用户名: 密码: 验证码:
杜氏盐藻kinesin家族蛋白dsKIF4 cDNA片段的克隆及其在鞭毛再生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤毛/鞭毛作为引发多条信号通路活化的重要细胞器,在肿瘤的发生中发挥重要作用,而鞭毛组装和肿瘤发生的分子机制目前还不清楚。鞭毛内运输机制((Intraflagellar transport, IFT)是目前研究比较清楚的鞭毛组装/解聚机制,驱动蛋白kinesin和马达蛋白dynein是鞭毛内运输系统的动力蛋白,它们的异常严重导致鞭毛组装/解聚的异常。而驱动蛋白kinesin家族蛋白在鞭毛组装过程中在鞭毛再生中发挥着重要作用。有研究表明kinesin-2在鞭毛组装过程中与货物蛋白结合沿着微管将鞭毛组分运输至鞭毛顶端。目前kinesin家族蛋白其他成员在鞭毛再生过程中的相关报道还很少。
     杜氏盐藻(Dunaliella salina)是一种无细胞壁的单细胞真核绿藻,具有一对等长的鞭毛,长约13μm,具有典型的9+2结构。显微镜下即可观察到其鞭毛长度和运动性的变化。本课题组以无细胞壁具有双鞭毛的单细胞真核生物杜氏盐藻作为模式生物细胞器来研究纤毛在食管鳞癌发生中的作用。本研究的目的是扩增得到一个kinesin家族蛋白,并研究其在鞭毛再生过程中的作用。
     方法
     (1)通过设计简并引物扩增杜氏盐藻KIF4cDNA片段。
     (2)采用5’巢式PCR和3’巢式PCR扩增dsKIF4cDNA片段全长。
     (3)采用实时荧光定量PCR方法dsKIF4mRNA在鞭毛再生过程中的变化情况。
     (4)构建dsKIF4保守序列的原核表达载体,诱导His-dsKIF4蛋白的表达,经
     纯化后制备其抗体。
     (5)统计学分析:光定量PCR结果分析,采用2-ΔΔCt法对目的基因的表达量(mRNA相对丰度)进行分析,△△Ct=△Ct实验组-△Ct对照组,△Ct目的基因=Ct目的基因-Ct内参基因,每组实验做三个平行,每个样品重复三次。然后应用SPSS18.0软件进行分析,并采用t检验和方差分析。P<0.05表示具有统计学意义。
     结果
     (1)根据KIF蛋白的保守性设计一对简并引物扩增得到一个720bp的杜氏盐藻KIF4cDNA片段。
     (2)5'RACE和3'RACE分别得到一个1134bp和960bp的cDNA片段,经拼接后得到一个长度为2214bp的dsKIF4cDNA片段,编码734个氨基酸,与团藻的InvA Kinesin、衣藻的kinesin family protein以及人的KIF4C的同源性分别为56%,58%和42%。
     (3)实时荧光定量PCR显示dsKIF4基因在鞭毛再生过程中表达量显著增高(P<0.05)。
     (4)为了制备其抗体,我们选取包含马达结构域的476个氨基酸进行外源重组蛋白的表达。通过3mM IPTG37℃诱导3h得到分子量约为50kDa的重组蛋白,纯化后已制备其抗体。
     结论
     (1)本研究通过简并引物扩增得到一个长2214bp的杜氏盐藻kinesin家族蛋白KIF4的cDNA片段,编码734个氨基酸。
     (2)实时荧光定量PCR显示dsKIF4基因在鞭毛再生过程中表达量显著增高,说明其参与鞭毛的再生过程。
     (3)为了制备其抗体,我们选取包含马达结构域的476个氨基酸进行外源重组蛋白的表达。经表达纯化后已用于其抗体制备。
In mammals, most cell types have cilia, protruding structures involved in sensing mechanical and chemical signals from the extracellular environment, that act as major communication hubs for signaling controlling cell differentiation and polarity. It has been proposed that cancer cells with cilia disorder reduce or alter their response to extracellular cues that regulate growth and differentiation. But the machanism of cilia assembly regulation and its function in tumorigenesis are still unclear. Since the intraflagellar transport (IFT) was discovered in the biflagellate green alga Chlamydomonas, the mechanisms of flagellar/ciliary assembly and disassembly have aroused widespread concerns. Flagellar/ciliary assembly and disassembly, which determine the length of the flagella/cilia, require the IFT system composed of the molecular motors, kinesin-2and dynein and IFT particles to supply the necessary substances to the tip of flagella/cilia and to bring flagellar/ciliary turnover products back to the base. It is well known that kinesin-2plays a key role in flagellar/ciliary assembly, however, the role of other kinesin family protein members are still unclear.
