用户名: 密码: 验证码:
夏季相对湿度和风速对人体热感觉的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济水平的飞速发展,人们对建筑室内环境的热舒适性要求也越来越高。什么样的热环境是舒适的,如何评价热环境下人体的热舒适水平,一直是建筑室内人体热舒适研究的重要领域。已有研究发现,夏季偏热环境下,高空气湿度会提高人体热感觉,而提高室内风速则可以降低人体热感觉,而且风速对人体热感觉的影响与空气湿度也有一定的关系。因此,充分了解夏季室内空气湿度和风速对人体热感觉的影响,合理评价夏季室内空气湿度和风速对人体热感觉的影响程度,对我国热舒适标准的制定具有非常重要的意义。
     由于热环境对人体的作用,主要是通过两者之间的热湿交换来影响人体生理参数,从而使人体产生不同的热感觉。因此,论文首先基于二节点模型分析了夏季空气湿度和风速对人体热平衡的影响,充分了解了夏季不同环境温度下,人体与环境之间的各项散热量及人体生理参数随空气湿度和风速的变化规律。
     其次,对夏季不同环境温度下,空气湿度对人体热反应的影响进行了实验研究。研究比较了各环境温度下空气湿度对人体主观热反应和生理反应的影响程度,结果发现,在夏季,空气相对湿度在40%~80%范围内时,若环境温度处于舒适温度附近,则空气湿度对人体热感觉几乎没有影响,但是在偏热环境下,空气湿度的升高会显著提高人体热感觉,且随空气湿度和环境温度的升高,空气湿度的影响更大,且明确指出夏季,尤其是偏热环境下,空气湿度对可接受温度范围的确定有非常重要的影响,并初步确定了夏季不同空气湿度下可接受温度上限水平;通过分析夏季人体热感觉与平均皮肤温度以及皮肤出汗程度等生理反应的关系,明确了夏季空气湿度影响人体热感觉的机理。
     接着,又对夏季不同温湿度水平下风速对人体热反应影响进行了实验研究。研究不仅分析了不同环境下风速对人体主观热反应和生理反应的影响程度,还对不同风速作用下空气湿度对人体热反应的影响进行了分析,结果发现,偏热环境下,提高风速不仅可以在一定程度上降低人体热感觉,还可以降低空气湿度对人体热感觉的影响,并初步确定了夏季风速作用下可接受温度上限;同样通过分析夏季人体热感觉与平均皮肤温度以及皮肤出汗程度等生理反应的关系,明确了夏季风速影响人体热感觉的机理。
     然后,以实验研究为基础,对目前的热舒适评价指标PMV和SET是否可以准确评价夏季人体热感觉进行了分析。分析结果明确了PMV无法准确评价偏热环境下空气湿度和风速对人体热感觉的影响程度,提出可以采用SET来评价,但是由于SET没有考虑热适应的影响,需要对其进行热适应修正;在δSET的基础上,分别提出采用空气湿度热适应因子eRH和风速热适应因子ev对δSETRH和δSETv进行修正,获得了修正模型eRHδSETRH和evδSETv,基于eRHδSETRH和evδSETv获得到了夏季空气湿度和风速对可接受温度影响的修正方法。
     最后,对目前夏季非空调环境室内热舒适区的确定方法进行了探讨。通过对目前热舒适标准中非空调环境室内热舒适区的确定方法的总结,指出目前热舒适区的确定方法均存在的问题;从空气湿度、风速两方面分析了目前夏季非空调环境室内热舒适区的适用范围,并指出基于目前的确定方法建立的热舒适区适用范围均较小,而且指出由于将在较大范围内变动的空气湿度和风速以及不同气候区的数据汇总,使得所建立的热舒适区适用范围非常小或甚至无实际应用价值;最后针对对目前夏季非空调环境室内热舒适区的构建方法提出了一些建议。
     论文研究中提出的夏季可接受温度确定和修正方法,为我国热舒适标准的制定及使用提供了重要的依据和参考;对目前夏季非空调环境室内热舒适区的确定方法提出的建议为进一步完善我国热舒适标准提供了参考。
With the development of the rapid development of national social economy in, therequirements of indoor thermal comfort has become more and more strict. What kind ofindoor thermal environment is comfort, and how to evaluate the human thermal comfortlevel, have been the important areas of the building indoor human thermal comfortstudies. Few studies have been shown that in warm envionments, high air humidity willincrease human thermal sensation, while high air velocity will decrease human thermalsensation. And also, the impacts of air velocity on human thermal sensation haverelationship with air humidity. Therefore, it has very important and profoundsignificance to make fully understand the impacts of air humidity and air velocity onhuman thermal sensation in summer, as well as how to reasonably evaluate the impactsof air humidity and air velocity on human thermal sensation.
