用户名: 密码: 验证码:
黄牛KLF7、KLF11和KLF15基因的单核苷酸多态性及其与生长性状的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调节能量代谢的基因具有影响家养动物生长的潜力,基因的多态性同样具有此效应。KLF家族(Kruppel-like factors)是真核生物中广泛存在的一类基础转录元件结合蛋白(BTEP),通过羧基端三个连续锌指构成的保守结构域结合靶基因启动子内富含GC的序列以调控其转录,进而调控各类细胞的增殖分化和组织发育。本研究致力于检测编码KLF转录因子家族中相关基因的单核苷酸多态性(SNPs),并分析了SNPs与黄牛生长性状的相关性。本研究采用PCR-RFLP、PCR-SSCP和DNA测序技术,检测了南阳牛、秦川牛、郏县红牛和中国荷斯坦牛共4个群体1045个个体的五个与能量代谢调控相关基因(KLF4、KLF5、KLF7、KLF11和KLF15)的遗传变异,分析了其在4个牛群体的遗传结构和遗传多样性,并对四个群体在上述基因位点的单核苷酸多态性与其生长性状进行了相关分析,以检验这些基因对4个黄牛群体生长发育的遗传效应,并对具有显著相关的候选基因进行了实时定量分析,以期发现对重要经济性状具有显著效应的遗传标记,为中国黄牛的高效选育和分子标记数据库的建立、种质资源保存与利用提供遗传学依据。
     本研究共扫描了五个KLF家族基因(KLF4、KLF5、KLF7、KLF11和KLF15)的17个位点,然而仅在三个基因(KLF7、KLF11和KLF15)的五个位点有多态性,这与KLF转录因子家族在进化中的高保守性和重要功能一致。
     1. KLF7基因多态性及其与南阳牛、秦川牛和郏县牛生长性状的相关分析
     本研究揭示了位于KLF7基因第二外显子及其侧翼区的3个SNPs :NC_007300:g.41401C>T,42025T>C和42075A>G。其中发现了一个同义突变:苯丙氨酸/苯丙氨酸(p.F54F,C41401T)。有趣的是在同时引入三个TaqI酶切位点后这三个单核苷酸多态性可以同时被酶切和检测。在三个位点中,只有中国荷斯坦奶牛在C41401T位点偏离哈代温伯格平衡状态。连锁不平衡分析发现C41401T和T42025C在郏县红牛中强连锁,T42025C和A42075G在秦川牛、南阳牛和中国荷斯坦奶牛中强连锁(r2 > 0.33)。群体遗传指数分析发现中国荷斯坦奶牛纯合度在C41401T位点达到1,只有一个有效等位基因。χ2检验显示在P1、P2和P3位点基因型分布有显著差异,暗示这些多态性与牛品种显著相关(P<0.001)。关联分析发现在6月龄,T2T2基因型个体(T42025C)的牛比T2C2基因型个体具有更大的日增重(P = 0.009)和胸围(P = 0.009)。在12月龄,C2C2基因型个体(T42025C)比T2C2基因型个体具有更大的体重(P = 0.008)、体长(P = 0.001)和胸围(P = 0.003);A3A3基因型个体(T42075C)比A3G3基因型个体具有更大的体长(P = 0.006);单倍型C1C1C2C2A3A3(H1)个体比单倍型C1C1T2C2A3G3(H2)的个体具有更大的体长(P = 0.001)和胸围(P = 0.004);单倍型C1T1T2C2A3G3(H5)个体比单倍型C1C1T2C2A3G3(H2)的个体具有更大的坐骨端宽(P = 0.007)。
     KLF7基因的三个单核苷酸多态性P1、P2和P3均与秦川牛和郏县牛的体重和体尺性状没有显著相关。
     2. KLF11和KLF15基因多态性及其与南阳牛、秦川牛和郏县牛生长性状的相关分析
     本研究揭示了位于KLF11和KLF15基因的2个SNPs :黄牛KLF11基因NC_007309:g.24769 C>T和KLF15基因的NC_007301:g.1230 A>G。其中KLF11基因中的C>T突变导致了异亮氨酸>缬氨酸(p.I19V)的错义突变。群体遗传分析发现检测群体中的遗传多样性不高,χ2检验发现KLF11和KLF15位点的基因型分布与黄牛品种显著相关。相关分析结果显示位于KLF11基因3'非翻译区的C/T SNP在南阳牛6月龄的体重(P = 0.002)、日增重(P = 0.006)和体长(P = 0.001),12月龄的日增重(P = 0.005)效应显著。但KLF15基因的SNP在P < 0.05水平与检测的生长性状没有显示任何相关性。尽管KLF11基因的C/T没有引起氨基酸的改变,但它可能与其它可能还未检测到的SNP或它附近的数量性状基因座(QTL)紧密连锁。
     KLF11和KLF15基因的两个单核苷酸多态性均与秦川牛和郏县牛的体重和体尺性状没有显著相关。
     3. KLF7和KLF11基因在秦川牛12个组织的表达谱
