用户名: 密码: 验证码:
微孢子虫感染家蚕相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孢子虫是一类广泛分布于自然界而又极其古老的专性细胞内寄生原虫,能感染从无脊椎动物到脊椎动物几乎所有的动物,是人类以及家蚕(Bombyx mori)、蜜蜂(Apis mellifera)等许多经济昆虫的重要病原。感染家蚕的微孢子虫除微粒子属(Nosema)之外,还有内网虫属(Endoreticulatus)微孢子虫等。感染家蚕的内网虫属样微孢子虫(Endoreticulatus-like Microsporidium),是蚕种生产中不时有所发现的一种小型微孢子虫,除寄生于家蚕外,还可以感染桑尺蠖(Phthonandria atrilineata)、棉铃虫(HHelicoverpa armigera)和斜纹夜蛾(Prodenia litura)等多种鳞翅目昆虫,对蚕种生产中微粒子病检验常造成一定的干扰。感染家蚕的不同种(Species)的微孢子虫,所寄生的宿主和所处的细胞内环境都不一样,可以推测不同种的微孢子虫对家蚕的感染机制不同。获得确定的不同种微孢子虫,通过比较研究是一种良好的途经。本研究直接以纯化的内网虫属微孢子虫嵊州株(Endoreticulatus sp.Shengzhou)的孢子悬浮液(109个/mL)为模板,克隆了其核糖体RNA基因,通过与其他微孢子虫的比较研究,确定了其分类定位。该株微孢子虫核糖体RNA的LSUrRNA、SSUrRNA,ITS和IGS序列长分别为1757bp、1254bp、499bp和419bp,拼接后获得核糖体基因全序列长4431bp,GC含量为43.35%,序列已登录GenBank,序列号为JN792450。内网虫属微孢子虫嵊州株核糖体RNA全基因排列顺序为LSU-ITS-SSU-IGS-5S,从核糖体RNA基因水平研究了其进化定位,进一步确定了内网虫属微孢子虫嵊州株归类为内网虫属,为蚕种生产中微粒子病的检验提供了一定理论依据。
     尽管不同种的微孢子虫对家蚕的感染机制不同,但感染率的高低会受孢子发芽率的影响。诸多研究表明家蚕微孢子虫的孢壁蛋白在孢子发芽以及侵染宿主过程中发挥重要作用,目前已鉴定出了SWP25和SWP30两种内壁蛋白,以及SWP5、SWP26和SWP32三种外壁蛋白。本研究通过基因克隆、蛋白表达、SDS-PAGE分析、抗体制备、间接免疫荧光抗体实验以及免疫电镜定位分析,鉴定了家蚕微孢子虫的一种新的孢壁蛋白SWP12,预测蛋白质分子质量和等电点分别为25.56kDa和6.69,定位分析表明该蛋白是一种孢子内壁蛋白,该蛋白的多克隆抗体未能明显抑制微孢子虫对宿主细胞的粘附。该蛋白的一些分子特征有助于我们进一步理解微孢子虫与宿主的互作关系。
     微孢子虫对家蚕的感染不仅与其自身的孢壁蛋白相关,也会引起宿主细胞基因的差异表达变化,微孢子虫诱导家蚕的基因差异表达往往和家蚕免疫相关基因的启动有关,但有关家蚕微孢子虫侵染的BmN细胞基因差异表达研究鲜有报道。本研究采用GeneFishing技术,通过对BmN细胞接种家蚕微孢子虫,以正常BmN细胞作对照,研究了家蚕在微孢子虫胁迫下相关基因的差异表达,从基因组水平上鉴别了10个受家蚕微孢子虫诱导或抑制表达基因。对差异表达的转录衍生片段(Transcript derived fragments,TDFs)序列进行基因克隆测序,经Blast分析发现这些差异表达基因的功能涉及如下几个方面:1)蛋白质合成;2)细胞信号转导;3)线粒体呼吸链电子传递与能量代谢;4)细胞免疫;5)未知功能蛋白。
     家蚕微孢子虫感染BmN细胞的差异表达Akirin基因是新近发现于果蝇中的天然免疫系统新成员,它在果蝇免疫缺陷(Immune deficiency,Imd)通路中发挥重要作用。本研究经RT-PCR克隆测序确定其cDNA序列的ORF框含588bp,编码195个氨基酸残基,预测分子量和等电点分别为21.77kDa和8.97,属于碱性蛋白质,没有信号肽位点。Sikmap软件分析表明Akirin基因位于家蚕第22对染色体上,微点阵表达分析表明该基因在家蚕幼虫的卵巢、精巢、脂肪体和中肠等各种组织均表达,经基因克隆和原核表达获得了融合表达蛋白。这些为进一步研究Akirin基因在家蚕中的免疫作用奠定了基础。
Microsporidia, widely distributed in nature, are extremely ancient and highly specialized obligate intracellular parasites that infect a broad range of animals including vertebrates and invertebrates and are important pathogens for many economic insects such as Bombyx mori and Apis mellifera. The silkworm, Bombyx mori are also infected by Endoreticulatus besides Nosema bombycis. Endoreticulatus.sp Shengzhou is a micro microsporidia found in silkworm eggs, and this microsporidia can also infect so many kinds of other Lepidoptera insects such as Phthonandria atrilineata, Helicoverpa armigera and Prodenia litura besides Bombyx mori. There are different species of microsporidium which can bring infection to the silkworm, Bombyx mori. These microsporidium all have different hosts and internal cell environment and it is reasonable to presume that different species of microsporidium own different infection mechanism. It is a good method to make a precise identification on species of microsporidium by comparative study. In this research, we employed a sample method directly using purified spores suspension with a concentration of109spores/mL instead of genomic DNA as PCR templetes for amplifying complete rRNA genes of Endoreticulatus sp. Shengzhou, and studied its phyletic evolution of the isolate by comparing it with that of other microsporidia. The rRNA gene sequences of LSUrRNA, SSUrRNA, ITS and IGS are1757bp,1254bp,499bp and419bp, respectively. The complete rRNA gene sequences of the isolate is4,43lbp (GenBank number. JN792450) in length with43.35%G+C and the arrangement of the rRNA genes was reversed as LSU-ITS-SSU-IGS-5S. Morphological character and phylogenetic analysis based on the rRNA gene sequences indicated that Endoreticulatus sp. Shengzhou is closely related to Endoreticulatus genus, which provides some theoretical basis for inspection of the pebrine in silkworm eggs production.