     Heat exchange between human and thermal environment influence humanphysiological parameters, thus produce different human thermal sensation. Therefore,this paper has firstly analysed the effects of air humidity and air velocity on human heatbalance in summer, which make fully understand that how the heat dissipation betweenthe human body and the thermal environment as well as human physiologicalparameters change with air humidity and air velocity in summer.
     Secondly, Climate chamber experiments were conducted on the effects of airhumidity on human thermal response in warm envionments. Both subjective andphysiological responses of subjects were examed in different air temperatures andhumidity. The results showed that the effects of air humidity on thermal sensation werevery little in neutral envionments, but significant in warm environments. In warmevionments, people felt warmer as air humidity inceases. It is pointed that air humiditywould play a significant important role on determining the accetptable indoor operativetempeature ranges in warm environments. And it has been preliminarily determined theindoor acceptable operative temperature under different air humidity in summer.Through analyzed the relationship between human thermal sensation and humanphysiological parameters, such as mean skin temperature and sweating degree of skin, ithas been clear about mechanism of the effect of air humidity on human thermalsensation in summer.
     Then, Climae chamber experiments on the influence of air velocity on human thermal response in summer were aslo conducted. Both subjective and physiologicalresponses of subjects were examed in different air velocity under different airtemperatures and humidity. The results showed that elevated air velocity not only canreduce human thermal sensation, but aslo reduce the effects of air humidity on humanthermal sensation. And it has been preliminarily determined the indoor acceptableoperative temperature under different air velocity in summer. Through analyzed therelationship between human thermal sensation and human physiological parameters,such as mean skin temperature and sweating degree of skin, it has been clear aboutmechanism of the effect of air velocity on human thermal sensation in summer.
     Based on the experiment study, the evaluation of air humidity and air velocity onthermal sensation in warm envionments were analyzed. The results showed that notPMV but SET can be used to evaluate the influence of air humidity and air velocity onthermal sensation in warm envonments. And it pointed that as SET did not consider theeffects of thermal adaptation, it needs to be revised. Revised SET which can be used toevaluate the influence of air humidity and air velocity on thermal sensation in warmenvonments was presented in this paper. In addition, according to the revised SETmodel, the upper acceptable temperatures at different air humidity were given, and alsothe upper air humidity and air velocities at different air temperatures.
     Finally, the determination methods of thermal comfort zone presented for naturallyventilated spaces were discussed. It pointed out there was a problem about the currentthermal comfort zones, namly that in the process of building adaptive model, researcherdid not cconsider the influence of air humidity and air velocity. Applicable scope of thecurrent thermal comfort zones were analyzed aspected from the air humidity and airvelocity, which indicated that a wide range of changes in the air humidity and airvelocity, as well as different climate zone data aggregation would limit the applicablescope the current thermal comfort zones. Finally, some suggestions were presented onconstructing methods of comfort zone of naurally ventilated spaces.