     本试验采集3头18月龄纯种秦川牛的心、肝、脾、肺、肾、卵巢、小肠、胃、肌肉、皮下脂肪、腹部脂肪、垂体共12个组织样,采用SYBR Green I荧光染料法检测了KLF7和KLF11基因在秦川牛12个组织的相对表达量。结果显示KLF7基因在胃中表达量最高,在皮下脂肪和腹脂中也有较高的表达量。KLF11基因在胃中的表达量最高,在腹脂、肺、乳腺和皮下脂肪中也有较高表达。脂肪、胃和乳腺均是参与能量代谢的主要器官,提示KLF7和KLF11基因可能在能量代谢中具有重要作用。
Genes that regulate metabolism and energy partitioning have the potential to influence growth traits in farm animals, as do polymorphisms within these genes. KLFs (Kruppel-like factors) are highly conserved basic transcription element binding protein (BTEP). There are conserved zinc finger domains at their C-termini that can bind specifically to the GC-rich promoter sequences of target genes, thus activating or repressing their expression, and then regulate the proliferation and differentiation of kinds of cells as well as the development of tissues. This study was conducted to identify single nucleotide polymorphisms (SNPs) in genes encoding Kruppel-like factors family and assess the associations of polymorphisms identified with cattle growth traits. Genetic variations of energy homeostasis related genes (KLF4, KLF5, KLF7, KLF11 and KLF15) were detected by PCR-RFLP, PCR-SSCP and DNA sequencing techniques in 1045 individuals of four populations (Nanyang cattle, Qinchuan cattle, Jiaxian cattle and Chinese Holstein), and association analysis were carried out to evaluate the effects of genotypes of candidate genes on growth traits of four Chinese cattle populations. The objects were to discovery the hereditary characteristics and to explore molecular markers with significant effects on economic important traits for efficient selection and improvement of Chinese cattle, and to provide genetic information for foundation of molecular marker database, protection and usage of breed resource of Chinese cattle.
     In current study, 17 loci of five KLFs (KLF4, KLF5, KLF7, KLF11 and KLF15 genes) were scanned, but only 5 SNPs were found in three genes (KLF7, KLF11 and KLF15 genes), this were consisted with the highly conserved and essential functions of KLF transcriptional factors.