     Though there exist different infection mechanism about different species of microsporidium, infection percentage on the silkworm, Bombyx mori is always effected by germination rate of microsporidia. It is reported that the spore wall proteins of Nosema bombycis play an important role in the process of spores germination and infection. Five kinds of spore wall proteins have been identified which contain two kinds of endosporal proteins (SWP25and SWP30) and three exosporal proteins (SWP5, SWP26, and SWP32) up todate. In the current study, we identified another endosporal protein SWP12with calculated molecular mass of25.56kDa and an isoelectric point (pI) of6.69through gene cloning, SDS-PAGE analysis, protein expression, polyclonal antibody production, indirect immunofluorescence antibody test, and immunoelectron microscopy analysis, the results indicated that this protein is localized to the endospore and the special polyclonal antibody has no obvious inhibition on adherence to host cells. The characterization of this novel spore wall protein from Nosema bombycis may facilitate our further investigation on the relationship between Nosema bombycis and its hosts.
     Infection of microsporidia on the silkworm, Bombyx mori is not only related to spore wall proteins, but also induce differential genes expression on host cells. At the same time, it is switch on the related immune genes that results in differential genes expression. However, there are few reports on differential expression genes of Bombyx mori after infection by Nosema bombycis. Differential expression genes of BmN cells after infection by N.bombycis were investigated, and ten differential expression genes induced or suppressed by N. bombycis in BmN cells had been identified. Based on blast analysis on the sequences of transcript derived fragments, these differentially expressed genes were divided into five categories such as protein synthesis, signal transduction on cells, transporting ATP synthase and NADPH participate in electron transfer through mitochondria respiratory chain, cell energy metabolism, cellular immunity; and unknown function protein. Identification of differential expression genes in BmN cells is helpful for revealing infect mechanism of Nosema bombycis on BmN cells and also helpful for making an illumination on mechanism of host-pathogen interactions.
     Akirin gene, one of the differential expression genes, is reported to be a new nuclear factor which was discovered in the innate immune response of Drosophila melanogaster and plays a critical role in the immune deficiency (Imd) pathway. In the present study, Akirin gene of Bombyx mori was identified by screening differential expression genes in BmN cells and was cloned with the method of RT-PCR. Analysis on sequence shows that its cDNA was564bp and encoded a hypothetical proein of195amino acids with a predicted molecular mass of21.77kDa and an isoelectric point (pI) of8.97. The hypothetical protein belongs to alkaline proteins without any signal peptide site. Sikmap software analysis indicated that Akirin gene is located on chromosome22of Bombvx mori, and microarray expression analysis demonstrated that the gene is expressed in a variety of organizations such as ovary, spermary, fat body and midgut. The recombinant protein was obtained by gene cloning and prokaryotic expression, and these assays made a foundation work for the further research on the immunity of Akirin gene in Bombyx mori.
引文
[1]Wittner M. Historic perspective on the microsporidia:expanding horizons[M]//Wittner M, Weiss, L M. The Microsporidia and Microsporidiosis. Washington:American Society for Microbiology Press,1999:1-6.
    [2]Cavalier S T. A revised six-kingdom system of life[J]. Biol. Rev.,1998,73(3):203-266.
    [3]Hirt R P, Logsdon J M, Healy B, et al. Microsporidia are related to fungi:Evidence from the largest subunit of RNA polymerase II and other proteins[J]. PNAS.,1999, 96(2):580-585.
    [4]Keeling P J, Luker M A, Palmer J D. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi [J]. Mol. Biol. Evol.,2000,17(1):23-31.
    [5]Lee S C, Corradi N, Byrnes E J, et al. Microsporidia Evolved from Ancestral Sexual Fungi[J]. Curr. Biol.,2008,18(21):1675-1679.
    [6]Weber M, Bryan R T, Schwartz D A, et al. Human Microsporidial Infections [J]. Clin. Microbiol. Rev.,1994,7(4):426-461.