     In this paper, the determination and revised method of acceptable temperature insummer was reported that provided an important basis and reference for thermalcomfort standard in our country. Besides, recommendations proposed for thedetermination the method of indoor thermal comfort zone for naturally ventilated spacesin the study will provide guidance to improve the thermal comfort standard.
引文
[1] Brasche S, Bischof W. Daily time spent indoors in German homes-baseline data for theassessment of indoor exposure of German occupants [J]. Int J Hyg Environ Health.2005;208(4):247-253.
    [2] Leech JA, Nelson WC, Burnett RT, Aaron S, Raizenne ME. It's about time: A comparison ofCanadian and American time-activity patterns [J].. J Expo Anal Environ Epidemiol.2002;12(6):427-432.
    [3] Fanger P O. Thermal comfort-analysis and application in environment engineering[M]..Copenhagen: Danish Technology Press,1970.
    [4] ISO7730-2005: Ergonomics of the thermal environment—Analytical determination andinterpretation of thermal comfort using calculation of the PMV and PPD indices and localthermal comfort criteria[S]. Geneva, International Organization for Standardization,2005.
    [5] ASHRAE, ANSI/ASHRAE Standard55-2010: Thermal Environment Conditions for HumanOccupancy [S]. Atlanta, GA, American Society of Heating, Ventilating and Air-ConditioningEngineers, Inc.,2011.
    [6]戴自祝.室内空气质量与通风空调[J].中国卫生工程学,2002,l(l):54-56.
    [7]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2011[M].北京:中国建筑工业出版社,2011.
    [8] Humphreys M A. Field studies of thermal comfort compared and applied[J]. J. Inst.Heat.&Vent. Eng.1976,44:5-27.
    [9] de Dear R..J., Brager G.S. Developing an adaptive model of thermal comfort and preference [J].ASHRAE Transactions,1998,104(1):145-167.
    [10] Brager G S, de Dear R J. Thermal adaptation in the built environment: a literature review [J].Energy and Buildings.1998,27(1):83-96.
    [11] ASHRAE,ANSI/ASHRAE55-2004. ASHRAE standard: thermal environmental conditions forhuman occupancy[S]. Atlanta (USA): American Society of Heating, Refrigerating andAir-conditioning Engineers Inc.;2004.
    [12] CEN Standard EN15251-2007. Indoor environmental input parameters for designandassessment of energy performance of buildings-addressing indoor airquality, thermalenvironment, lighting and acoustics [S]. Brussels: Comite Europeen de Normalisation;2007.
    [13] GB/T5701-2008:室内热环境条件[S].北京:中国标准出版社,2008.
    [14] Hayakawa, K., N. Isoda, and T. Yanase.1989. Study of the effects of air temperature andhumidity on the human body during physical exercise in the summer[J].. Journal ofArchitecture, Planning, and Environmental Engineering (Transactions of AIJ), No.405.
    [15]田元媛.热湿环境下人体热反应的研究[D].北京:清华大学,2001.
    [16] Houghten, F.C., Yaglou, C.P. Determining lines of equal comfort [J]. ASHVE Transactions,1923,29:163-176.
    [17] Nevins R G. Temperature-humidity chart for thermal comfort of seated persons [J]. ASHRAETransactions,1966,72:283-291.
    [18] McNall, P.E., Jaax, F.H. Rohles, R.G. Nevins, and W.E. Springer. Thermal comfort (thermallyneutral) conditions for three levels of activity [J]. ASHRAE Transactions,1967,73(1):1-14.
    [19] McIntyre,D.A., I.D.Griffths. Subjective responses to atmospheric humidity [J]. Environmentalresearch,1975,9:66-75.
    [20] McIntyre, D.A.. Indoor climate [M]. London: Applied Science Publishers,1980.
    [21] Berglund, L. Comfort criteria in a low humidity environment [R]. Final Report to ElectricPower Research Institute, Palo Alto, Calif,1989.