     Dunaliella salina (D. salina) is a unicellular biflagellate eukaryotic alga without cell wall, which has a pair of same length flagella of13μm. The flagella of D. salina were employed as model organelle to investigate the cilia assemly mechanism. In this study, a kinesin family protein gene KIF4cDNA of D.salina was cloned and its effect on flagellar regeneration was investigated.
     Methods
     (1) A pair of degenerate primers was designed to clone the kinesin family protein dsKIF4by reverse transcription PCR.
     (2)3'and5'RACE nested PCR was employed to obtain the full length of dsKIF4.
     (3) The relative abundance of dsKIF4mRNA was detected during flagellar regeneration by real-time PCR.
     (4) To investigate the effect of dsKIF4in flagellar regeneration at protein level a prokaryotic expression vector was constructed and the fusion protein was induced by IPTG and it antibody was being prepared after purification of the fusion protein.
     Results
     (1) A720bp cDNA fragment of D. salina was obtained by reverse transcription PCR using a pair of degenerate primers.
     (2) A1134bp and a960bp cDNA fragment were obtained by3'and5'RACE nested PCR respectively and then a2214bp cDNA was obtained after splice, which encoded736amino acids. The induced protein shared high homology with kinesin family protein from other species such as InvA Kinesin from Volvox carteri (56%)> kinesin family protein from Chlamydomonas reinhardtii (58%) and KIF4C from human (42%) and was named dsKIF4as it contained a KIF4motor domain.
     (3) The relative abundance of dsKIF4mRNA was increased during flagellar regeneration, demonstrating that dsKIF4might be involved in flagellar regeneration.
     (4) The fused protein of dsKIF4was heterogenous expressed in E. coli and the His-dsKIF4protein was expressed with molecular weight of~50kDa. The anti-dsKIF4has been preparing after his-dsKIF4was purified.
     Conlusion
     A cDNA fragment of720bp was obtained by reverse transcription PCR using a pair of degenerate primers. And then a2214bp cDNA fragement was cloned by3' and5' RACE nested PCR, which encoded736amino acids. The induced protein shared high homology with kinesin family protein from other species and was named dsKIF4as it contained a KIF4motor domain. The relative abundance of dsKIF4mRNA was detected by real-time PCR and the results showed that it was increased during flagellar regeneration, demonstrating that dsKIF4might be involved in flagellar regeneration. In addition, in order to investigate the effect of dsKIF4in flagellar regeneration at protein level, we the fused protein of dsKIF4was heterogenous expressed in E. coli and the His-dsKIF4protein was expressed with molecular weight of~50kDa. The anti-dsKIF4has been preparing after his-dsKIF4was purified.
引文
[1]Fliegauf M, Benzing T, Omran H (2007) When cilia go bad:cilia defects and ciliopathies, Mol. Cell Biol.8:880-893.
    [2]Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol.15:105-110.
    [3]Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol.23:345-373.
    [4]Afzelius BA (2004) Cilia-related diseases. J Pathol.204:470-477.
    [5]Bisgrove BW, Yost HJ (2006) The roles of cilia in developmental disorders and disease. Development.133:4131-43.
    [6]Scholey JM, Anderson KV (2006) Intraflagellar transport and cilium-based signaling. Cell. 125:439-42.
    [7]Pan J, Snell W (2007) The primary cilium:keeper of the key to cell division. Cell.129: 1255-1257.
    [8]Wemmer KA, Marshall WF (2007) Flagellar length control in Chlamydomonas-paradigm for organelle size regulation. Int. Rev. Cytol.260:175-212.
    [9]Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell.137:32-45.
