-61.
    93.张海燕,万淼,费晨,等.2007.家蚕微孢子虫(浙江株)α-微管蛋白基因部分片段的克隆及系统发育分析[J].蚕业科学,33(1):49-56.
    94.张洁.2011.一种改良的真菌总RNA提取方法[J].陕西农业科学,39(12):1272-1273.
    95.张龙,严毓骅.2008.以生物防治为主的蝗灾可持续治理新对策及其配套技术体系[J].中国农业大学学报,13(3):1-6.
    96.张平,刘吉平,2007.微孢子虫(microsporidia)功能蛋白的研究进展[J].蚕业科学,33(2):329-334.
    97.张玺,许金山,张小燕,等.2010.柞蚕微孢子虫部分孢壁蛋白的分离鉴定及孢壁蛋白8的序列分析[J].蚕业科学,36(6):949-956.
    98.张雨良,张树珍,王健华,等.2012.感染高梁花叶病毒甘蔗叶片cDNA文库构建及评价[J].热带作物学报,33(6):1096-1100.
    99.张禹,丁杰,于广安,等.1996.野外昆虫与柞蚕微粒子病的关系[J].辽宁农业科学,5:31-34.
    100.张禹,李宏,宿桂梅,等.2002.柞蚕微粒子病治疗药剂—“蚕锈康”的研究[J].辽宁农业科学,(1):10-15.
    101.张占会,张其中.2006.日本对虾(Marsupenaeus japonicu)Hsp70基因cDNA的克隆与序列分析.生态科学,25(5):440-444.
    102,郑凯迪.2007.胭脂鱼胰蛋白酶原前体的cDNA克隆、序列分析及饲料对胰蛋白酶活性的影响[D].重庆:西南大学.
    103.周鲁明,刘殿辰,孙欢欢,等.2012.东亚三角涡虫胰蛋白酶Djtry的表达和酶活分析[J].遗传.34(5):609-614.
    104.周鲁明.2012.东亚三角涡虫Djtry基因的表达、功能及酶活测定[D].淄博:山东理工大学.
    105.朱勃,沈中元,曹喜涛,等.2006.家蚕微孢子虫(镇江株)β-微管蛋白基因部分片段的克隆及系统发育分析[J].蚕业科学,32(4):505-509.
    106.朱荣建,唐伟,安楠.2009.菜蛾变形孢虫孢子分离纯化方法研究[J].林业勘查设计,1:96-99.
    107.祝妮.2013.小菜蛾中肠丝氨酸蛋白酶基因的克隆、转录及其酶活的研究[D].杭州:浙江大学.
    108. Adams MD, Kelley JM, Gocayne JD, et al.1991. Complementary DNA Sequencing:Expressed sequence tags and human genome project. Science,252(5013):1651-1656.
    109. Akiyoshi DE, Morrison HG, Lei S, et al.2009. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathogens,5(1):e1000261.
    110. Al-Quraishy S, Abdel-Baki AS, Al-Qahtani H, et al.2012. A new microsporidian parasite, Heterosporis saurida n. sp. (Microsporidia) infecting the Iizardfish, Saurida undosquamis from the Arabian Gulf, Saudi Arabia:ultrastructure and phylogeny. Parasitology,139(04):454-462.
    111. Asamizu E, Nakamura Y, Sato S, et al.2004. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant molecular biology,54(3): 405-414.
    112.Balbiani G.1882. Sur les microsporidies ou sporogspermies des articules. C.R. Acad. Sci., 95:1168-1171.
    113. Bantar C, Herrera F, Didier E, et al.1995. Diarrhea due to microsporidia in a patient with AIDS. Medicina (B Aires),55(6):685-688.
    114. Basu S, Srivastava PK.2000. Heat shock proteins:the fountainhead of innate and adaptive immune responses. Cell stress & chaperones,5(5):443.
    115. Beckers PJ, Derks GJ, Gool T, et al.1996. Encephalocytozoon intestinalis-specific monoclonal antibodies for laboratory diagnosis of microsporidiosis. Journal of clinical microbiology,34(2): 282-285.
    116. Becnel JJ, Andreadis TG.1999. Microsporidia in insects. The microsporidia and microsporidiosis, 447-501.
    117. Beg MU, A1-Subiai S, Beg KR, et al.2010. Seasonal effect on heat shock proteins in fish from Kuwait Bay. Bulletin of environmental contamination and toxicology,84(1):91-95.
    118.Beznoussenko GV, Dolgikhh VV, Seliverstova EV, et al.2007. Analogs of the Golgi complex in microsporidia:structure and avesicular mechanisms of function. J. Cell. Sci.,120:1288-1298.
    119.Biderre C, Mathis A, Deplazes P, et al.1999. Molecular karyotype diversity in the microsporidian Encephalitozoon cvniculi. Parasitology,118:439-445.