    [22] Berglund, L.. Comfort criteria and humidity standards [C]. Proceedings of the Pan-PacificSymposium on Building and Urban Environmental Conditioning in Asia, March16-18.Nagoya, Japan,1995,2:369-382.
    [23] Xu, T., E. Arens, and F. Bauman. The Effects of High-Level Air Humidity on SubjectivePerception of Comfort [C]. Proceedings of the2nd International Symposium on Heating,Ventilation, and Air Conditioning,25-27September, Beijing, China,1995,1:81-91.
    [24] Marc E. Fountain, Edward Arens, Tengfang Xu, Fred S. Bauman, Masayuki Oguru. AnInvestigation of Thermal Comfort at High Humidities [J]. ASHRAE Transactions,1999,105(2):94-103.
    [25] Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoiduncomfortably humid skin [J]. Energy Build,1998;28:1–13.
    [26] Koch, W., B.H. Jennings, and C.M. Humphreys. Environmental study II—Sensation responsesto temperature and humidity under still air conditions in the comfort range [J]. ASHRAETransactions,1960,66:264.
    [27] Tanabe, S., K. Kimura, and T. Hara. Thermal comfort requirements during the summer seasonin Japan [J]. ASHRAE Transactions,1987,93(1):564-577.
    [28]董胜璋,牛冠明,杨正焱.相对湿度对空调环境至适温度影响到研究[J].环境与健康杂志,1995,12(1):16-18.
    [29] de Dear, R.J., H.N. Knudsen, and P.O. Fanger.1989. Impact of air humidity on thermalcomfort during step-changes[J]. ASHRAE Transactions95(2):336-350.
    [30] Hitomi Tsutsumia, Shin-ichi Tanabe, Junkichi Harigaya, Yasuo Iguchi, Gen Nakamura. Effectof humidity on human comfort and productivity after step changes from warm and humidenvironment[J]. Building and Environment,2007,42(12):4034–4042.
    [31] Gagge, A.P., Fobelets, A.P. and Berglund, L.G. A standard predictive index of human responseto the thermal environment[J]. ASHRAE Trans.,1986,92(2):709–731.
    [32] A P Gagge. A Standard index of human response to the thermal humid environment[C].Moisture and Humidity1985:Measurement and Control in Science and Industry, Proceedingsof the1985International Symposium,1985.
    [33] A.R. Gwosdow, J.C. Stevens, L.G. Berglund, J.A.J. Stolwijk. Skin friction and fabricsensations in neutral and warm environments [J]. Textile Research Journal,1986,56(9):574-580.
    [34] J. Toftum, AS Jorgensen and PO Fanger, Upper limits of air humidity for preventing warmrespiratory discomfort[J]. Energy and Buildings,1998,28:15–23.
    [35] Nevins, R.G., R.R. Gonzalez, Y. Nishi, and A.P. Gagge. Effect of changes in ambienttemperature and level of humidity on comfort and thermal sensations[J]. ASHRAETransactions,1975,81(2).
    [36] Houghten, F., Yaglou C. Cooling effect on human beings by various air velocities[J]. ASHRAETransactions,1924,30:193-212.
    [37] Fanger, P.O.,0stergaard, J., Olesen, S. and Lund Madsen, Th. The effect on man’s comfort of auniform airflow from different directions[J]. ASHRAE Transactions,1974;80(2):142-157.
    [38] Fanger, P.O., Pedersen, C.J.K. Discomfort due to air velocities in spaces[C]. Proceedings ofthe Meeting of Commissions B1, B2, E1, international institute of refrigeration, Belgrade1977;4:289-296.
    [39] Fanger, P.O., Christensen, N.K. Perception of draught in ventilated spaces[J]. Ergonomics1986;29,215–235.
    [40] Fanger, P.O., Melikov, A.K., Hanzawa, H. and Ring, J. Air turbulence and sensation ofdraught[J]. Energy and Buildings1988;12:21–39.