    [7]Mathis A, Weber R, Deplazes P. Zoonotic Potential of the Microsporidia[J]. Clin. Microbiol. Rev.,2005,18:423-445.
    [8]Didiera E S, Weissb L M. Microsporidiosis:current status[J]. Curr. Opin. Infect. Dis., 2006,19(5):485-492.
    [9]Keeling P J, McFadden G L. Origins of microsporidia [J]. J. Trends in Microsporidia,1998,6(1):19-23.
    [10]鲁兴萌,金伟.桑蚕来源致病性微孢子虫的分类学地位[J].科技通报,2000,16:130-137.
    [11]Bhat S A, Bashir I, Kamili A S. Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera-bombycidae):a review[J], Afr. J. Agric. Res.,2009,4(12):1519-1523.
    [12]Larsson J.I.R,Vavra J. Structure of the microsporidia polar tube[M]//Wittner M. Weiss, L M. The Microsporidia and Microsporidiosis. Washington:American Society for Microbiology Press,1999:7-84.
    [13]Keeling P J, Fast N M. Microsporidia:Biology and Evolution of Highly Reduced IntracellularParasites[J]. Ann. Rev. Microbiol.,2002,56:93-116.
    [14]Bigliardi E, Selmi M G, LuPetti P, et al. Microsporidian spore wall:ultrastrucral findings on Encephalitozoon hellem exospore[J]. J. Eukaryot. Microbiol.,1996, 43(3):181-186.
    [15]Bohne W, Ferguson D J, Kohler K, et al. Developmental expression of a tandemly repeated, glyeine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi[J]. Infect. Jmmun.,2000,68(4):2268-2275.
    [16]Hayman J R, Hayes S F, Amon J, et al. Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intestinalis [J]. Infect, Immun.,2001,69(11):7057-7066.
    [17]Schottelius J, Hunger F, Schuler T, et al. Chitinolytic Activity in Viable Spores of Encephalitozoon Species [J]. Mem I. Oswaldo Cruz.,2000,95(5):701-705.
    [18]Bigliardi E, Saeehi L. Cell biology and invasion of the microsporidia[J]. Microbes Infect.,2001,3(5):373-379.
    [19]Weidner E. The microsporidian spore invasion tube. III. tube extrusion and assembly [J]. J. cell Biol.,1982,93(3):976-979.
    [20]Smith T C. Eukaryotes with no mitochondria[J]. Nature,1987,326(6111):332-333.
    [21]Olsen G J, Woese C R. Ribosomal RNA:a key to phylogeny[J]. FASEB J.,1993,7(1): 113-123.
    [22]Woese C R. Bacterial evolution[J]. Microbiol. Rev,1987,51(2):221-271.
    [23]Franzen C. Microsporidia:A Review of 150 Years of Research [J]. Open Parasitol.J., 2008,2:1-34.
    [24]Katinka M D, Duprat S, Cornillot, E. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi [J]. Nature,2001,414(6862): 450-453.
    [25]Akiyoshi D E, Morrison H G., Lei S et al. Genomic Survey of the Non-Cultivatable Opportunistic Human Pathogen, Enterocytozoon bieneusi[J]. PLOS Pathog.,2009, 5(1):1-10.
    [26]Cornman R S, Chen Y P, Schatz M C, et al. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees[J]. PLOS Pathog.,2009,5(6): 1-14.
    [27]Corradi N, Pombert J F, Farinelli L, et al. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis[J]. Nat. Commun.,2010,1:1-7.
    [28]Wu Z L, Li Y H, Pan G Q, et al. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia) [J]. Proteomics,2008,8(12):2447-2461.
    [29]Schottelius J, Schmetz C, Kock N P, et al. Presentation by scanning electron microscopy of the life cycle of microsporidia of the genus Encephalitozoon [J]. Microbes Infect.,2000,2(12):1401-1406.
    [30]Caspar F. Microsporidia:how can they invade other cells[J]. Trends in Parasitology, 2004,20(6):275-279.
    [31]Klaine E M, Weiss L M.The structure,function, and composition of the microsporidia polar tube[M]//Wittner M, Weiss, L M. The Microsporidia and Microsporidiosis. Washington:American Society for Microbiology Press,1999:196-221.
    [32]Ishihara R. Some observations on the fine structure of sporoplasm discharged from spores of a microsporidian, Nosema bombycis[J]. J. Invertbr. Pathol.,1968,12(3): 245-258.
    [33]Iwano H, Ishihara R. Dimorphism of spores of Nosema spp. in cultured cell[J]. J. Invertebr.Pathol.,1991,57(2):211-219.
    [34]岩野俊秀,等.Dimorphic development of Nosema bombycis spores in gut epithetlum of larvae of the silkworm. Bombyx mori [J].日蚕杂,1991,60(4):249-256.
    [35]王林玲,陈克平.微孢子虫入侵和进化的研究进展[J].安徽农业科学,2007,35(19):5674-5675.
    [36]Delbac F, Peuvel I, Metenier G, et al. Microsporidian Invasion Apparatus: Identification of a Novel Polar Tube Protein and Evidence for Clustering of ptpl and ptp2 Genes in Three Encephalitozoon Species[J]. Infect. Immun.,2001,69(2): 1016-1024.
