用户名: 密码: 验证码:
猪瘟兔化弱毒一步法荧光定量PCR检测方法的建立及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical swine fever, CSF)是由猪瘟病毒(Classical swine fever virus, CSFV)引起的一种急性、发热性、高度接触性的病毒性传染病。其在世界范围内流行并引起巨大的经济损失,发病率高,死亡率高,严重威胁着养猪业。我国研制的猪瘟兔化弱毒疫苗是国际公认的最安全有效的弱毒疫苗,在我国乃至全球得到广泛应用,为猪瘟的防控做出了巨大贡献。猪瘟兔化弱毒疫苗包括组织苗和细胞苗,然而不同厂家之间生产的疫苗的免疫效价以及产生的免疫效果均不一样。为了对猪瘟兔化病毒含量进行准确测定,本研究通过RT-PCR方法和体外转录方法,构建了体外转录RNA作为标准品;并通过对各种反应条件和反应体系进行优化,建立了一种敏感性高、特异性强、重复性好的猪瘟兔化弱毒一步法荧光定量PCR检测方法。同时,利用该方法对3个不同厂家生产的猪瘟兔化弱毒疫苗进行了猪瘟兔化弱毒含量的测定,以及猪瘟兔化弱毒在猪脐静脉血管内皮细胞和牛睾丸细胞中不同增殖情况的测定。本研究获得以下结果:
     (1)参照GenBank中公布的猪瘟兔化弱毒全长序列(登录号为AF091507),在其5′端非翻译区设计一对引物,通过RT-PCR成功得到与预期大小相符且包含有T7启动子序列的DNA片段,回收纯化后在T7 RNA聚合酶作用下通过体外转录成功构建了猪瘟兔化弱毒荧光定量PCR检测方法的RNA标准品。其纯度高,稳定性好,浓度高,一次体外转录得到的RNA标准品保存在-70℃下可供长期使用。
     (2)通过对退火温度、引物和探针浓度等反应条件和反应体系的优化,成功建立了能准确定量猪瘟兔化弱毒的一步法荧光定量PCR检测方法。该方法对猪瘟病毒有很好的特异性,检测灵敏度可达10拷贝/μL RNA,比RT-nPCR方法高出一个数量级,在较广的范围内(1.0×10~8~1.0×10~2拷贝/μL)具有很好的相关性(R2=0.999)。对高、中、低3种浓度的标准品RNA进行重复性试验,批内变异系数分别为0.54%、0.52%和0.39%;批间变异系数分别为1.47%、1.85%和1.01%,具有良好的可重复性。
     (3)对不同厂家生产的不同类型疫苗进行猪瘟兔化弱毒含量测定表明:同一厂家中每一头份脾淋苗中包含的病毒含量比细胞苗中要高出约1~2个数量级,而从不同厂家对比中可以看出,其生产的脾淋苗和细胞苗之间病毒含量有所差异,其中脾淋苗最高相差20.8倍,细胞苗最高相差30.3倍,但所检测疫苗都达到兔体定型热反应要求。
     (4)对猪瘟兔化病毒在猪脐静脉血管内皮细胞和牛睾丸细胞中增殖情况进行了初步测定,结果显示猪瘟兔化病毒在前者中含量高出在后者中7.1倍,为进一步探索猪瘟病毒在细胞中的增殖提供了有效的检测手段。
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an acute, highly contagious and devastating viral disease with high morbidity and mortality. CSF is endemic in many countries in the world, causing serious losses in the pig industry worldwide. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s and has been proved to be the safest and most effective vaccine in the past half a century. The C-strain vaccine is widespread used in the world and makes huge contribution to the prevention and control of the CSF. The C-strain vaccines manufactured in our country mainly include the tissue vaccine and the cultured cell vaccine, however, they have different virus titrations and immunological efficacy.