     1. Polymorphisms identification and associations of Kruppel-like factor KLF7 gene with cattle growth traits
     In the current study, three SNPs of exon 2 and its flanking region of KLF7 gene were revealed: NC_007300:g.41401C>T (p.F54F), 42025T>C and 42075A>G. Interestingly, the three SNPs can be detected simultaneously after created restriction recognized sites. It was found all the breeds were in Hardy-Weinberg equilibrium except Chinese Holstein at C41401T locus (P > 0.05). The statistical results indicated there was a strong linkage not only between C41401T and T42025C in Jiaxian, but also between T42025C and A42075G in Qinchuan, Nanyang and Chinese Holstein respectively (r2 > 0.33). Significant statistical differences in genotypic frequencies at the three loci displayed that the polymorphisms were remarkably correlated with cattle breeds byχ2 test (P < 0.001). In addition, The cattle with genotype T2T2 (T42025C) had greater average daily gain (P = 0.009) and heart girth (P = 0.009) than those with genotype T2C2 at 6 months. The cattle with genotype C2C2 (T42025C) had greater body weight (P = 0.008), body length (P = 0.001), and heart girth (P = 0.003) than those with genotype T2C2 at 12 months. The cattle with genotype A3A3 (T42075C) had greater body length (P = 0.006) than those with genotype A3G3 at 12 months. the cattle with haplotype C1C1C2C2A3A3 (H1) had greater body length (P = 0.001) and heart girth (P = 0.004) than those with haplotype C1C1T2C2A3G3 (H2) at 12 months. The cattle with haplotype C1T1T2C2A3G3 (H5) had greater hucklebone width (P = 0.007) than those with haplotype C1C1T2C2A3G3 (H2) at 12 months.
     3 SNPs of KLF7 gene have no significant associations with the growth traits of Qinchuan and Jiaxian.
     2. Polymorphisms identification and associations of Kruppel-like factor KLF11 and KLF15 genes with cattle growth traits
     In the current study, twelve loci of KLF4, KLF5, KLF11 and KLF15 genes were scaned and two novel SNPs, NC_007309:g.24769 C>T of bovine KLF11 gene and NC_007301:g.1230 A>G of bovine KLF15 gene, were identified, in which a missense mutation was identified: p:I19V in KLF15 gene. The genetic diversities in analyzed populations were found not high. The distributions of genotypic frequencies of KLF11 and KLF15 loci were significantly associated with bovine breeds byχ2 test. Correlation analysis indicated that an C/T SNP located in 3'-UTR of the KLF11 gene had large effect on body weight (P = 0.002), average daily gain (P = 0.006), body length (P = 0.001) at 6 months and average daily gain (P = 0.005) at 12 months in Nanyang cattle. But the SNP in KLF15 gene did not showed associations at P < 0.05 with any examined traits. Although C/T in KLF11 do not cause amino acid changes, it could be linked to other yet to be detected causative mutations or nearby QTL.
     2 SNPs of KLF11 and KLF15 gene have no significant associations with the growth traits of Qinchuan and Jiaxian.
     3. Expression profiles of KLF7 and KLF11 genes in 12 tissues of 18 months old Qinchuan cattle
     12 freezed tissues including fat in abdomen, hypophysis, small intestine, kidney, liver, muscle, heart, spleen, lung, lacteal gland, stomach, adipose layer of three Qinchuan cattle (18 months) were collected. SYBR Green I was used to detect the expression situation of KLF7 and KLF11 genes in these tissues, the results showed that the expressions of KLF7 and KLF11 were similarly abundant in stomach, adipose layer and fat in abdomen, which were major organs involving in energy metabolism. The results implied that KLF7 and KLF11 were functional important in energy metabolism.
引文
陈宏,雷初朝,胡沈荣. 2007.分子遗传学实验指导.西北农林科技大学
    赖新生. 2009.中国四个牛品种Hesx1、Pitx2和Weaver基因多态性及其与生长性状的关联分析.[硕士学位论文].杨陵:西北农林科技大学.
    吴铃,赵萸,骆天红等. 2007.转录因子KLF4在脂肪细胞分化过程中的表达变化.上海医学, (12):930-932+961.
    袁志发,周静芋主编. 2000.试验设计与分析.北京:高等教育出版社.
    Andersson-Eklund L, Marklund L, Lundstrom K, et al. 1998. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar x large white intercross. J Anim Sci, 76(3):694-700.
    
    Andersson-Eklund L, Uhlhorn H, Lundeheim N, et al. 2000. Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar x Large White intercross. Genet Res, 75(2):223-230.
    Andersson L. 2001. Genetic dissection of phenotypic diversity in farm animals. Na Rev Genet, 2(2):130-138.