    120. Biderre C, Pages M, Metenier G, et al.1994. On small genomes in eukaryotic orgnaisms:molecular karyotypes of two microsporidian species (Protozoa) parasites of vertebrates. C.R.Acad.Sci.Ⅲ,317: 399-404.
    121. Bigliardi E and Sacchi L.2001. Cell biology and invasion of the microsporidian. Microbe and Infection,25(4):373-379.
    122. Bigliardi E, Selmi M G, Lupetti P, et al.1996. Microsporidian spore wall:ultrastructural findings on Encephalitozoon hellem exospore. Journal of Eukaryotic Microbiology,43(3):181-186.
    123.Bohne W, Ferguson D JP, Kohler K, et al.2000. Developmental expression of a tandemly repeated, glycine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi. Infection and immunity,68(4):2268-2275.
    124. Brosson D, Kuhn L, Delbac F, et al.2006 Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia):a reference map for proteins expressed in late sporogonial stages. Proteomics,6(12):3625-3635.
    125. Brosson D, Kuhn L, Prensier G, et al.2005. The putative chitin deacetylase of Encephalitozoon cuniculi:A surface protein implicated in microsporidian spore wall formation. FEMS microbiology letters,247(1):81-90.
    126. Bryan RT and Schwartz DA.1999. Epidemiology of microsporidiosis. In:Wittner M, Weiss L (Eds.), The Microsporidia and Microsporidiosis. American Society of Microbiology, Washington, DC, pp.502-516.
    127. Burdon RH.1993. Heat shock proteins in relation to medicine. Molecular aspects of medicine,14(2): 83-165.
    128. Burns RG,1995. Analysis of the y-tubulin sequences:Implication for the functional properties of y-tubulin. J. CellSci.,108(6):2123-2130.
    129. Burri L, Williams BA, Bursac D, et al.2006. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc. Natl. Acad. Sci.,103(43):15916-15920.
    130. Cai SF, Lu XM, Qiu HH, et al.2011. Identification of a Nosema bombycis (Microsporidia) spore wall protein corresponding to spore phagocytosis. Parasitology-Cambridge,138(9):1102.
    131. Cali A.1991. General microsporidian features and recent findings on AIDS isolates. The Journal of protozoology,38(6):625.
    132. Canning E and Lom J.1986. The Microsporidia of Vertebrates. Academic Press, Inc., New York City, NY,286p.
    133. Cavalier-Smith T.1998. A revised six-kingdom system of life. Biological Reviews,73(3):203-266.
    134.Chee PW, Rong J, Williams-Coplin D, et al.2004. EST derived PCR-based markers for functional gene homologues in cotton. Genome,47(3):449-462.
    135.Cheung WWK and Wang JB.1995. Electron microscopic studies on Nosema mesnili Paillot (Microsporidia:Nosematidae) infecting the Malpighian tubules of Pieris canidia larva. Protoplasma, 186:142-148.
    136. Christeller J T, Laing W A, Markwick N P, et al.1992. Midgut protease activities in 12 phytophagous lepidopteran larvae:dietary and protease inhibitor interactions. Insect biochemistry and molecular biology,22(7):735-746.
    137.Coleman JS, Heckathorn SA, Hallberg RL,1995. Heat-shock proteins and thermotolerance:linking molecular and ecological perspectives. Trends. Ecol. Evol,10(8):305-306.
    138. Cornman RS, Chen YP, Schatz MC, et al.2009. Genomic analyses of the microsporidian Nosema ceranae, a emergent pathogen of honey bees. PloS Pathogens,5(6):e1000466.
    139. Corradi N, Gangaeva A, Keeling PJ,2008. Comparative profiling of overlapping transcription in the compacted genomes of microsporidia Antonospora locustae and Encephalitozoon cuniculi. Genomics, 91(4):388-393.
    140. Corradi N, Pombert J F, Farinelli L, et al.2010. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun,1(6):1-7.
    141.Couzinet S, Cejas E, Schittny J, et al.2000. Phagocytic uptake of Encephalitozoon cuniculi by nonprofessional phagocytes. Infection and immunity,68(12):6939-6945.
    142. Datkhile KD, Mukhopadhyaya R, Dongre TK, et al.2011. Hsp70 expression in Chironomus ramosus exposed to gamma radiation. Int. J. Radiat.Biol,87(2):213-221.
    143.Daugaard M, Rohde M, Jaattela M,2007. The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions. FEBS letters,581(19):3702-3710.
    144. Davis CA, Riddell DC, Higgins MJ, et al.1985. A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic acids research,13(18):6605-6619.