    [41] Rohles F et al. The effect of air movement and temperature on the thermal sensations ofsedentary man[J]. ASHRAE Transactions,1974;80:101–119
    [42] ANSI/ASHRAE55-1981. ASHRAE standard: thermal environmental conditions for humanoccupancy[S]. Atlanta (USA): American Society of Heating, Refrigerating andAir-conditioning Engineers Inc.;1981.
    [43] Fanger, P.O., stergaard, J., Olesen, S. and Lund Madsen, Th. The effect on man’s comfort ofa uniform airflow from different directions, ASHRAE Transactions,1974,80,142–157.
    [44] McIntyre DA. Preferred air speed for comfort in warm conditions[J]. ASHRAE Transactions,1978;84(2):263-277.
    [45] Rohles, F., S. Konz, B. Jones. Ceiling fans as extenders of the summer comfort envelope[J].ASHRAE Transactions,1983;89(1):245–263.
    [46] Scheatzle, D et al. Expanding the summer Comfort Envelope with Ceiling Fans in Hot, AridClimates[J]. ASHRAE Transactions,1989;95(1):269-280.
    [47] Wu, H. The use of oscillating fans to extend the summer comfort envelope in hot aridclimates[C]. Proceedings of the second ASHRAE Far East Conference on Air conditioning inhot climates Kuala Lumpure, Malaysia. Atlanta;1989.
    [48] Tanabe, S., Kimura, K.. Effect of air temperature, humidity, and air movement on thermalcomfort under hot and humid condition[J]. ASHRAE Transactions,1994.100(2):953-969.
    [49] Kubo, H., Isoda, N., H. Enomoto-Koshimizu. Cooling effect of preferred air velocity in muggyconditions[J]. Building and Environment1997;32(3):211–218.
    [50] Arens, E., et al. A study of occupant cooling by personally controlled air movement[J]. Energyand Buildings1998;27:45–59.
    [51]涂光备.空气流速对人体热舒适影响的研究[D].天津:天津大学,2002.
    [52]罗明智.室内空气流速对人体生理指标及热舒适性影响的研究[D].重庆:重庆大学,2005.
    [53]吴婧.室内空气流速与人体热舒适及生理应激关系的研究[D].重庆:重庆大学,2005.
    [54]刘红.重庆地区建筑室内动态环境热舒适研究[D].重庆:重庆大学,2009.
    [55]谈美兰,李百战,李文杰,刘红,郑洁,许孟楠.夏季空气流动对人体热舒适性的影响[J].土木建筑与环境工程,2011,33(2):70-73.
    [56] H. Zhang, E. Arens, S. A. Fard, C. Huizenga, G. Paliaga and G. Brager, et al. Air movementpreferences observed in office buildings[J]. Int J Biometeorol,2007,51(1):349–360.
    [57] Wei Yang, Guoqiang Zhang. Air movement preferences observed in naturally ventilatedbuildings in humid subtropical climate zone in China[J].Int Biometeorol,2009,52(5):563-573.
    [58] C. Candido, R. J. de Dear, R. Lamberts, L. Bittencourt. Air movement acceptability limits andthermal comfort in Brazil’s hot humid climate zone[J]. Building and environment,2010,45(1):222-229.
    [59]谭青.夏季教室通风速率对人体热舒适影响的研究[D].重庆:重庆大学,2011.
    [60] Fanger P O, Melikov A, Hanzawa H, et al. Air turbulence and sensation of draught[J]. Energyand Building,1988,12:21-39.
    [61] Barbara G, Christa K, Ulrike G. The significance of air velocity and turbulence intensity forresponses to horizontal drafts in a constant air temperature of23℃[J]. International Journal ofIndustrial Ergonomics,2000,26(6):639-649.
    [62] G Zhou, A Melikov. Equivalent frequency-a new parameter for description of frequencycharacteristics of airflow fluctuations [C]. In: Proceedings of Roomvent [C].2002:357-360.