    [10]Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. USA.90:5519-5523
    [11]Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-Ⅱ-dependent intraflagellar transport (IFT):IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol.141:993-1008.
    [12]Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G (2001) Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell. Biol..153:13-24.
    [13]Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005) Characterization of the intraflagellar transport complex B core:direct interaction of the IFT81 and IFT74/72 subunits. J. Biol. Chem.280:27688-96.
    [14]Jekely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays.28:191-198.
    [15]Daire V, Poiis C (2011) Kinesins and protein kinases:Key players in the regulation of microtubule dynamics and organization. Arch. Bioc. Biop.510:83-92.
    [16]Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972) Chlamydomonas flagellla:Ⅰ. isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell. Biol.54:507-539.
    [17]Howard J, Hyman AA (2007) Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol.19:31-35.
    [18]Kline-Smith SL, Walczak CE (2010) Mitotic Spindle Assembly and Chromosome Segregation:Refocusing on Microtubule Dynamics Mol. Cell.15:317-327.
    [19]Hirokawa N, Noda Y, Tanaka Y, Niwa S. (2009) Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol.10:682-96.
    [20]Verhey KJ, Hammond JW (2009) Traffic control:regulation of kinesin motors.
    [21]Nat Rev Mol Cell Biol.10:765-777.
    [22]Evans JE, Snow JJ, Gunnarson AL, Ou G, Stahlberg H, McDonald KL, Scholey JM (2006) Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J. Cell Biol..172:663-669.
    [23]Jenkins PM, Hurd TW, Zhang L, McEwen DP, Brown RL, Margolis B, Verhey KJ, Martens JR (2006) Ciliary targeting of olfactory CNG channels requires the CNGBlb subunit and the kinesin-2 motor protein, KIF17. Curr. Biol.16:1211-1216.
    [24]Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev. Biol.316:160-170.
    [25]Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Therond PP (1997) Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costa12. Cell.90:225-234.
    [26]Sisson JC, Ho KS, Suyama K, Scott MP (1997) Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell.90:235-245.
    [27]李俊平,刘岷,毛丽红,石科,李靓,许尧,薛乐勋.杜氏盐藻kinesin-2亚基FLA8的克隆与初步功能分析.郑州大学学报.46(6):828-831.
    [28]Buster DW, Zhang D, Sharp DJ (2007) Poleward Tubulin Flux in Spindles:Regulation and Function in Mitotic Cells Mol. Biol. Cell,18,3094-3104
    [29]柳丽平李杰王翠阎赘梦薛乐勋.杜氏盐藻cDNA文库的构建与KCBP基因的克隆及功能分析.郑州大学学报.6:907-910.
    [30]Berbaril NF, O'Connorl AK, Haycraft CJ, et al. The Primary Cilium as a complex signaling center. Curr Biol 2009,19(13):R526-35
    [31]Sharma N, Berbari NF, Yoder BK. Ciliary Dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 2008,85:371-427
    [32]Poole CA, Jensen CG, Snyder JA, et al. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol Int 1997,21(8):483-494
    [33]Wong SY, Reiter JF. The primary cilium:at the crossroads of mammalian Hedgehog signaling. Curr Top Dev Biol 2008,85:225-260
    [34]Wong SY, Seol AD, So PL, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009,15:1055-1061
    [35]Han YG, Kim HJ, Dlugosz AA, et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009,15:1062-1065
    [36]Moser JJ, Fritzler MJ, Rattner JB. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells. BMC Cancer 2009,9:448
    [37]SchramL P, Frew IJ, Thoma CR, et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 2009,22:31-36
    [38]Seeley ES, Carriere C, Goetze T, et al. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 2009,69:422-430
    [39]Plotnikoval OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008,68(7):2058-2061
    [40]Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003,426:83-87
    [41]Robert A, Margall-Ducos G, Guidotti JE, et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 2007,120(4):628-637
    [42]Moniz L, Dutt P, Haider N, et al. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div 2011,6:18
    [43]Liu S, Lu W, Obara T, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 2002,129:5839-5846