     In this study, in order to quantify the virus loads of the C-strain precisely, we constructed a RNA Standard through RT-PCR and in vitro transcription and developed a one step real-time PCR assay. Then, we applied the assay to quantify the virus loads of different types of vaccines from 3 different producers, and evaluated the proliferation of the C-strain in swine umbilical vein endothelial cells (SUVECs) and bovine testicular cells (BTCs). We obtained the following results:
     (1)A pair of primes were designed with a T7 promotor’s sequence in the 5′end of the forward one, according to the 5′UTR of the CSFV genome whose accession number is AF091507 on Genbank. The target PCR product was purified and then in vitro transcribed to a single-stranded RNA with the T7 RNA Polymerase. The RNA Standard was obtained after purification and identification of the single-stranded RNA, which had high concentration and purity, as well as good stability. The RNA Standard obtained at a time could be used for a long time when stored at -70℃.
     (2)The one step real-time PCR assay for detecting and quantifying the lapinized Chinese strain of CSFV was developed succesfully after the optimization of a variety of conditions, such as the annealing temperature, primer’s and probe’s concentration, etc. The assay was highly specific for detecting CSFV and had a minimum detection limit of 10 copies/μL RNA, 10 times higher than the conventional RT-nPCR. The linear range was from 1.0×10~8 copies/μL to 1.0×10~2 copies/μL, and the correlation coefficient was 0.999. Data of the repetitive tests showed good reproducibilities and the coefficient variation of high, medium, low concentration within and between batches were 0.54%, 0.52%, 0.39% and 1.47%, 1.85%, 1.01%, respectively.
     (3)Data of quantifying the virus loads of several lapinized virus vaccines against CSFV showed that the virus loads of the tissue vaccines were 10~100 times higher than that of the cultured cell vaccines comparing each producers’vaccines. However, when comparing with different producers, the virus loads of tissue vaccines and cultured cell vaccines were relatively discrepant. The maximum discrepancy was up to 20.8 times among the tissue vaccines and 30.2 times among the cultured cell vaccines. However, all the vaccines tested in this study achieved the standard made by the conventional rabbit fever reaction.
     (4)Data of evaluating the proliferation of the C-strain proliferated in two types of cells showed that the virus loads in SUVECs were approximately 7.1 times higher than that in BTCs, which supplied an effective techniques support for the evaluating the proliferation of the C-strain proliferated in different cell lines.
引文
曹军平,赵国,顾敏,彭宜,张小荣,彭大新,刘秀梵. 2010.实时荧光定量RT-PCR方法检测禽流感病毒.中国兽医学报,30(01):47~51.
    陈苏红,张敏丽,黄坚,丁雨,伯晓晨,王升启. 2004. SARS冠状病毒实时荧光RT-PCR定量检测.生物化学与生物物理进展,31(03):249~254.
    陈小金,陈建飞,时洪艳,张志榜,冯力. 2010.猪轮状病毒SYBR GreenⅠ实时荧光定量PCR检测方法的建立.中国兽医科学,40(02):174~179.
    陈颖,徐宝梁,苏宁. 2004.实时荧光定量PCR技术在转基因玉米检测中的应用研究.作物学报,6:602~607.
    陈玉栋,张楚瑜,邹俊煊,潘兹书,陈立新,李田,郭长林. 2003.建立快速定量检测猪瘟兔化弱毒苗的荧光定量PCR技术.中国病毒学报,18(2):124~128.
    仇华吉,童光志,沈荣显. 2005.猪瘟兔化弱毒疫苗——半个世纪的回顾.中国农业科学,38(8):1675~1685.
    杜念兴. 1998.猪瘟的回顾与展望.中国预防兽医学报,20(5):317~319.
    冯燕,卢亦愚,严菊英,史雯,李敏红,龚黎明,葛琼,周敏. 2005.荧光定量RT-PCR技术快速检测SARS病毒核酸.中国病毒学,20(3):228~231.
    郭显坡. 2009.郑州猪细小病毒分离鉴定、SYBR Green I实时定量PCR检测方法的建立及临床初步应用. [硕士论文].郑州:河南农业大学
    郝秀静. 2008.荧光定量PCR在医学诊断中的应用.中国医疗前沿,3(13):121~122.
    胡建和,杭柏林,王青,李任峰,刘兴友,王三虎. 2008.猪瘟强弱毒鉴别多重RT-PCR方法的建立及应用.西北农林科技大学学报(自然科学版),36(11):47~52.