    145. Deane EE, Won NY,2005. Cloning and characterization of the hsp70 mutigene family from silver sea bream:modulated gene expression between warm and cold temperature acclimation. Biochem. Bioph. Res. Co.,330 (3):776-783.
    146. Delbac F, Duffieux F, David D, et al.1998. Immunocytochemical identification of spore proteins in two microsporidia with emphasis on apparatus. J. Euk. Microbiol,45(2):224-231.
    147.Deplazes P, Mathis A, Weber R.2000. Epidemiology and zoonotic aspects of microsporidia of mammals and birds. Contrib. Microbiol,6:236-260
    148. Desportes I, Le Charpentier Y, Galian A, et al.1985. Occurrence of a new microsporidan: Enterocytozoon bieneusi n. g., n. sp., in the enterocytes of a human patient with AIDS. J. Protozool. 32:250-254
    149. Dider ES and Weiss LM.2008. Overview of microsporidia and microsporidiosis. Protistology,5(4): 243-255
    150. Didier ES, Snowden KF, Shadduck JA.1998. Biology of microsporidian species infecting mammals. Adv Parasit,40:283-320.
    151. Dong YX, Liu HX.1998. Insect trypsin and its gene expression. Entomol Knowl,35(4):249-251.
    152.Dutcher SK,2001. The tubulin fraternity:alpha to eta. Curr. Opin. Cell Biol,13(1):49-54.
    153. Edery I, Chu LL, Sonenberg N, et al.1995. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). Molecular Cell Biology,15(6):3363-3371.
    154. Enriquez FJ, Ditrich O, Palting JD, et al.1997. Simple diagnosis of Encephalitozoon sp. microsporidial infections by using a panspecific antiexospore monoclonal antibody. Journal of clinical microbiology,35(3):724-729.
    155. Enriquez FJ, Wagner G, Fragoso M, et al.1998. Effects of an anti-exospore monoclonal antibody on microsporidial development in vitro. Parasitology,117(06):515-520.
    156. Erickson-Jr BW, Blanquet RS.1969. The occurrence of chitin in the spore wall of Glugea weissenbergi. Journal of invertebrate pathology,14(3):358-364.
    157. Ewing B, Hillier L D, Wendl M C, et al.1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res,8(3):175-185.
    158. Fayer R.2004. Infectivity of microsporidia spores stored in seawater at environmental temperatures. J. Parasitol,90:654-657.
    159. Foucault C, Drancourt M.2000. Actin mediates Encephalitozoon intestinalis entry into the human enterocyte-like cell line, Caco-2. Microbialpathogenesis,28(2):51-58.
    160. Fowler J L, Reeves E L.1974. Detection of relationships among microsporidan isolates by electrophoretic analysis:Hydrophobic extracts. Journal of invertebrate pathology,23(1):3-12.
    161.Franzen C and Muller A.2001. Microsporidiosis:human diseases and diagnosis. Microbes Infect., 3:389-400.
    162. Franzen C, Muller A, Hartmann P, et al.2005. Cell invasion and intracellular fate of Encephalitozoon cuniculi (Microsporidia). Parasitology,130(03):285-292.
    163. Franzen C.2004. Microsporidia:how can they invade other cells? TRENDS in Parasitology,20(6): 275-279.
    164.Frixione E, Ruiz L, Cerbon J, et al.1997. Germination of Nosema algerae (Microspora) spores: Conditional inhibition by D2O, ethanol and Hg2+ suggests dependence of water influx upon membrance hydration and specific transmembrance pathways. J. Eukaryot. Microbiol,44:109-116.
    165.Fumarola D, Antonaci S, Jirillc E, et al.1982. Percoll density gradient centrifugation. International Journal of Clinical & Laboratory Research,12(3):485-491.
    166. Germot A, Philippe H, Le Guyader H,1997. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol.Biochem. Parasit,87(2):159-168.
    167. Gill EE, Fast NM,2006. Assessing the microsporidia-fungi relationship:combined phylogenetic analysis of eight genes. Gene,375(1):103-109.
    168. Goldberg AV, Molik S, Tsaousis AD, et al.2008. Localization and functionality of microsporidian iron-sulphur cluster assembly protein. Nature,452:624-628.
    169. Gong WJ, Golic KG,2006. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics,172(1):275-286.
    170. Gordon D, Desmarais C, Green P.2001. Automated finishing with autofinish. Genome Res,11(4): 614-625.
    171.Gubler U, Hoffman B J.1983. A simple and very efficient method for generating cDNA libraries. Gene,25(2):263-269.
    172. Gupta PK, Rustgi S, Sharma S, et al.2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics,270(4): 315-323.
    173.Haque M, Chen J, Ueda K, et al.2000. Identification and analysis of the K5 gene of Kaposi's sarcoma-associated herpesvirus. Journal of virology,74(6):2867-2875.