    Andersson L, Georges M. 2004. Domestic-animal genomics: deciphering the genetics of complex traits. Na Rev Genet, 5(3):202-212.
    Ardlie K G, Kruglyak L, Seielstad M. 2002. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet, 3(4):299-309.
    Banerjee S S, Feinberg M W, Watanabe M, et al. 2003. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Bio Chem, 278(4):2581-2584.
    Baumung R, Simianer H, Hoffmann I. 2004. Genetic diversity studies in farm animals - a survey. J Anim Breed Genet, 121(6):361-373.
    Bieker J J. 2001. Kruppel-like factors: Three fingers in many pies. J Bio Chem, 276(37):34355-34358.
    Birsoy K, Chen Z, Friedman J. 2008. Transcriptional regulation of adipogenesis by KLF4. Cell Metab, 7(4):339-347.
    Black A R, Black J D, Azizkhan-Clifford J. (2001). Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol, 188 (2): 143-160.
    Bruford M W, Bradley D G, Luikart G. 2003. DNA markers reveal the complexity of livestock domestication. Na Rev Genet, 4(11):900-910.
    Caballero A, Quesada H, Rolan-Alvarez E. 2008. Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics, 179(1):539-554.
    Canon J, Garcia D, Garcia-Atance M A, et al. 2006. Geographical partitioning of goat diversity in Europe and the Middle East. Anim Genet, 37(4):327-334.
    Carleos C, Baro J A, Canon J, et al. 2003. Asymptotic variances of QTL estimators with selective DNA pooling. J Hered, 94(2):175-179.
    Chen K F, Baxter T, Muir W M, et al. 2007. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 3(3):153-165.
    Chen X.M., Whitney E.M., Gao S.Y., et al. 2003. Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J. Mol. Biol. 326:665-677.
    Chen Z, Torrens J I, Anand A, et al. 2005. Krox20 stimulates adipogenesis via C/EBP beta-dependent and -independent mechanisms. Cell Metab, 1(2):93-106.
    Cho S Y, Park P J, Shin H J, et al. 2007. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am J Physiol Endocrinol Metab, 292(4):E1166-72.
    Cook T, Gebelein B, Mesa K, et al. 1998. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Bio Chem, 273(40):25929-25936.
    Da Y. 2003. Statistical analysis and experimental design for mapping genes of complex traits in domestic animals. Acta Genetica Sinica, 30(12):1183-1192.
    Dang D T, Pevsner J, Yang V W. 2000. The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell B, 32(11-12):1103-1121.
    Dekkers J C M, Hospital F. 2002. The use of molecular genetics in the improvement of agricultural populations. Na Rev Genet, 3(1):22-32.
    Donaldson L, Vuocolo T, Gray C, et al. 2005. Construction and validation of a Bovine Innate Immune Microarray. Bmc Genomics, 6:22.
    Emery D W, Gavriilidis G, Asano H, et al. 2007. The transcription factor KLF11 can induce gamma-globin gene expression in the setting of in vivo adult erythropoiesis. J Cell Biochem, 100(4):1045-1055.
    Farmer S R. 2008. Molecular determinants of brown adipocyte formation and function. Gene Dev, 22(10):1269-1275.
    Farnir F, Coppieters W, Arranz J J, et al. 2000. Extensive genome-wide linkage disequilibrium in cattle. Genome Res, 10(2):220-227.
    Fernandez-Zapico M E, Mladek A, Ellenrieder V, et al. 2003. An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. Embo Journal, 22(18):4748-4758.
    Fisch S, Gray S, Heymans S, et al. 2007. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. P Natl Acad SciUSA, 104(17):7074-7079.
    Fisch S, Gray S J, Heymans S, et al. 2006. The Kruppel-like factor KLF15 is a novel regulator of cardiomyocyte hypertrophy. Circulation, 114(18):898.
    Flier J S. 2004. Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116:337-350.