    黄平,胡守旺,王秋泉,杨杏芬,高秀洁,李杰. 2009.高致病性禽流感通用和H5亚型荧光定量PCR方法的建立.第四军医大学学报,30(23):2869~2872.
    蒋春燕. 2006.猪瘟病毒实时荧光定量PCR快速检测试剂盒的研制与应用. [硕士论文].北京:中国兽医药品监察所
    赖志,张云浦,平顺,黄新武. 2003.影响猪瘟兔化弱毒细胞疫苗生产的原因分析.中国兽药杂志,37(1):36~38.
    李安,谢金文,魏加贵,沈志强.2009.荧光定量PCR技术在分子检测上的研究进展.中国畜牧兽医,36(4):73~76.
    李艳,仇华吉,王秀荣,张守发,朱庆虎,李娜,李国新,童光志. 2006.鉴别猪瘟强毒和弱毒的反转录-复合套式聚合酶链式反应(RT-nPCR)检测方法的建立.中国农业科学,39(9):1907~1914.
    卢受昇,樊惠英,孙彦伟,任涛,卢洪芬,闫晓菊,孔令辰,查云峰,廖明. 2009.口蹄疫病毒实时TaqMan荧光定量RT-PCR检测方法的建立.华南农业大学学报,30(03):86~89.
    陆承平. 2001.兽医微生物学.北京:中国农业出版社:213~236.
    陆芹章,韦栋平,罗廷荣,刘芳,黄伟坚,廖素环,吴显实,余克伦. 2004. RT-PCR诊断猪瘟的应用.广西农业生物科学,(3):230~232.
    陆芹章,吴健敏,颜建华. 2004.猪瘟犊牛睾丸细胞苗与兔体组织苗免疫效果的比较观察.中国预防兽医学报,26(3):216~219.
    陆永干,戴贤君,姚建红,黄利权. 2009.猪瘟病毒荧光定量PCR标准阳性模板的构建.浙江农业学报,21(1):35~38.
    罗廷荣,波丹,黄宪高,梁家权,刘芳,黄伟坚,秦爱珍,温荣辉,陆芹章,余克伦. 2001. RT-PCR 检测猪瘟病毒初探.广西农业生物科学,20(1):17~20.
    罗廷荣,莫扬,吴文德,黄玉华,黄伟坚,秦爱珍,刘芳,温荣辉,陆芹章,余克伦. 2004. RT~PCR技术检测猪瘟病毒的应用研究.中国预防兽医学报,26(04):307~310.
    马春宇. 2009. ELISA法和DNA荧光定量PCR法检测乙肝病毒的相关性研究.中国实验诊断学,13(07):957~958.
    石建平,孟日增,刘晶,郭娜,潘风光. 2009.实时荧光定量PCR快速检测鸭病毒性肠炎标准方法的建立.中国兽医学报,29(07):849~853.
    史利军,孙宇,尹惠琼,孙卫华,吕茂民,章金刚. 2009.牛病毒性腹泻病病毒荧光定量PCR检测体系的建立与评价.中国兽医学报,29(12):1544~1546.
    史子学,徐兴然,涂长春. 2007.用荧光定量RT~PCR方法检测猪瘟病毒.中国预防兽医学报,29(6):467~470.
    宋勇涛,王勇,刘勤,王露露,刘昌峨,魏泓.2008. FQ-PCR在转基因产品检测中的应用研究进展.动物医学进展,29(11):55~59.
    田宏,刘湘涛,张彦明,林彤,吴锦艳,谢庆阁. 2007.猪瘟病毒及其致病机制研究进展.动物医学进展,28(增):27~30.
    涂长春. 2004.中国猪瘟流行病学现状与防制研究. [博士论文].北京:中国农业大学.
    王建波,任杰,张映. 2009.实时荧光定量PCR在猪肺炎支原体检测中的应用.生物技术通报,(07):60~63.
    王琴,宁宜宝. 2005.猪瘟免疫失败主要原因的解析.中国兽医杂志,41(06):61~63.
    王守山,李玉保,孟喜龙,马飞. 2009.猪繁殖与呼吸综合征病毒SYBR Green I荧光定量RT-PCR方法的建立.江西农业大学学报,31(06):1074~1078.