    174. Hatey F, Tosser-Klopp G, Clouscard-martinato C, et al.,1998. Expressed sequenced tags for genes:a review. Gener Sel Evol,30:521-541.
    175.Hayman JR, Hayes SF, Amon J, et al.2001. Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intesinalis. Infect Immun.,69(1):7057-7066.
    176. Hayman JR, Southern TR, Nash TE.2005. Role of sulfated glycans in adherence of the microsporidian Encephalitozoon intestinalis to host cells in vitro. Infection and immunity,73(2):841-848.
    177. He Q, Yang Q, Cheng A C, et al.2011. Expression and characterization of UL16 gene from duck enteritis virus. Virol J,8:413.
    178. Henn MW and Solter LF.2000. Food utilization values of gypsy moth Lymantriae dispar (Lepidoptera: Lymantriidae) larvae infected with the microsporidium Vairimorpha sp. (Micrcsporidia:Burenellidae). J. Invertebr. Pathol,76:263-269.
    179. Hightower LE, Sadis SE, Takenaka 1M.1994.8 Interactions of Vertebrate hsc70 and hsp70 with Unfolded Proteins and Peptides. Cold Spring Harbor Monograph Archive,26:179-207.
    180. Holton TA, Christopher JT, McClure L, et al.2002. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Molecular Breeding,9(2):63-71.
    181. Huang WF, Tsai SJ, Lo CF, et al.2004. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genetics and Biology,41(5):473-481.
    182. Irby WS, Huang YS, Kawanishi CY, et al.1986. Immunoblot Analysis of Exospore Polypeptides from Some Entomophilic Microsporidia. Journal of Eukaryotic Microbiology,33(1):14-20.
    183.1wano H, Ishihara R.1991. Dimorphism of spores of Nosema spp. in cultured cell. Journal of invertebrate pathology,57(2):211-219.
    184. James TY, Kauff F, Schoch CL,2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature,443(7113):818-822.
    185. Jiang YR, Deng ZH, Shi SL, et al.2011. Development of a PCR-based method for detection of Nosema pernyi. Afr JMicrobiol Res,5(24):4065-4070.
    186. Joseph J, Vemuganti GK, Sharma S.2005. Microsporidia:emerging ocular pathogens. Indian journal of medical microbiology,23(2):80-91.
    187. Jouvenaz DP.1981. Percoll:An Effective Medium for cleaning Microsporidian Spores. Journal of Invertebrate Pathology,37:319.
    188. Kabakov AE, Budagova KR, Bryantsev AL, et al.2003. Heat shock protein 70 or heat shock protein 27 overexpressed in human endothelial cells during posthypoxic reoxygenation can protect from delayed apoptosis. Cell. Stress. Chaperon.,8(4):335-347.
    189. Katinka MD, Duprat S, Cornillot E, et al.2001.Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature,414:450-453.
    190. Kato S, Sekine S, Oh SW, et al,1994. Construction of a human full-length cDNA bank. Gene, 150(2):243-250.
    191. Kawarabata T and Hayasaka S.1987. An enzyme-linked immunosorbent assay to detect alkali-soluble spore surface antigens of strains of Nosema bombycis. J. Invertebr. Pathol,50(2):118-123.
    192. Keeling P J.2003. Congruent evidence from a-tubulin and (3-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genetics and Biology,38(3):298-309.
    193. Keeling PJ and Fast NM.2002. Microsporidia:biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol,56:93-116.
    194. Keeling PJ,2003. Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of Microsporidia. Fungal. Genet. Biol,38(3):298-309.
    195. Keeling PJ, Luker MA, Palmer JD.2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Molecular Biology and Evolution,17(1):23-31.
    196. Keohane EM and Weiss LM.1998. Characterization and function of the microsporidian polar tube:a review. Folia Parasitol.,45:117-127.
    197. Keohane EM and Weiss LM.1999. The structure, function, and composition of the microsporidian polar tube. In:The Microsporidia and Microsporidosis (Eds. Wittner M and Weiss LM). ASM Press, Washington DC. pp.196-224.
    198.Kiang JG, Tsokos GC.1998. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics,80(2):183-201.
    199. Kirschner M, Mitchison T,1986. Beyond self-assembly:from microtubules to morphogenesis. Cell, 45(3):329-342.
    200. Knell JD and Zam SG.1978. A serological comparison of some species of microsporida. J. Invertebr. Pathol.,31:280-288.
    201.Koestler T and Ebersberger I.2011. Zygomycetes, Microsporidia, and the Evolutionary Ancestry of Sex Determination. Genome Biol. Evol,3:186-194.
    202. Kotani E, Niwa T, Tokizane M, et al.1999. Cloning and sequence of a cDNA for a highly basic protease from the digestive juice of the silkworm, Bombyx mori. Insect Mol Biol,8(2):299-304.