    [63]夏一哉.气流脉动强度与频率对人体热感觉的影响研究[D].北京:清华大学,2000.
    [64]贾庆贤.送风末端装置的动态化研究[D].北京:清华大学,2000.
    [65] Stephan Konz,Sudad Al-Wahab,Helen Gough.The effect of air velocity on thermal comfort.
    [C].Proceedings of the Human Factors and Ergonomics Society Annual Meeting October1983,27(8):733-737.
    [66] J Toftum, G Zhou, A Melikov. Airflow direction and human sensitivity to draught[C]. In:Proceedings of the of CLIMA.2000.
    [67] Toftum, J. Air movement-good or bad?[J]. Indoor Air2004;14(s7):40-45.
    [68] J Toftum, R Nielsen. Impact of metabolic rate on human response to air movements duringwork in cool environments [J]. Industrial Ergonomics,1996,18(4):307-316
    [69] Gong Nan. Human Perception of Local Air Movement in the Tropics [D]. Singapore: NationalUniversity of Singapore,2005
    [70] Fountain M, Arens E, de Dear R, Bauman F, Miura K. Locally controlled air movementpreferred in warm isothermal environments[J]. ASHRAE Transactions1994;100(2):937-952.
    [71] Gagge AP, Stolwijk JAJ, Nishi Y. An effective temperature scale based on a simple model ofhuman physiological regulatory response[J]. ASHRAE Trans1971;77(1):247–62.
    [72] ANSI/ASHRAE55-1974. ASHRAE standard: thermal environmental conditions for humanoccupancy[S]. Atlanta (USA): American Society of Heating, Refrigerating andAir-conditioning Engineers Inc.;1974.
    [73] ANSI/ASHRAE55-1992. ASHRAE standard: thermal environmental conditions for humanoccupancy[S]. Atlanta (USA): American Society of Heating, Refrigerating andAir-conditioning Engineers Inc.;1992.
    [74] ANSI/ASHRAE55-1995. ASHRAE standard: thermal environmental conditions for humanoccupancy[S]. Atlanta (USA): American Society of Heating, Refrigerating andAir-conditioning Engineers Inc.;1995.
    [75] Tanabe, S., H. Imamura, Q. Jiang, and T. Suzuki. Effects of humidity on thermal comfort inoffice space(Part4: Subjective experimental results under equivalent SET*conditions)[C].Proceedings of SASHE Technical Conference, Hiroshima.1995b.
    [76] Hitomi Tsutsumia, Shin-ichi Tanabe, Junkichi Harigaya, Yasuo Iguchi, Gen Nakamura. Effectof humidity on human comfort and productivity after step changes from warm and humidenvironment[J]. Building and Environment,2007,42(12):4034–4042.
    [77] Humphreys M A, Nicol J F. Understanding the adaptive approach to thermal comfort[J].ASHRAE Technical Data Bulletin,1998,14(1):1-14.
    [78] de Dear R, Brager G, Cooper D. Developing an adaptive model of thermal comfort andpreference [R]. Final report ASHRAE RP-884. Sydney: Macquarie Research Ltd.,1997.
    [79] GB/T50785-2012.民用建筑室内热湿环境评价标准[S].北京:中国建筑工业出版社,2012.
    [80] Fergus Nicol Humphreys MA. Outdoor temperatures and comfort indoors[J]. BuildingResearch and practice,1978,6(2):92-105.
    [81] de Dear R..J., Brager G.S. Thermal comfort in naturally ventilated buildings revisions toASHRAE Standard55[J]. Energy and Buildings.2002,34:549-561.
    [82] Nicol, J.F, M.A. Humphreys. Derivation of the adaptive equations for thermal comfort infree-running buildings in European standard EN15251[J]. Building and Environment,2010,45:11–17.
    [83]杨柳.建筑气候分析与设计策略研究[D].西安:西安建筑科技大学,2003.
    [84]茅艳.人体热舒适气候适应性研究[D].西安:西安建筑科技大学,2006.