    Florez J C, Saxena R, Winckler W, et al. 2006. The Kruppel-like factor 11 (KLF11) Q62R polymorphism is not associated with type 2 diabetes in 8,676 people. Diabetes, 55(12):3620-3624.
    Funnell A P W, Maloney C A, Thompson L J, et al. 2007. Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Mol Cell Biol, 27(7):2777-2790.
    Ghaleb A M, Nandan M O, Chanchevalap S, et al. 2005. Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res, 15(2):92-96.
    Gort G, Koopman W J M, Stein A. 2006. Fragment length distributions and collision probabilities for AFLP markers. Biometrics, 62(4):1107-1115.
    Grapes L, Dekkers J C M, Rothschild M F, et al. 2004. Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics, 166(3):1561-1570.
    Gray S, Wang B Q, Orihuela Y, et al. 2007. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab, 5(4):305-312.
    Gray S J, Feinberg M W, Hull S, et al. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. Circulation, 106(19):829.
    Gutierrez-Aguilar R, Benmezroua Y, Vaillant E, et al. 2007. Analysis of KLF transcription factor family gene variants in type 2 diabetes. BMC Med Genet, 8:Article No.: 53.
    Gutierrez-Aguilar R, Froguel P, Hamid Y H, et al. 2008. Genetic analysis of Kruppel-like zinc finger 11 variants in 5864 Danish individuals: Potential effect on insulin resistance and modified signal transducer and activator of transcription-3 binding by promoter variant-1659G > C. J Clin Endocr Metab, 93(8):3128-3135.
    Hernandez-Sanchez J, Haley C S, Woolliams J A. 2004. On the prediction of simultaneous inbreeding coefficients at multiple loci. Genet Res, 83(2):113-120.
    Hillel J, Groenen M A M, Tixier-Boichard M, et al. 2003. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol, 35(5):533-557.
    Hu Z L, Fritz E R, Reecy J M. 2007. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res, 35:D604-D609.
    Huson D H, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol, 23(2):254-267.
    Imhof A, Schuierer M, Werner O, et al. 1999. Transcriptional regulation of the AP-2 alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. Mol Cell Biol, 19(1):194-204.
    Iwasaki N, Cox N J, Wang Y Q, et al. 2003. Mapping genes influencing type 2 diabetes risk and BMI in Japanese subjects. Diabetes, 52(1):209-213.
    Johnsen S A, Subramaniam M, Janknecht R, et al. 2002. TGF beta inducible early gene enhances TGF beta/Smad-dependent transcriptional responses. Oncogene, 21(37):5783-5790.
    Kaczynski J, Cook T, Urrutia R. 2003. Sp1-and Kruppel-like transcription factors. Genome Biol, 4(2). Kanazawa A, Kawamura Y, Sekine A, et al. 2005. Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia, 48(7):1315-1322.
    Katz J P, Perreault N, Goldstein B G, et al. 2002. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development, 129(11):2619-2628.
    Kawamura Y, Tanaka Y, Kawamori R, et al. 2006. Overexpression of Kruppel-Like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic beta-cell line. Mol Endocrinol, 20(4):844-856.
    Kim J J, Farnir F, Savell J, et al. 2003. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J Anim Sci, 81(8):1933-1942.
    Knott S A, Marklund L, Haley C S, et al. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics, 149(2):1069-1080.
    Kuo C T, Veselits M L, Barton K P, et al. 1997. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Gene Dev, 11(22):2996-3006.
    Kuroda E, Horikawa Y, Enya M, et al. 2009. Identification of Minimal Promoter and Genetic Variants of
    Kruppel-like Factor 11 Gene and Association Analysis with Type 2 Diabetes in Japanese. Endocr J, 56(2):275-286.
    Laub F, Lei L, Sumiyoshi H, et al. 2005. Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol, 25(13):5699-711.
    Lefterova M I, Lazar M A. 2009. New developments in adipogenesis. Trends Endocrin Metab, 20(3):107-114.
    Li D, Yea S, Li S, et al. 2005. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Bio Chem, 280(29):26941-26952.