    203.Kotler DP and Orenstein JM.1999. Clinical syndromes associated with microsporidiosis. In:Wittner M, Weiss L (Eds.), The Microsporidia and Microsporidiosis. American Society of Microbiology, Washington, DC, pp.258-292
    204. Koudela B, Kucerova S and Hudcovic T.1999. Effect of low and high temperatures on infectivity of Encephalitozoon cuniculi spores suspended in water. Folia Parasitol.(Praha).,46(3):171-174.
    205. Kroeger PE, Sarge KD, Morimoto RI.1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Molecular and Cellular Biology,13(6):3370-3383.
    206. Kurata N, Nagamura Y, Yamamoto K, et al.1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature genetics,8(4):365-372.
    207. Langley Jr R C, Cali A, Somberg E W.1987. Two-dimensional electrophoretic analysis of spore proteins of the microsporida. The Journal of parasitology,910-918.
    208. Lee NH, Weinstock KG, Kirkness EF, et al.1995. Comparative expressed-sequence-tag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. Proceedings of the National Academy of Sciences,92(18):8303-8307.
    209. Lee SC, Corradi N, Byrnes EJ, et al.2008. Microsporidia evolved from ancestral sexual fungi. Curr. Biol.,18:1675-1679.
    210. Lee SC, Corradi N, Doan S, et al.2010. Evolution of the sex-Related Locus and Genomic Features Shared in Microsporidia and Fungi. PloS ONE,5:e10539.
    211.Lee-Yoon D, Easton D, Murawski M, et al.1995. Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. Journal of Biological Chemistry,270(26):15725-15733.
    212. Levine ND, Corliss JO, Cox FE, et al.1980. A newly revised classification of the protozoa. J. Protozool,27:37-58.
    213. Li YH, Wu ZL, Pan GQ, et al.2009. Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. International Journal for Parasitology,39(4):391-398.
    214. Li Z, Pan GQ, Li T, et al.2012. SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis. Eukaryotic cell,11(2):229-237.
    215. Lopes AR, Juliano MA, Juliano L, et al.2004. Coevolution of insect trypsins and inhibitors. Insect Biochem Physiol 55:140-152.
    216.Lujan HD, Conrad JT, Clark CG, et al.1998. Detection of microsporidia spore-specific antigens by monoclonal antibodies. Hybridoma,17(3):237-243.
    217.Lynne SG.2002. Laboratory identification of the microsporidia. Journal of Clinical Microbiology, 40(6):1892-1901.
    218.Maddox JV, McManus ML, Solter LF.1998. Microsporidia affecting forest lepidoptera. Proceedings, Population Dynamics, Impacts and Integrated Management of Forest Defoliating Insects (edited by ML McManus and AM Liebhold). USDA Forest Service, General Technical Report NE-247. USDA Forest Service, Radnor, PA,187-197.
    219. Magaud A, Achbarou A, Desportes-Livage I.1997. Cell invasion by the microsporidium Encephalitozoon intestinalis. Journal of Eukaryotic Microbiology,44(s6):81s-81s.
    220. Malone LA and Mclvor CA.1995. DNA probes for two microsporidia, Nosema bombycis and Nosema costelytrae. J. Invertebr. Pathol.,65:269-273.
    221. Mao M, Fu G, Wu JS, et al.1998. Identification of genes expressed in human CD34+ hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proceedings of the National Academy of Sciences,95(14):8175-8180.
    222.Maruyama K, Sugano S.1994. Oligo-capping:A simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene,138(1-2):171-174.
    223. Mathis A.2000. Microsporidia:emerging advances in understanding the basic biology of these unique organisms. Int. J. Parasitol.,30:795-804.
    224. Milne R, Kaplan H.1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm(Chroristoneura fumiferana) responsible for the activation of δ-endotoxin from Bacillus thuringiensis. Insect biochemistry and molecular biology,23(6):663-673.
    225.Moura H and Visvesvara GS.2001. A proteome approach to the host-parasite interaction of the microsporidian Encephalitozoon intestinalis. Joumal of Eukaryotic Microbiology,48(suppl):56S-59S.
    226. Muller HM, Crampton J M, Della Torre A, et al.1993. Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal. The EMBO journal,12(7):2891.
    227. Muller HM, Catteruccia F, Vizioli J, et al.1995. Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol.81(3):371-385.
    228.Naegeli KW.1857. Uber die neue Krankheit der Seidenraupe und verwandte Organismen. Bot. Ztg., 15:760-761
    229. Nogales E, Wolf SG, Downing KH,1998. Structure of the alpha beta tubulin dimmer by electron crystallography. Nature,391(6663):199-203.