    [37]Xu Y J, Weiss L M. The microsporidian polar tube:A highly specialised invasion organelle[J]. Int. J. Parasitol,2005,35(9):941-953.
    [38]Delbac F, Duffieux F, Peyret P, et al. Identification of sporal proteins in two microsporidian species:an immunoblotting and immunocytochemical study[J].J. Eukaryot. Microbiol.,1996,43(5):101S.
    [39]Peuvel I, Peyret P, Metenier G, et al. The microsporidian polar tube:evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi[J]. Mol. Biochem. Parasi.,2002,122(1):69-80.
    [40]Delbac F, Peyret P, Metenier G, et al. On proteins of the microsoridian invasie apparatus:complete sequence of a polar tube protein of Encehalitozoon cuniculi[J]. Mol. Microbiol.,1998,29(3):825-834.
    [41]Xu Y, Takvorian P M, Cali A, et al. Lectin binding of the major polar tube protein (PTP1) and its role in invasion[J]. J. Eukaryot. Microbiol.,2003,50(6):600-601.
    [42]Xu Y, Takvorian P M, Cali, A, et al. Glycosylation of the major polar tube protein of Encephalitozoon, hellem, a microsporidian parasite that infects humans[J]. Infect. Immun.,2004,72(11):6341-6350.
    [43]Speijer D, Peek R, Delbac, F, et al. Carbohydrate Moieties of Microsporidian Polar Tube Proteins Are Targeted by Immunoglobulin G in Immunocompetent Individuals[J]. Infect. Immun.,2005,73(12):7906-7913.
    [44]Wang J Y, Chambon C, Lu C D, et al. A proteomic-based approach for the characterization of some major structural proteins involved in host-parasite relationships from the silkworm parasite Nosema bombycis (Microsporidia) [J]. Proteomics,2007,7(9):1461-1472.
    [45]Southern T R, Jolly C E, Hayman J R. Augmentation of microsporidia adherenceand host cell infection by divalent cations[J]. FEMS Microbiol. Lett.,2006,260(2): 143-149.
    [46]Southern T R, Jolly C E, Lester M E, et al. Identification of a Microsporidia Protein Potentially Involved in Spore Adherence to Host Cells[J]. J. Eukaryot. Microbiol., 2006,53(S1):S68-S69.
    [47]Hayman J R, Southern T R, Nash T E. Role of Sulfated Glycans in Adherence of the Microsporidian Encephalitozoon intestinalis to Host Cells In Vitro[J]. Infect. Immun. 2005.73(2):841-848.
    [48]Wu Z L, Li Y H, Pan G. Q. et al. SWP25, A Novel Protein Associated with the Nosema bombycis Endospore[J].J. Eukaryot. Microbiol,2009,56(2):113-118.
    [49]Enriquez F J, Wagner G., Fragoso M, et al. Effects of an anti-exospore monoclonal antibody on microsporidial development in vitro[J]. Parasitology,1998,117(6): 515-520.
    [50]崔红娟,周泽扬,万永继,等.家蚕微孢子表面抗原蛋白对家蚕致病性的影响[J].蚕业科学,1999,25(4):261-262.
    [51]黄少康,鲁兴萌,汪方炜,等.两种微孢子虫孢子表面蛋白及对家蚕侵染性的比较研究[J].蚕业科学,2004,30(2):157-163.
    [52]Zhang F, Lu, X M, Kumar V S, et al. Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro[J]. Parasitology,2007,134(11):1551-1558.
    [53]汪方炜,鲁兴萌.徽孢子虫孢子发芽机理[J].科技通报,2001,17(4):16-19.
    [54]鲁兴萌,汪方炜.家蚕肠球菌对微孢子虫体外发芽的抑制作用[J].蚕业科学,2002,28(2):126-128.
    [55]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reation[J]. Science,1992,257(5072):961-911.
    [56]C. Cordon-Cardo. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia[J]. Am. J. Pathol,1995,147(3):545-560.
    [57]Boll W, Fujisawa J I, Niemi J, et al. A new approach to high sensitivity differential hybridization[J]. Gene,1986,50(1-3):41-53.
    [58]Bauer D, Muller H, Reich J, et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR) [J]. Nucleic Acids Res.,1993, 21(18):4272-4280.
    [59]Jennings J C, Banks J A, Coolbaugh R C. Subtractive hybridization between cDNAs from untreated and AMO-1618-treated cultures of Gibberella fujikuroi[J]. Plant Cell Physiol.,1996,37(6):847-54.
    [60]Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: Amethod for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc.Natl. Acad. Sci.,1996,93(12):6025-6030.
    [61]Calia K E, Waldor M K, Calderwood S B, et al. Use of Representational Difference Analysis To Identify Genomic Differences between Pathogenic Strains of Vibrio cholerae[J]. Infect. Immun.,1998,66(2):849-852.
    [62]Velculescu V E, Zhang L, Vogelstein B, et al. Serial Analysis of Gene Expression[J]. Science,1995,270(5235):484-487.