    Lindgren G, Backstrom N, Swinburne J, et al. 2004. Limited number of patrilines in horse domestication. Nat Genet, 36(4):335-336.
    Martin K M, Metcalfe J C, Kemp P R. 2001. Expression of Klf9 and Klf13 in mouse development. Mech Develop, 103(1-2):149-151.
    Matsumoto N, Kubo A, Liu H X, et al. 2006. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood, 107(4):1357-1365.
    Matsumoto N, Laub F, Aldabe R, et al. 1998. Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Bio Chem, 273(43):28229-28237.
    Meuwissen T H E, Hayes B J, Goddard M E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4):1819-1829.
    Milan D, Jeon J T, Looft C, et al. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 288(5469):1248-1251.
    Mizoshita K, Watanabe T, Hayashi H, et al. 2004. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J Anim Sci, 82(12):3415-3420.
    Mori T, Sakaue H, Iguchi H, et al. 2005. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Anim Sci, 280(13):12867-12875.
    Morita M, Kobayashi A, Yamashita T, et al. 2003. Functional analysis of basic transcription element binding protein by gene targeting technology. Mol Cell Biol, 23(7):2489-2500.
    Moser R J, Reverter A, Kerr C A, et al. 2004. A mixed-model approach for the analysis of cDNA microarray gene expression data from extreme-performing pigs after infection with Actinobacillus pleuropneumoniae. J Anim Sci, 82(5):1261-1271.
    Mullen A M, Stapleton P C, Corcoran D, et al. 2006. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci, 74(1):3-16.
    Nagai R., Shindo T., Manabe I., et al. 2004. KLF5/BTEB2, a Kruppel-like zinc-finger type transcription factor, mediates smooth muscle cell activation as well as cardiovascular remodeling. Int. Congress Series 1262:107-110.
    Nagare T, Sakaue H, Takashima M, et al. 2009. The Kruppel-like factor KLF15 inhibits transcription of the adrenomedullin gene in adipocytes. Biochem Bioph Res Co, 379(1):98-103.
    Neve B, Fernandez-Zapico M E, Ashkenazi-Katalan V, et al. 2005. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. P Natl Acad Sci USA, 102(13):4807-4812.
    Nei M, Li W H. 1979. Mathematic model for studying genetic variation in terms of rest rictionendonucleaes. P Natl Acad Sci USA, 76, 5269-5273.
    Nii M, Hayashi T, Mikawa S, et al. 2005. Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar x Large White intercross. J Anim Sci, 83(2):308-315.
    Nii M, Hayashi T, Tani F, et al. 2006. Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Anim Genet, 37(4):342-347.
    Oishi Y, Manabe I, Tobe K, et al. 2005. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab, 1(1):27-39.
    Ollivier L, Alderson L, Gandini G C, et al. 2005. An assessment of European pig diversity using molecular markers: Partitioning of diversity among breeds. Conserv Genet, 6(5):729-741.
    Pearson R, Fleetwood J, Eaton S, et al. 2008. Kruppel-like transcription factors: A functional family. Int J Biochem Cell B, 40(10):1996-2001.
    Perkins A C, Sharpe A H, Orkin S H. 1995. Lethal beta-thalassemia in mice lacking the erythroid caccc-transcription factor EKLF. Nature, 375(6529):318-322.
    Peter C, Bruford M, Perez T, et al. 2007. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim Genet, 38(1):37-44.
    Rosen E D, Spiegelman B M. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444(7121):847-853.
    Roth C, Schuierer M, Gunther K, et al. 2000. Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12). Genomics, 63(3):384-390.
    SanCristobal M, Chevalet C, Haley C S, et al. 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Anim Genet, 37(3):189-198.
    Segre J A, Bauer C, Fuchs E. 1999. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genet, 22(4):356-360.
    Shi Y Y, He L. 2006. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci (vol 15, pg 97, 2005). Cell Res, 16(10):851-851.