    王云龙,刘建营,韩洁,陈小科,李玉林. 2009.猪瘟病毒荧光定量PCR检测方法的建立.动物医学进展,30(5):36~40.
    王在时. 1999.猪瘟防治研究的回顾与展望.见:陈永调(主编).中国兽药监察所研究报告汇编.北京:中国兽医药品监察所,1~28.
    王镇,陆宇,丁明孝. 2000.猪瘟病毒中国兔化弱毒疫苗株在原代牛睾丸细胞中增殖特性的研究. 中国病毒学,15(2):170~179.
    隗荣华,李淑莉,刘薇,曾令兰. 2008.荧光定量PCR法在丙型肝炎病毒核糖核酸检测中的应用. 中西医结合肝病杂志,18(05):301~303.
    吴鑫,王军,张以芳. 2008.猪瘟病毒一步法RT-PCR检测方法的建立.中国畜牧兽医,35(02):64~65.
    尹惠琼,张红,刘松婷,杨姝,史利军,张改平,章金刚.蓝舌病病毒荧光定量RT-PCR检测技术.中国动物传染病学报,0,17(4):7~10.
    尹惠琼,刘松婷,史利军,杨姝,章金刚. 2009.甲型H1N1流感病毒核酸荧光定量RT-PCR检测技术.生物技术通讯, 21(02):244~247.
    于明东,李书忠. 2009.实时荧光定量PCR法检测人骨肉瘤耐MTX细胞系中RFC、DHFR、GST-π的mRNA表达.中国矫形外科杂志,17(11):858~861.
    臧金灿,樊国燕,乔宏兴,刘伟敏. 2007. RT-PCR与兔体交叉试验检测猪瘟病毒比较研究.河南农业科学,(1):99~103.
    张朝红. 2007.猪瘟四种实验室诊断方法的比较研究. [硕士论文].杨凌:西北农林科技大学
    张冬雷,施健,崔之础,王惠民,鞠少卿,李立人,倪红兵,苏建友,2005.实时荧光定量检测HCV RNA含量的临床意义.世界华人消化杂志,13(1):39~43.
    张磊,方驰华,范应方. 2008.实时荧光定量PCR检测肝癌细胞多药耐药相关蛋白MRP2、MRP3及MRP5 mRNA的表达.南方医科大学学报,28(2):219~220.
    张太翔,王炳军,凌宗帅,李玉峰,高小博,田国宁,张金玲,韩亮,张丽萍. 2009.实时荧光定量PCR检测鸡传染性贫血病毒方法的建立.中国动物检疫,26(11):58~60.
    张韵红. 2007.实时荧光定量PCR技术运用于肝癌患者基因检测.中国血液流变学杂志,17(1):135~136.
    中国农业科学院哈尔滨兽医研究所. 2008.动物传染病学.北京:中国农业出版社:308~322
    周建林,伍严安. 2010.人博卡病毒实时荧光定量PCR检测方法的建立.临床儿科杂志,28(01):47~50.
    周霞,剡根强. 2005.荧光定量PCR技术及其在预防兽医学研究中的应用.石河子大学学报(自然科学版),23(5):623~627.
    朱良全,王栋. 2006.病毒保护剂在猪瘟兔化弱毒牛睾丸细胞苗中的研究.中国预防兽医学报,28(1):16~21.
    朱小甫,张志,李晓成,陈德坤,吴旭锦. 2007.猪瘟病毒RT-nested PCR检测方法的优化和应用.西北农林科技大学学报(自然科学版),35(06):11~14.
    朱玉兰,王佃鹏,甄胜西,黄宗炎,刘胜牙,高朝贤. 2009.登革热病毒RNA实时荧光定量RT-PCR检测方法的建立.热带医学杂志,9(11):1244~1246.
    Alexandra G, Gilles F, Christiane C. 2002. Tracking T cellclonotypes in complex T lymphocyte populations by real-time quantitative PCR using fluorogenic complementarity determining region-3-specific probes. Journal of Immunological Methods, 270(2): 269~280.