    [63]Reinke V, Smith H E, Nance J, et al. A Global Profile of Germline Gene Expression in C. elegans[J]. Mol. Cell,2000,6(3):605-616.
    [64]Matusehewski K, Ross J, Brown S M, et al. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage[J]. J. Biol. Chem., 2002,277(44):41948-41953.
    [65]Nowak T S, Woodards A C, Jung Y H, et al. Identification of transcripts generated during the response of resistant Biomphalaria glabrata to Schistosoma mansoni iniection using suppression subtractive hybridization[J]. J. Parasitol.,2004, 90(5):1034-1040.
    [66]Pemval M, Pery P, Labbe M. The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth[J]. Int. J. Parasitol.,2006,36(10-11): 1205-1215.
    [67]Reineke A, Lobmann S. Gene expression changes in Ephestia kuehniella caterpillars after parasitization by the endoparasitic wasp Venturia canescens analyzed through cDNA-FLPs[J]. J. Insect Physiol.,2005,51(8):923-932.
    [68]Veronique B, Sandrine F, Pierre P, et al. Application of Differential Display RT-PCR to the Analysis of Gene Expression in a Host-Cell Microsporidian E. cuniculi [J]. J. Eukaryot. Microbiol.,1999,46(5):25S-26S.
    [69]Antunez K, Hernandez R M, Lourdes P, et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia)[J]. Environ. Microbiol.,2009,11(9):2284-2290.
    [70]Okano K, Shimada T, Mita K, et al. Comparative Expressed-Sequence-Tag Analysis of Differential Gene Expression Profiles in BmNPV-Infected BmN Cells[J]. Virology-, 2001,282(2):348-356.
    [71]Iwanaga M, Shimada T, Kobayashi M, et al. Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization[J]. Appl. Entomol Zool,2007,42(1):151-159.
    [72]Bao Y Y, Li M W, Zhao Y P, et al. Differentially expressed genes in resistant and susceptible Bombyx mori strains infected with a densonucleosis virus[J]. Insect Biochem. Molec.,2008,38(9):853-861.
    [73]Bao Y Y, Tang X D, Lv Z Y, et al. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels[J]. Genomics,2009,94(2):138-145.
    [74]Wu P, Li M W, Wang X, et al. Differentially expressed genes in the midgut of silkworm infected with cytoplasmic polyhedrosis virus[J]. Afr. J. Biotechnol,2009, 8(16):3711-3720.
    [75]Hwang I T, Kim Y J, Kim S H, et al. Annealing control primer system for improving specificity of PCR amplification [J].Biotechniques,2003,35(6):1180-1184.
    [76]Kim Y J, Kwak C I, Gu Y Y, et al. Annealing control primer system for identification of differentially expressed genes on agarose gels[J]. Biotechniques,2004,36(3): 424-434.
    [77]Canning E U, Kendriek K A, Kendriek K M. A new microsporidian parasite, Flabelliforma montana n.g., n. sp., infecting Phlebotomus ariasi (Diptera, Psychodidae) in France [J]. J. Invertebr. Pathol.,1991,57(1):71-81.
    [78]向恒.家蚕微孢子虫(Nosema bombycis)基因组学研究一一水平基因转移分析[D].西南大学博士论文,2010年.
    [79]Li Y H, Wu Z L, Pan G. Q, et al. Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis[J]. Int. J. Parasitol,2009,39(4):391-398.
    [80]Cai S F, Lu X M, Qiu H H, et al. Identification of a Nosema bombycis (Microsporidia) spore wall protein corresponding to spore phagocytosis [J]. Parasitology,2011, 138(9):1102-1109.
    [81]Li Z, Pan G, Li T, Huang W, et al. SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis[J]. Eukaryot Cell, 2012,11(2):229-237.
    [82]钱永华,鲁兴萌,金伟,等.家蚕微孢子虫(Nosema bombycis)向BmN细胞接种与增殖的观察[J].蚕业科学,2003,29(3):260-264.
    [83]万永继,张琳,陈祖佩,等.家蚕病原性微孢子虫SCM7 (Endoreticulatus. sp)的分离和研究[J].蚕业科学,1995,21(、3):168-172.
    [84]方定坚,廖森泰,郑样明,等.家蚕新病原性微孢子虫MG1,MG2的研究[J].广东农业科学,1993,1:39-40.
    [85]刘挺,高永珍,黄可威,等.一种新家蚕病原性微孢子虫的研究[J].中国蚕业,1998,2:11-12.
    [86]Solter L F, Maddox J V, Mcmanus M L. Host specificity of Microsoporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera[J]. J. Invertebr. Pathol., 1997.69(2):135-150.
    [87]Qar S H, Goldman I F, Pieniazek N J, et al. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax[J]. Gene,1994,150(1):43-49.
    [88]Vossbrink C R, Baker M D, Didier E S, et al. Ribosomal DNA Sequences of Encephalitozoon Hellem and Encephalitozoon Cuniculi:Species Identification and Phylogenetic Construction[J]. J. Euk. Microbiol.,1993,40(3):354-362.
    [89]Taupin V, Metenier G, Vivares C P, et al. An improved procedure for Percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia)[J]. Parasitol. Res.,2006,99(6):708-714.