    Shindo T, Manabe I, Fukushima Y, et al. 2002. Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nature Med, 8(8):856-863.
    Simmen R C M, Eason R R, McQuown J R, et al. 2004. Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Bio Chem, 279(28):29286-29294.
    Song C Z, Gavriilidis G, Asano H, et al. 2005. Functional study of transcription factor KLF11 by targeted gene inactivation. Blood Cells Mol Dis, 34(1):53-59.
    Spiegelman B M, and Flier J S. 1996. Adipogenesis and obesity: Rounding out the big picture. Cell, 87:377-389.
    Spinola M, Leoni V P, Galvan A, et al. 2007. Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene. Cancer Lett, 251(2):311-316.
    Subramaniam M, Gorny G, Johnsen S A, et al. 2005. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteclast differentiation in vitro. Mol Cell Biol, 25(3):1191-1199.
    Subramaniam M, Hawse J R, Johnsen S A, et al. 2007. Role of TIEG1 in biological processes and disease states. J Cell Biochem, 102:539-548.
    Sue N, Jack B H A, Eaton S A, et al. 2008. Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 28(12):3967-3978.
    Sun R G, Chen X M, Yang V W. 2001. Intestinal-enriched Kruppel-like factor (Kruppel-like factor 5) is a positive regulator of cellular proliferation. J Bio Chem, 276(10):6897-6900.
    Suske G, Bruford E, Philipsen S. 2005. Mammalian SP/KLF transcription factors: Bring in the family. Genomics, 85(5):551-556.
    Suzuki S, Chuang L F, Doi R H, et al. 2003. Identification of opioid-regulated genes in human lymphocytic cells by differential display: upregulation of Krupel-like factor 7 by morphine. Exp Cell Res, 291(2):340-351.
    Taylor B A, Phillips S J. 1996. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics, 34(3):389-398.
    Teshigawara K, Ogawa W, Mori T, et al. 2005. Role of Kruppel-like factor 15 in PEPCK gene expression in the liver. Biochem Bioph Res Co, 327(3):920-926.
    Toro M A, Caballero A. 2005. Characterization and conservation of genetic diversity in subdivided populations. Philos T Roy Soc B, 360(1459):1367-1378.
    Uchida S, Sasaki S, Marumo F. 2001. Isolation of a novel zinc finger repressor that regulates the kidney-specific CLC-K1 promoter. Kidney Int, 60(2):416-21.
    Van Tassell C, Wiggans, G. 2007. Large scale bovine SNP genotyping for genomic selection and Hapmap development. USDA Reseach project number 1265-31000-081-06.
    Van Laere A S, Nguyen M, Braunschweig M, et al. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425(6960):832-836.
    Van Vliet J, Turner J, Crossley M. 2000. Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res, 28(9):1955-1962.
    Vekemans X, Beauwens T, Lemaire M, et al. 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol, 11(1):139-151.
    Wani M A, Means R T, Lingrel J B. 1998. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res, 7(4):229-238.
    Wong G K S, Liu B, Wang J, et al. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 432(7018):717-722.
    Wu J H, Srinivasan S V, Neumann J C, et al. 2005. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. J Bio Chem, 44(33):11098-11105.
    Yamamoto J, Ikeda Y, Iguchi H, et al. 2004. A Kruppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Bio Chem, 279(17):16954-16962.
    Yang V W. 1998. Eukaryotic transcription factors: Identification, characterization and functions. J Nutr, 128(11):2045-2051.
    Zhang J, Yang C, Brey C, et al. 2009. Mutation in Caenorhabditis elegans Kruppel-like factor, KLF-3results in fat accumulation and alters fatty acid composition. Exp Cell Res, 315(15):2568-2580.
    Zhou M X, McPherson L, Feng D D, et al. 2007. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol, 178(9):5496-5504.
    Zobel D P, Andreasen C H, Burgdorf K S, et al. 2009. Variation in the gene encoding Kruppel-like factor 7 influences body fat: studies of 14 818 Danes. Eur J Endocrinol, 160(4):603-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700