    Barfoed A M, ?stergaard E, Frandsen P L, Nielsen E B, Sandberg E, Rasmussen T B. 2010. Development of a primer-probe energy transfer based real-time PCR for detection of Marek's disease virus. Journal of Virological Methods, 165(1): 21~26.
    Benes V, Castoldi M. 2010. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50(4): 244~249.
    Bjorklund H, Lowings P, Stadejek T. 1999. Phylogenetic comparison and molecular epidemiology of classical swine fever virus. Virus Genes, 19(3): 189~195.
    Ciglene?ki U J, Grom J, Toplak I, Jemersic L, Barli?-Maganja D. 2008. Real-time RT-PCR assay for rapid and specific detection of classical swine fever virus: Comparison of SYBR Green and TaqMan MGB detection methods using novel MGB probes. Journal of Virological Methods, 147(2): 257~264.
    Decaro N, Elia G, Martella V, Desario C, Campolo M, Trani L D, Tarsitano E, Tempesta M, Buonavoglia C. 2005. A real-time PCR assay for rapid detection and quantitation of canine parvovirus type 2 in the feces of dogs. Veterinary Microbiology, 105(1): 19~28.
    Derveaux S, Vandesompele J, Hellemans J. 2010. How to do successful gene expression analysis using real-time PCR. Methods, 50(4): 227~230.
    Dewulf J, Koenen F, Mintiens K, Denis P, Ribbens S, de Kruif A. 2004. Analytical diagnostic performance of several classical swine fever laboratory techniques onlive animals for detection of infection. Journal of Virological Methods, 119(2): 137~143.
    Dhanasekaran S, Doherty T M, Kenneth J, TB Trials Study Group. 2010. Comparison of different standards for real-time PCR-based absolute quantification. Journal of Immunological Methods, 354(1-2): 34~39.
    Dimna M L, Vrancken R, Koenen F, Bougeard S, Mesplede A, Hutet E, Kuntz-Simon G, Le Potier M F. 2008. Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus. Journal of Virological Methods, 147(1): 136~142.
    Edwards S, Fukusho A, Lefèvre P C, Lipowski A, Pejsak Z, Roehe P, Westergaard J. 2000. Classical swine fever: the global situation. Veterinary Microbiology, 73(2-3): 103~119.
    Elber A R W, Stegeman J A, Moster H, Ekker H M, Smak J A, Pluimers F H. 1999. The classical swine fever epidemic 1997-1998 in the Netherlands: descriptive epideiology. Prev Vet Med, 42(3-4): 157~184.
    Engel K H, Moreano F, Ehlert A. 2006. Quantification of DNA f rom genetically modified organisms in composite and processed foods. Trends Food Sci Tech, 17(9): 490-497.
    Francki R I B, Fauguet C M, Knudson D L. 1991. Flaviviridae. Arch Virol Suppl, 2: 223~233. Girard B M, May V, Bora S H. 2002. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Peptides, 109(1-3): 89~101.
    Handel K,Kehler H,Hills K. 2004. Comparison of reverse transcriptase polymerase chain reaction, virus isolation, and immuneo-peroxidase assays for detecting pigs infected with low,moderate, and high virulent strains of classical swine fever virus. J Vet Diagn Invest, 16(2): 132~138.
    Heid C A, Stevens J, Livak K J, 1996. Real time quantitative PCR. Genome Research. 6: 986~994.
    Hiroshi S, Kazue O, Yonemura K. 2003. Quantitative PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells: implication of equimolar target and competitor end products. Clinica Chimaica Acta, 328(1-2):147~153.
    Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K. 2005. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. Journal of Virological Methods, 130(1-2):36~44.
    Hofmann M A. 2003. Construction of an infectious chimeric classical swine fever virus containing the 5′UTR of bovine viral diarrhea virus, and its application as a universal internal positive control in real-time RT-PCR. Journal of Virological Methods, 114(1): 77~90.
    Huang Y L, Pang V F, Pan C H, Chen T H, Jong M H, Huang T S, Jeng C R. 2010. Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus. Journal of Virological Methods, 160(1~2): 111~118.
    Katz J B, Ridpath J F, Bolin S R. 1993. Presumptive diagnostic differentiation of hog cholera virus from bovine viral diarrhea and border disease viruses by using a cDNA nested amplification approach. Journal of Clinical Microbiology, 31(3): 565~568.