    [90]Huang W F, Tsai S J, Lo C F, et al. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombvcis[J]. Fungal Genet. Biol.,2004,41(5): 473-481.
    [91]Zhu F, Shen Z Y, Xu X F, et al. Phylogenetic Analysis of Complete rRNA Gene Sequence of Nosema philosamiae Isolated from the Lepidopteran Philosamia cynthia ricini[3].J. Eukaryot. Microbiol,2010,57(3):294-296.
    [92]Xu X F, Shen Z Y, Zhu F, et al. Phylogenetic characterization of a microsporidium (Endoreticulatus sp. Zhenjiang) isolated from the silkworm, Bombyx mori[J]. Parasitol. Res.,2012,110(2):815-819.
    [93]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol. Biol.Evol.,1987,4(4):406-425.
    [94]Kolaczkowski B, Thornton J W. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous [J]. Nature,2004,431(7011):980-984.
    [95]Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Mol. Biol. Evol,2011,28(10):2731-2739.
    [96]Wang C Y, Solter L F, Tsuic W H, et al. An Endoreticulatus species from Ocinara lida (Lepidoptera:Bombycidae) in Taiwan[J]. J. Invertebr. Pathol,2005,89(2):123-135.
    [97]Smit S, Widmann J, Knight R. Evolutionary rates vary among rRNA structural elements[J]. Nucleic Acids Res.,2007,35(10):3339-3354.
    [98]Pace N R. A molecular view of microbial diversity and the biosphere[J]. Science,1997, 276(5313):7334-7340.
    [99]王见杨,黄可威.微孢子虫的分子生物学研究进展及检测治疗[J].蚕业科学.2000,26(增刊):50-59.
    [100]Andersson S, Kurland C. Reductive evolution of resident genomes[J]. Trends Microbiol,1998,6(7):263-268.
    [101]Glttler V, Stanisich V. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region[J]. Microbiol,1996,142(1):3-16.
    [102]Peyretaillade E, Biderre P, Peyret F, et al. Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote, with a unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core[J]. Nucleic Acids Res.,1998,26(15): 3513-3520.
    [103]Franzen C, Muller P, Hartmann P, et al. Polymerase chain reaction for diagnosis and species differentiation of microsporidia[J]. Folia. Parasitol,1998,45(2):140-148.
    [104]Zhu X, Wittner M, Tanowitz H B, et al. Ribosomal RNA sequences of Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis:phylogenetic construction and structural correspondence[J]. J. Eukaryot. Microbiol,1994,41(3): 204-209.
    [105]Deplazes P, Mathis A, Muller C, et al. Molecular epidemiology of Encepahlitozoon cuniculi and first detection of Enterocytozoon bieneusi in faecal samples of pigs[J].J. Eukaryot. Microbiol.,1996.43(5):93S.
    [106]Zhu F, Shen Z Y. Guo X J, et al. A new isolate of Nosema sp.(Microsporidia, Nosematidae) from Phyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China[J]. J. Invert. Pathol,2011,106(2):339-342.
    [107]Rao S N, Muthulakshmi M, Kanginakudru S, et al. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori[S]. J. Invert. Patho.,2004,86(3):87-95.
    [108]James S A, Collins M D, Roberts I N. Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora[J]. Int. J. Sysl. Bacterial.,1996,46(1): 189-194.
    [109]Garcia M J, Acinas S G., Anton A I, et al. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity[J]. J.Micro(?)ol. Meth.,1999,36(1-2): 55-64.
    [110]Grimwood J, Smith J E. Toxoplasma gondii:the role of parasite surface and secreted protein in host cell invasion[J]. Inter. J. Parasitol.,1996,26(2):169-173.
    [111]Shaw M K. Cell invasion by Theileria spomzoites[J]. Trends Parasitol.,2003,19(1): 2-6.
    [112]Bigliardi E, Sacchi L. Cell biology and invasion of the microsporidia[J]. Microbes Infect.,2001,3(5):373-379.
    [113]Simnmani T A. Biochemical characterization of the Microsporidian Nosema bombycis spore protein [J]. World J. Microbiol. Biotech.,1999,15(2):239-248.
    [114]Vavra J, Larrson J I R. Structure of the microsporidia[M]//Wittner M, Weiss, L M. The Microsporidia and Microsporidiosis. Washington:American Society for Microbiology Press,1999:7-84.
    [115]Kawarabata T, Hayasaka A. An enzyme-linked immunosorbent assay to detect alkali-soluble spore surface antigen of strains of Nosema bombycis[J].J. Invertebr. Pathol,1987,50(2):118-123.
    [116]郭锡杰,黄可威.家蚕病原性微孢子虫表面蛋白的选择性分离与总蛋白比较分析[J].蚕业科学,1995,21(4):238-241.
    [117]崔红娟,万永继,周泽扬,等.家蚕微孢子虫(Nosema bombvcis)表面蛋白提取 法研究[J].西南农业大学学报,1999,21(4):367-369.
    [118]谭小辉,潘国庆,吴正理,等.家蚕微孢子虫孢壁蛋白与其发芽的相关性[J].动物学报,2008,54(6):1068-1074.