    [85] Ye X, Zhou Z, Lian Z, Liu H, Li C, Liu Y: Field study of thermal environment and adaptivemodel in Shanghai[J]: Indoor Air2006;16:320-326.
    [86]金振星.不同气候区居民热适应行为及热舒适区研究[D].重庆:重庆大学,2011.
    [87] ISO7730-1984. Moderate thermal environments—determination of the PMV and PPD indicesand specification of the conditions for thermal comfort[S]. Geneva, International Organizationfor Standardization,1984.
    [88] ISO7730-1994. Moderate thermal environments—determination of the PMV and PPD indicesand specification of the conditions for thermal comfort[S]. Geneva, International Organizationfor Standardization,1994.
    [89] GB/T5701-1985.室内热环境条件[S].北京:中国标准出版社,1985.
    [90] GB/T18049-2000.中等热环境PMV和PPD指数的测定及热舒适条件的规定[S].北京:中国标准出版社,2000.
    [91] Griffths I. Thermal comfort studies in buildings with passive solar features, field studies[R].UK: Report of the Commission of the European Community, ENS35090;1990.
    [92]上海第一医学院.人体生理学.北京:人民卫生出版社,1976.
    [93] A.P. Gagge, J.A.J. Stolwijk, J.D. Hardy. Comfort and thermal sensations and associatedphysiological responses at various ambient temperatures [J]. Environmental Research,1967,1(1):1–20.
    [94] Baizhan Li,Wenjie Li,Hong Liu,Runming Yao, Meilan Tan,Xiaolei Ma. PhysiologicalExpression of Human Thermal Comfort to Indoor Operative Temperature in the Non-HVACEnvironment[J].Indoor and Built Environment,2010,19(2):221-229.
    [95]李文杰.建筑室内自然环境下基于生理心理的人体热舒适研究[D].重庆:重庆大学,2010.
    [96]余娟.不同室内经历下人体生理热适应对热反应的影响研究[D].上海:.东华大学,2011.
    [97] Liu, W., Lian, Z. and Liu, Y.() Heart rate variability at different thermal comfort levels [J]. Eur.J. Appl. Physiol.,2008,103:361–366.
    [98] Yao, Y., Lian, Z., Liu, W., Jiang, C., Liu, Y. and Lu, H..Heart rate variation andelectroencephalograph-the potential physiological factors for thermal comfort study[J]. IndoorAir,2009,19:93–101.
    [99] ASHRAE2009. ASHRAE handbook of fundamentals. Physiological Principles, Comfort, andHealth,[Chapter8]. American Society of Heating, Refrigerating and Air-ConditioningEngineers, Inc., Atlanta, USA,2009.
    [100] Stolwijk JAJ,Hardy JD.Temperature regulation in man–a theoretical study[J].Pdugers ArchivGes.Physiol,1966,291:129-162
    [101] Gagge, A.P., J. Stolwijk, and Y. Nishi. An effective temperature scale based on a simplemodel of human physiological regulatory response [J]. ASHRAE Transactions,1971,1:247-262.
    [102] Tanabe S,Kobayashi K,Nakano J,etc. Evaluation of thermal comfort using combinedmulti-node thermoregulation(65MN)and radiation models and computational fluiddynamics(CFD)[J].Energy and Buildings,2002,34:637-646.
    [103] Huizenga C,Zhang H,Arens E.A model of human physiology and comfort for assessingcomplex thermal environments [J].Building and Environment,2001,36(6):691-699
    [104] WONG N H, KHOO S S. Thermal comfort in classrooms in the tropics[J]. Energy andBuildings,2003,35(4):337351.
    [105] FERIADI H, WONG N H. Thermal comfort in naturally ventilated houses in Indonesia [J].Energy Build,2004,36(7):614626.