    Kwiatek O, Keita D, Gil P, Pinero J F, Clavero M A J, Albina E, Libeau G. 2010. Quantitative one-step real-time RT-PCR for the fast detection of the four genotypes of PPRV. Journal of Virological Methods, 165(2): 168~177.
    Li G M, Li W F, Guo F Y, Xu S M, Zhao N, Chen S, Liu L X. 2010. A novel real-time PCR assay for determination of viral loads in person infected with hepatitis B virus. Journal of Virological Methods,165(1): 9~14.
    Liu L H, Widén F, Baule C, Belák S. 2007. A one-step, gel-based RT-PCR assay with comparable performance to real-time RT-PCR for detection of classical swine fever virus. Journal of Virological Methods, 139(2): 203~207.
    Liu S, Hou G, Zhuang Q Y, Shu Y L, Chen J M, Jiang W M, Chen J, Li J P. 2009. A SYBR Green I real-time RT-PCR assay for detection and differentiation of influenza A(H1N1) virus in swine populations, Journal of Virological Methods, 162(1-2): 184~187.
    Lorusso A, Faaberg K S, Killian M L, Koster L, Vincent A L. 2010. One-step real-time RT-PCR for pandemic influenza A virus (H1N1) 0 matrix gene detection in swine samples, Journal of Virological Methods, 164(1-2): 83~87.
    Lowings P, Ibata G, De Mia G M. Rutili D, Paton D. 1999. Classical swine fever in Sardinia: epidemiology of recent outbresks. Epidemiol Infect, 122: 553~559.
    Mackay I M, Arden K E, Nitsche A. 2002. Real-time PCR in virology. Nucleic Acids Research, 30(6):1292~1305.
    Magnus L, Charles H. 2005. Dynamic Range and Reproducibility of Hepatitis B Virus(HBV) DNA Detection and Quantification by Cobas TaqMan HBV, a Real-Time Semiautomated Assay. Journal of Clinical Microbiology, 43(8): 4251~4254.
    Mocellin S, Rossi C R, Pilati P, Nitti D, Marincola F M. 2003. Quantitative real-time PCR: a powerful ally in cancer research. Trends in Molecular Medicine, 9(5): 189~195.
    Nathalie D, Axelle D, Veronique S. 200l. Quantification of Human Immunodeficiency Virus Type l Proviral Load by a TaqMan Real-Time PCR Assay. Journal of Clinical Microbiology, 39(4): 1303~1310.
    Piet A, Rijn V, Gerard J W. Renate H H, Jacobs L, Moonen P, Feitsma H. 2004. Detection of economically important viruses in boar semen by quantitative Real-Time PCR technology. Journal of Virological Methods, 120(2): 151~160.
    Ralph J A, Ophuis O, Morrissy C J, Boyle D B. 2006. Detection and quantitative pathogenesis study of classical swine fever virus using a real-time RT-PCR assay. Journal of Virological Methods, 131(1): 78~85.
    Stadejek T, Vilcek S, Lowings J P, Ballagi-Pordány A, Paton D J, Belák S. 1999. Genetic heterogeneity of classical swine fever in central Europe. Virus Res, 52(2): 195~204.
    Wickert L, Steinkruger S, Abiaka M, Bolkenius U, Purps O, Schnabel C, Gressner A M. 2002. Quantitative monitoring of the mRNA expression pattern of the TGF-β-isoforms (β1,β2,β3) during transdifferentiation of hepatic stellate cells using a newly developed real-time SYBR Green PCR. Biochemical and Biophysical Research Communications, 295(2): 330~335.
    Wirz B, Tratschin J D, Müller H K, Mitchell D B. 1993. Detection of hog cholera virus and differentiation from other pestiviruses by polymerase chain reaction. Journal of Clinical Microbiology, 31(5): 1148~1154.
    Zhao J J, Cheng D, Li N, Sun Y, Shi Z X, Zhu Q H, Tu C C, Tong G Z, Qiu H J. 2008. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Veterinary Microbiology 126 (1-3): 1~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700