    [1]Berbaril NF, O'Connorl AK, Haycraft CJ, et al. The Primary Cilium as a complex signaling center. Curr Biol 2009,19(13):R526-35
    [2]Sharma N, Berbari NF, Yoder BK. Ciliary Dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 2008,85:371-427
    [3]Poole CA, Jensen CG, Snyder JA, et al. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol Int 1997,21(8):483-494
    [4]Wong SY, Reiter JF. The primary cilium:at the crossroads of mammalian Hedgehog signaling. Curr Top Dev Biol.2008,85:225-260
    [5]Wong SY, Seol AD, So PL, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009,15:1055-1061
    [6]Han YG, Kim HJ, Dlugosz AA, et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009,15:1062-1065
    [7]Moser JJ, Fritzler MJ, Rattner JB. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells. BMC Cancer 2009,9:448
    [8]Schraml P, Frew IJ, Thoma CR, et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 2009,22:31-36
    [9]Seeley ES, Carriere C, Goetze T, et al. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 2009,69:422-430
    [10]Plotnikoval OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008,68(7):2058-2061
    [11]Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003,426:83-87
    [12]Robert A, Margall-Ducos G, Guidotti JE, et al. The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating Gl-S transition in non-ciliated cells. J Cell Sci 2007;120(Pt 4):628-637
    [13]Moniz L, Dutt P, Haider N, et al. Nek family of kinases in cell cycle, checkpoint control and cancer.Cell Div 2011,6:18
    [14]Liu S, Lu W, Obara T, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 2002,129:5839-5846
    [15]Upadhya P, Birkenmeier EH, Birkenmeier CS, et al. Mutations in a NIMA-related kinase gene, Nekl, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci USA 2000,97:217-221
    [16]Spektor A, Tsang WY, Khoo D, et al. Cep97 and CP110 suppress a cilia assembly program. Cell 2007,130:678-690
    [17]Kobayashi T, Tsang WY, Li J, et al. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 2011,145(6):914-25
    [18]Vladar EK, Stearns T. Molecular characterization of centriole assembly in ciliated epithelial cells. J Cell Biol 2007,78:31-42
    [19]Pugacheva EN, Jablonski SA, Hartman TR, et al. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 2007,129:1351-1363
    [20]盛昆岚,朱淑媛,刘月顺.人胚胎食管上皮的扫描电镜观察.解剖学报1994,30(2):158-160
    [21]Kober HJ.The ultrastructure of the rat esophageal epithelium during ontogenesis. Z Mikrosk Anat Forsch 1975,89(3):563-86
    [22]Nakanishi M (2007) S-adenosyl-L-homocysteine hydrolase as an attractive target for antimicrobial drugs. J Pharm Soc Jpn 127:977-982
    [23]Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103-113
    [24]Schneider MJ, Ulland M, Sloboda RD (2008) A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption. Mol Biol Cell 19:4319-4327
    [25]Skalan EH, Podoly E, Soreq H (2006) RACK1 has the nerve to act:structure meets function in the nervous system. Prog Neurobiol 78:117-134
    [26]Sloboda DR (2009) Posttranslational protein modifications in cilia and flagella. Method Cell Biol 94:347-363
    [27]Sloboda RD, Howard L (2009) Protein methylation in full length Chlamydomonas flagella. Cell Motil Cytoskeleton 66:650-660
    [28]Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME, Ivanova E, Francis MS, ISAksson EL, Wolf-Wats H, Fallman M (2011) The RACK1 signaling scaffold protein selectively
    [29]interacts with Yersinia pseudotuberculosis virulence function. PLoS ONE,6:1-14
    [30]Turner MA, Yang X, Yin D, Kuczera K, Borchardt RT, Howell PL (2000) Structure and function of S-adenosylhomo-cysteine hydrolase. Cell Biochem Biophys 33:101-125
    [31]Zaina S, Lindholm MW, Lund G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis:more than just hyperhomocysteinemia? J Nutr 135:5-8.
    [32]Zeidner LC, Buescher JL, Phiel CJ (2011) A novel interaction between Glycogen Synthase Kinase-3a (GSK-3a) and the scaffold protein Receptor for Activated C Kinase 1 (RACK1) regulates the circadian clock. Int J Biochem Mol Biol 2:318-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700