    [106] YANG Wei, ZHANG Guo-qiang. Thermal comfort in naturally ventilated and air-conditionedbuildings in humid subtropical climate zone in China[J]. Int J Biometeorol,2008,52(5):385398.
    [107] Baizhan Li, Meilan Tan, Hong Liu, Xiaolei Ma, Wenjie Zhang. Occupant’s Perception andPreference of Thermal Environment in Free-running Buildings in China [J]. Indoor and BuiltEnvironment,2010,19(4):405–412.
    [108] ANSI/ASHRAE55-1966. ASHRAE standard: thermal comfort conditions [S]. Atlanta (USA):American Society of Heating, Refrigerating and Air-conditioning Engineers Inc.;1966.
    [109] Edward Arens, Hui Zhang, Charlie Huizenga. Partial-and whole-body thermal sensation andcomfort—Part I:Uniform environmental conditions [J]. Journal of Thermal Biology31(2006)53–59.
    [110] Gagge AP, Nishi Y.Heat exchange between human skin surface and thermal environment
    [M]. In: Lee DHK (ed) Handbook of physiology. American Physiological Society, Bethesda,Md.,1977:69–92.
    [111]蒋薇.人体热舒适性的实验研究.[D].天津:天津大学,2001
    [112] Fiala D. First principles modeling of thermal sensation responses in steady state and transientconditions [J]. ASH RAE Trans,2002,108(1):179-186.
    [113] Zhang H. Human thermal sensation and comfort in transient and non-uniform thermalenvironment [D]. USA, Berkeley: University of California,2003.
    [114] FrankSM, RajaSN,etal.Relative contribution of core and skin temperatures to thermal comfortin humans [J]. Journal of Thermal Biology,2000,25(1-2):147-150.
    [115] Danni Wang, Hui Zhang, Edward Arens, Charlie Huizenga. Observations of upper-extremityskin temperature and corresponding overall-body thermal sensations and comfort [J].Building and Environment,2007,42(12):3933–3943.
    [116]刘蔚巍.人体热舒适客观评价指标研究[D].上海,上海交通大学,2007.
    [117] GaggeA P.A new physiologicalvariableassociated with sensibleandinsensible perspiration[J].American Journalof Physiology,1937,20(2):277287.
    [118] Gonzalez R R, Gagge A P. Magnitude estimates of thermal discomfort during transients ofhumidity and operative temperature and their relationship to the new ASH RAE effectivetemperature (ET*)[J]. ASHRAE Trans,1973,79(1):88-96.
    [119] Berglund, L.G. Comfort and Humidity [J]. ASHRAE Journal,1998:35-41.
    [120] Fanger P O, Toftum, J. Thermal Comfort in the future-Excellence and Expectation[C]. TheInternational conference Moving Thermal Standards into the21st Century, Windsor,2001:11-18.
    [121]周翔.偏热环境下人体热感觉影响因素及评价指标研究[D].北京:清华大学,2008.
    [122]重庆市-夏热冬冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社,2001.
    [123] Fountain, M.. Laboratory Studies of the Effect of Air Movement on Thermal Comfort: AComparison and Discussion of Methods. ASHRAE Transactions,1991,97(1):862-873.
    [124]刘红,郑文茜,李百战,谈美兰,高亚峰,金振星.夏热冬冷地区非采暖空调建筑室内热环境行为适应性[J].中南大学学报(自然科学版),2011,42(6):1805-1812.
    [125] Runming Yao, Jing Liu, Baizhan Li. Occupants’ adaptive responses and perception of thermalenvironment in naturally conditioned university classrooms [J]. Applied Energy,2010,87:1015–1022.
    [126] Humphreys MA, Nicol JF, Raja IA. Field studies of indoor thermal comfort and the progressof the adaptive approach [J]. Journal of Advances on Building Energy Research2007;1:55–88
    [127] Fergus Nicol. Adaptive thermal comfort standards in the hot–humid tropics [J]. Energy andBuildings,2004,36(7):628–637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700