    230. Noriega FG, Wang XY, Pennington J E, et al.1996. Early trypsin, a female-specific midgut protease in Aedes aegypti:Isolation, amino-terminal sequence determination, and cloning and sequencing of the gene. Insect biochemistry and molecular biology,26(2):119-126.
    231. Oakley CE, Oakley BR,1989. Identification of y-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature,338(6217):662-664.
    232. O'Brien SJ, Womack JE, Lyons LA, et al.1993. Anchored reference loci for comparative genome mapping in mammals. Nature genetics,3(2):103-112.
    233.Ohshima K.1937. On the function of the polar filament of Nosema bombycis. Parasitology,29(02): 220-224.
    234. Pan GQ, Xu JS, Li T, et al.2013. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC genomics,14(1):186.
    235. Peek R, Delbac F, Speijer D, et al.2005. Carbohydrate moieties od microsporidian polar tube proteins are targeted by immunoglobulin G in inmmunocompetent individuals. Infect. Immun.,73:7906-7913.
    236. Peuvel-Fanget I, Polonais V, Brosson D, et al.2006. EnPl and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. International Journal for Parasitology,36(3):309-318.
    237. Polites HG.1988. An improvement and simplifications in the Gubler-Hoffman method of cDNA synthesis. BioTechniques,6(8):720-725.
    238. Polonais V, Delbac F, Vivares C.2007. Polar tube proteins in microsporidia. Protistology,5:63.
    239. Polonais V, Mazet M, Wawrzyniak I, et al.2010. The human microsporidian Encephalitozoon hellem synthesizes two spore wall polymorphic proteins useful for epidemiological studies. Infection and immunity,78(5):2221-2230.
    240. Prigneau O, Achbarou A, Bouladoux N, et al. Identification of proteins in Encephalitozoon intestinalis, a microsporidian pathogen of immunocompromised humans:an immunoblotting and immunocytochemical study. Journal ofEukaryotic Microbiology,2000,47(1):48-56.
    241. Rachel A, Tyson JR, Stirling CJ,1997. A novel subfamily of Hsp70s in the endoplasmic reticulum. Trends in cell biology,7(7):277-282.
    242. Rao SN, Muthulakshmi M, Kanginakudru S, et al.,2004. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori. J. Invertebr. Pathol,86(3):87-95.
    243.Regniere J.1984. Vertical transmission of disease and population dynamics of insects with discrete generations:a model. J. Theor. Biol,107:287-301.
    244. Roberts RJ, Agius C, Saliba C, et al.2010. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health:a review. Journal offish diseases,33(10):789-801.
    245. Royama T.1984. Population dynamics of spruce budworm, Choristoneura fumiferana. Ecol. Monogr, 54:429-462.
    246. Saibil HR,2008. Chaperone machines in action. Curr. Opin. Struc. Biol.,18(1):35-42.
    247. Sak B, Sakova K, Ditrich O.2004. Effects of a novel anti-exospore monoclonal antibody on microsporidial development in vitro. Parasitology research,92(1):74-80.
    248. Sato S, Kotani H, Nakamura Y, et al.1997. Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned PI clones. DNA Research,4(3):215-219.
    249. Schlesinger MJ,1990. Heat shock proteins. J. Biol. Chem.,265(21):12111-12114.
    250. Schmid D, Baici A, Gehring H, et al.1994. Kinetics of molecular chaperone action. Science, 263(5149):971-973.
    251. Schwede T, Kopp J, Guex N, et al.2003. SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Res.,31(13):3381-3385.
    252. Scott Durkin A, Maglott DR, Nierman WC.1992. Chromosomal assignment of 38 human brain expressed sequence tags (ESTs) by analyzing fluorescently labeled PCR products from hybrid cell panels. Genomics,14(3):808-810.
    253. Shadduck JA and Polley MB.1978. Some factors influencing the in vitro infectivity and replication of Encephalitozoon cuniculi. Journal of Eukaryotic Microbiology,25:491-496.
    254. Shamim M, Debjani Ghosh, Baig M, et al.1997. Production of Monoclonal Antibodies Against Nosema bombycis and their Utility for Detection of Pebrine Infection in Bombyx mori L. J. Immunoassay Immunochem.,18:357-370.
    255.Simchuk PA, Lysenko MA, Chetkarova EM.1979. Nosema antheraeae sp. n. (Microsporidia, Nosematidae). A parasite of the Chinese oak silkworm(Antheraea pernyi). Zoologicheskii zhurnal, (In Russian)
    256. Sironmani TA.1999. Biochemical characterization of the microsporidian Nosema bombycis spore proteins. World Journal of Microbiology and Biotechnology,15(2):239-248.