    [119]Undeen AH , Cockburn A F. The extraction of DNA from microsporidian spores[J].J. Invertebr. Pathol.,1989,54:132-133.
    [120]Rao S N, Nath S B, Bhuvaneswari G., et al. Genetic diversity and phylogenetic relationships among microsporidia infecting the silkworm, Bombyx mori, using random amplification of polymorphic DNA:Morphological and ultrastructural characterization[J]. J. Invertebr. Pathol.,2007,96(3):193-204.
    [121]王延华,李官成,Zhou X F.抗体理论与技术(第二版)[M].北京:科学出版社,2009:64-90.
    [122]陈秀,黄可成,沈中元,等.家蚕微粒子病的PCR诊断技术[J].蚕业科学,1996、22(1):231-234.
    [123]钱永华,鲁兴萌,李敏侠,等.家蚕微孢子虫(Nosema bombycis)孢子人工发芽的研究[J].浙江农业大学学报,1996,22(4):381-385.
    [124]Magaud A, Achbarou A, Desportes-Livage I. Cell invasion by the microsporidium Encephalitozoon intestinalis[J]. J. Eukaryot. Microbiol.,1997,44(6):81S.
    [125]Foucault C, Drancourt M. Actin mediates Encephalitozoon intestinalis entry into the human enterocyte-like cell line, Caco-2[J]. Microb. Pathog.,2000,28(2):51-58.
    [126]Vivares C P, Metenier G. The microsporidian Enccephalitozoon[J]. Bioessays,2001, 23(2):194-202.
    [127]Williams B A, Hirt R P. Lucocq J M, et al. A mitochondrial remnant in the microsporidian Trachipleistophora hominis[J]. Nature,2002,418(6900):865-869.
    [128]Goldberg A V, Molik S, Tsaousis A D, et al. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins[J]. Nature,2008,452(7187): 682-688
    [129]Weidner E. Ultrastructural study of microsporidian invasion into cells[J]. Z. Parasitenk.,1972,40(3):227-242.
    [130]Ishihara R. The life cycle of Nosema bombycis as reveated in tissue culture cells of Bombyx mori[J]. J. Inveretbr. Pathol.,1969,14(3):316-320.
    [131]Kawarabata T, Ishihara R. Infection and development of Nosema bombycis (Microsporida:Protozoa) in cell line of Antheraea eucalypti[J]. J. Invertebr. Pathol., 1984,44(1):52-62.
    [132]Tokarev Y S, Sokolova Y Y, Entzeroth R. Microsporidia-insect host interactions: teratoid sporogony at the sites of host tissue melanization[J]. J. Invertebr. Pathol, 2007,94(1):70-73.
    [133]Franzen C. Microsporidia:A review of 150 years of research[J]. Open Parasitol. J., 2008,2,1-34.
    [134]Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori[J]. Insect Biochem. Molec., 2008,38(12):1087-1110.
    [135]鲁兴萌,吴忠长.家蚕微粒子虫(Nosema bombycis)感染家蚕的病理学研究[J].浙江大学学报(农业与生命科学版),2000,26(5):547-550.
    [136]沈灿兴.春蚕血液型脓病发生的原因及防治对策[J].江苏蚕业,2003(3):38-39
    [137]姜祝海,廖平,梁兵.春蚕发生血液型脓病的原因及防治措施[J].中国蚕业,2003,29:49-50
    [138]Hara S, Yamakawat M. A novel antibacterial peptide family isolated from the silkworm, Bombyxmori[J]. Biochem. J.,1995,310(2):651-656.
    [139]Kaneko Y, Tanaka H, Ishibashi J, et al. Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori[J]. Biosci. Biotechnol. Biochem., 2008,72(9):2353-2361.
    [140]Bao Y Y, Xue J, Wu W J, et al. An immune-induced reeler protein is involved in the Bombyx mori melanization cascade[J].Insect. Biochem. Mol. Biol.,2011,41(9): 696-706.
    [141]Hoshino M, Suzuki E, Miyake T. Neural expression of hikaru genki protein during embryonic and larval development of Drosophila melanogaster[J]. Dev. Genes Evol., 1999,209(1):1-9.
    [142]Hoshino M, Suzuki E, Nabeshima Y, et al. Hikaru genki protein is secreted into synaptic clefts from an early stage of synapse formation in Drosophila[J]. Development,1996,122(2):589-597.
    [143]Kirkitadze M D, Barlow P N. Structure and flexibility of the multiple domain proteins that regulate complement activation[J]. Immunol. Rev.2001,180(1): 146-161.
    [144]Ha E M, Oh C T. Bae Y S, et al. A direct role for dual oxidase in Drosophila gut immunity[J]. Science,2005,310(5749):847-850.
    [145]Selot R, Kumar V, Shukla S, et al. Identification of a Soluble NADPH Oxidoreductase (BmNOX) with Antiviral Activites in the Gut Juice of Bombyx mori[J]. Biosci. Biotechnol. Biochem.,2007,71(1):200-205.
    [146]Bloemink M J, Moore P B. Phosphorylation of Ribosomal Protein L18 Is Required for Its Folding and Binding to 5S rRNA[J]. Biochem.,1999,38(40):13385-13390.