    257. Slamovits CH, Fast NM, Law JS, et al.2004. Genome compaction and stability in microsporidian intracellular parasites. Curr Biol,14 (10):891-896.(a)
    258. Slamovits CH, Williams BA, Keeling PJ,2004. Transfer of Nosema locustae (Microsporidia) to Antonospora locustae n. comb, based on molecular and ultrastructural data. J. Eukaryot. Microbiol, 51(2):207-213. (b)
    259. Southern TR, Jolly CE, Lester ME, et al. EnPl, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. Eukaryotic cell,2007,6 (8):1354-1362.
    260. Sprague V, Becnel JJ,1992. Hazard El. Taxonomy of phylum Microspora. Critical reviews in microbiology,18(5-6):285-395.
    261.Staempfli C, Slooten KBV, Tarradellas J.2002. Hsp70 instability and induction by a pesticide in Folsomia Candida. Biomarkers,7(1):68-79.
    262.Telleria EL, de Araujo APO, Secundino NF, et al.2010. Trypsin-like serine proteases in Lutzomyia longipalpis-expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One, 5(5):e10697.
    263. Texier CD, Brosson L, Kuhn J, et al.2004. Proteomics of the microsporidian Encephalitozoon cuniculi: application to the identification of new spore wall proteins. Journal of Eukaryotic Microbiology, 51(suppl):28.
    264. Thomarat F, Vivares C P, Gouy M.2004. Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fast-evolving genes. Journal of molecular evolution,59(6):780-791.
    265. Thomson HM.1960. The possible control of a spruce budworm infestation by a microsporidian disease. Canada Department of Agriculture Bi-monthly Progress Report,16:1.
    266.Tokarev YS, Sokolova YY,2007. Entzeroth R. Microsporidia-insect host interactions:Teratoid sporogony at the sites of host tissue melanization. Journal of invertebrate pathology,94(1):70-73.
    267. Tsan MF, Gao B.2004. Heat shock protein and innate immunity. Cell Mol Immunol,1(4):274-279.
    268.Tsaousis AD, Kunji ER, Goldberg AV, et al.2008. A novel route for ATP acquisiton by the remnant mitochondria of Encephalitozoon cuniculi. Nature,453:553-556.
    269. Undeen AH and Frixione E.1990. The role of osmotic pressure in the germination of Nosema algerae spores.J.Protozool.,37:561-567.
    270. Undeen AH and Vandermeer RK.1994. Conversion of intrasporal trehalose into reducing sugars during germination of Nosema algerae (Protista:Microspora) spores:a quantitative study. J. Eukaryot. Microbiol.,41:129-132.
    271. Undeen AH, Elgazzar LM, Vander Meer RK, et al.1987. Trehalose levels and trehalase activity in germinated and ungerminated spores of Nosema algerae (Microspora:Mosematidae). J. Invertebr. Pathol,50:230-237.
    272. Vandermeer JW and Gochnauer TA.1971. Trehalose activity associated with spores of Nosema apis. J. Invertebr. Pathol,17:38-41.
    273.Vavra J and Larsson JI.1999. Structure of the microsporidia. In:The Microsporidia and Microsporidosis (Eds. Wittner M and Weiss L). Amer. Soc. Microbiol., Washington DC. pp.7-84.
    274. Vavra J.2005. "Polar vesicles" of microsporidia are mitochondrial remnants ("mitosomes")? Folia Parasitol.(Praha).,52:193-195.
    275. Vayssier M, Leguerhier F, Fabien JF, et al.1999. Cloning and analysis of a Trichinella briotovi gene encoding a cytoplasmic heat shock protein of 72 kD. Parasitology,119:81-93.
    276. Vivares CP, Gouy M, Thomarat F, et al.2002. Functional and evolutionary analysis of a eukaryotic parasitic genome. Current opinion in microbiology,5(5):499-505.
    277. Vossbrinck CR, Andreadis TG, Debrunner-Vossbrinck BA.1998. Verification of intermediate hosts in the life cycles of microsporidia by small subunit rDNA sequencing. Journal of Eukaryotic Microbiology,45(3):290-292.
    278. Vossbrinck CR, Woese CR.1986. Eukaryotic ribosomes that lack a 5.8 S RNA. Nature,320(6059): 287-288.
    279. Wan JS, Sharp SJ, Poirier GMC, et al.1996. Cloning differentially expressed mRNAs. Nature biotechnology,14(13):1685-1691.
    280. Wang LL, Chen KP, Zhang Z, et al.2006. Phylogenetic Analysis of Nosema antheraeae (Microsporidia) Isolated from Chinese Oak Silkworm, Antheraea pernyi. The Journal of eukaryotic microbiology,53(4):310-313.
    281. Wang Y, Jiang YR, Qin L.2014. Using 2D-PAGE and Mass Spectrometry (LC-MS/MS) for Embryo proteins analysis in Antheraea pernyi. Adv. Mater. Res.,884-885:556-559.
    282. Weber R, Deplazes P, Schwartz D.2000. Diagnosis and clinical aspects of human microsporidiosis. Contrib. Microbiol.,6:166-192.
    283. Weidner E, Findley AM, Dolgikh V, et al.1999. Microsporidian biochemistry and physiology. See Ref., 105:172-195.
    284. Weidner E.1976. The microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube. The Journal of cell biology,71(1):23-34.
    285. Weiss LM.2001. Microsporidia:emerging pathogenic protists. Acta tropica,78(2):89-102.
    286. Weiss LM.2003. Microsporidia 2003:IWOP-8. J. Eukaryot. Microbiol.,50(Suppl.):566-568.
    287. Welch WJ.1992. Mammalian stress response:cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiological reviews,72(4):1063-1081.
    288. Wilcox AS, Khan AS, Hopkins JA, et al.1991. Use of 3' untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs:implications for an expression map of the genome. Nucleic acids research,19(8):1837-1843,
    289. Williams BA and Keeling PJ.2003. Cryptic organelles in parasitic protists and fungi. Adv. Parasitol., 54:9-68.
    290. Williams BA, Elliot C, Burri L, et al.2010. A broad distribution of the alternative oxidase in microsporidian parasites. P LoS Pathogens,6(2):e1000761.
    291. Williams BA, Hirt RP, Lucocq JM, et al.2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature,418:865-869.
    292. Williams DF, Oi DH and Knue GJ.1999. Infection of red imported fire ant (Hymenoptera:Formicidae) colonies with the entomopathogen Thelohania solenopsae (Microsporidia:Thelohanidae). J. Econ. Entomol.,92:830-836.
    293. Williams DF, Oi DH, Knue GJ, et al.1998. Discovery of Thelohania solenopsae from the red imported fire ant, Solenopsis invicta, in the United States. J. Invertebr. Pathol,71:175-176.
    294. Wittner M, Weiss LM.1999. The Microsporidia and Microsporidiosis. American Society of Microbiology, Washington DC:7-84.
    295. Wu P, Li M, Wang X, et al.2009. Differentially expressed genes in the midgut of Silkworm infected with cytoplasmic polyhedrosis virus. African Journal of Biotechnology,8(16):3711-3720.
    296. Wu SJ, Liu FH, Hu SM, Wang C,2001. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem. J,359:419-426.
    297. Wu ZL, Li YH, Pan GQ, et al.2008. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics,8(12):2447-2461.
    298. Wu ZL, Li YH, Pan GQ, et al.2009. SWP25, a novel protein associated with the Nosema bombycis endospore. Journal of Eukaryotic Microbiology,56(2):113-118.
    299. Xu JS and Zhou ZY.2010. Improving phylogenetic inference of microsporidian Nosema antheraeae among Nosema species with RPB1, a-and P-tubulin sequences. African Journal of Biotechnology, 9(46):7900-7904.
    300. Xu JS, Pan GQ, Fang L, et al.2006. The varying microsporidian genome:Existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal for Parasitology,36(9):1049-1056.
    301. Xu Y, Takvoarian P, Cali A, et al.2003. Lectin binding of the major poalr tube protein(PTP1) and its role in invasion. J. Eukaryot. Microbiol,50, Suppl.,600-601.
    302. Xu Y, Takvorian P M, Cali A, et al.2004. Glycosylation of the major polar tube protein of Encephalitozoon hellem, a microsporidian parasite that infects humans[J]. Infect Immun,72(11): 6341-6350.
    303. Xu Y, Takvorian P, Cali A, et al.2006. Identification of a new spore wall protein from Encephalitozoon cuniculi. Infection and immunity,74(1):239-247.
    304. Zhou RQ, Xia QY, Huang HC, et al.2011. Construction of a cDNA library from female adult of Toxocara canis, and analysis of EST and immune-related genes expressions. Exp Parasitol, 129(2):120-126.
    305. Zhu F, Shen Z, Hou J, et al.2013. Identification of a protein interacting with the spore wall protein SWP26 of Nosema bombycis in a cultured BmN cell line of silkworm. Infection, Genetics and Evolution,17:38-45.
    306. Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching:A SMARTTM approach for full-length cDNA library construction. Biotechniques,2001,30(4):892-897.
    307. Zhu YC, Liu X, Maddur AA, et al.2005. Cloning and characterization of chymotrypsin-and trypsin-like cDNAs from the gut of the Hessian fly [Mayetiola destructor (say)]. Insect biochemistry and molecular biology,35(1):23-32.
    308. Zhu YC, Zeng FR, Oppert B,2003. Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera:Miridae). Insect Biochem MolBiol.33(9):889-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700