    [147]Johnson L N, Barford D. The Effects of Phosphorylation on the Structure and Functin of Proteins [J]. Annu. Rev. Biophys.Biomol. Struct.,1993,22:199-232.
    [148]Kobayashi S, Nomura Y, Kamiie K, et al. Cloning and Expression of Bombyx mori Silk Gland Elongation Factor 1γ in Escherichia coli[J]. Biosci. Biotechnol. Biochem., 2002,66(3):558-565.
    [149]Webster G C, Webster S L. Decline in synthesis of elongationfactor one (EF-1) precedes the decreased synthesis of total protein in aging Drosophila melanogaster[J]. Mech. Ageing Dev.,1983,22(2):121-128.
    [150]Shepherd J C, Walldorf U, Hug P, et al. Fruit flies with additional expression of the elongation factor EF-1α live longer[J]. Proc. Natl. Acad. Sci.,1989,86(19): 7520-7521.
    [151]陈晓萍,徐飞.JAK-STAT信号通路研究进展[J].自然杂志,2002,25(3):149-152.
    [152]Barillas-Mury C, Han Y S, Seeley D, et al.1999. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection[J]. EMBO. J.,1999,18(4):959-967.
    [153]Dostert C, Jouanguy E, Irving P, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila[J]. Nat. Immunol.,2005, 6(9):946-953.
    [154]Wan F Y, Anderson D E. Barnitz R A. Ribosomal protein S3:a KH domain subunit in NF-κB complexes that mediates selective gene regulation[J]. Cell,2007,131(5): 927-939.
    [155j Apostolou E, Thanos D. Virus infection induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression[J]. Cell,2008,134(1):85-96.
    [156]Bosisio D, Marazzi I, Agresti A, et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-KB-dependent gene activity[J]. EMBO. J.,2006,25(4):798-810.
    [157]Beutler B, Moresco E M. Akirins Versus infection[J]. Nat. Immunol,2008,9(1):7-9.
    [158]Goto A, Matsushita K, Gesellchen V, et al. Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in Drosophila and mice[J]. Nat. Immunol,2008(1),9:97-104.
    [159]Sasaki S, Yamada T, Sukegawa S, et al. Association of a single nucleotide polymorphism in Akirin 2 gene with marbling in Japanese Black beef cattle[J]. BMC. Res. Notes,2009,2:131, doi:10.1186/1756-0500-2-131.
    [160]Yang C G, Wang X L, Wang L, et al. A new Akirinl gene in turbot (Scophthalmus maximus):Molecular cloning, characterization and expression analysis in response to bacterial and viral immunological challenge[J]. Fish Shellfish Immunol,2011, 30(4-5):1031-1041.
    [161]Man C L, Li X, Lee.1. Molecular Cloning, Sequence Characterization, and Tissue Expression Analysis of Hi-Line Brown Chicken Akirin2[J]. Protein J.,2011,30(7): 471-479.
    [162]Xia Q Y, Cheng D J, Duan J, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori[J]. Genome Biology, 2007,8(8):R162.1-R162.13.
    [163]Hong S M, Kusakabe T, Lee J M, et al. Structure and Expression Analysis of the Cecropin-E Gene from the Silkworm,Bombyx mori[J]. Biosci. Biotechnol Biochem., 2008,72(8):1992-1998.
    [164]Tanaka H, Furukawa S, Nakazawa H, et al. Regulation of Gene Expreesion of Attacin, an Antibacterial Protein in the Silkworm, Bombyx mori[J]. J. Insect. Biotechnol Sericol,2005,74(2):45-56.
    [165]Kotani E, Yamakawa M, Iwamoto S, et al. Cloning and expression of the gene of hemocytin, aninsect humoral lectin which is homologous with the mammalianvon Willebrand factor[J]. Biochim. Biophys. Acta.,1995,1260(3):245-258.
    [166]Yamakawa M, Tanaka H. Immune proteins and their gene expression in the silkworm, Bombyx mori[J]. Dev. Comp. Immunol,1999,23(4-5):281-289.
    [167]Lee W J, Brey P T. Isolation and characterization of the lysozyme-encoding gene from the silkworm Bombyx mori[J]. Gene,1995,161(2):199-203.
    [168]Nakazawa H, Tsuneishi E, Ponnuvel K M, et al. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus[J]. Virology,2004,321(1):154-162.
    [169]Galindo R C, Doncel-Perez E, Zivkovic Z, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates [J]. Dev. Comp. Immunol,2009,33(4): 612-617.
    [170]Beutler B, Moresco E M. Akirins versus infection[J]. Nat. Immunol,2008,9(1):7-9
    [171]Yang C G, Wang X L, Wang L, et al. A new Akirinl gene in turbot (Scophthalmus maximus):Molecular cloning, characterization and expression analysis in response to bacterial and viral immunological challenge [J]. Fish Shellfish Immunol,2011, 30(4-5):1031-1041.
    [172]Man C L, Li X, Lee J. Molecular cloning, sequence characterization, and tissue expression analysis of Hi-Line brown Chicken Akirin2[J]. Protein J.,2011,30(7): 471-479.
    [173]Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori[J]. Insect Biochem. Molec. Biol,2008.38(12):1087-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700