用户名: 密码: 验证码:
微生物颗粒反应器的水动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物颗粒是废水生物处理反应器中一种特殊的微生物聚集体,它包括厌氧颗粒和好氧颗粒两大类。近年来关于微生物颗粒的研究已成为国际环境工程领域关注的热点。废水生物处理反应器对有机物的去除和能量产量主要决定于微生物的处理能力和反应器内部的水动力行为。其中反应器的水动力学行为决定了质量的传送过程及总的反应器性能。由于微生物颗粒的形成条件较为苛刻,反应器内的各种水动力学因素对于微生物的聚集和颗粒的形成和稳定具有至关重要的作用。
     本论文采用示踪实验、数学建模、计算流体力学分析和三维重建的方法,对微生物颗粒反应器的水动力学行为进行了深入系统的研究,并对微生物颗粒的特性及其反应器运行特点进行了探索。其主要内容和研究结果包括:
     1.在序批式反应器(SBR)中,分别采用人工合成废水、厌氧酸化出水以及实际工业废水培养出不同功能的好氧微生物颗粒。发现当进水钙离子浓度达到40mg L~(-1)时,微生物颗粒稳定性增加,其密度、沉速、强度等特性均优于常规钙离子进水浓度下培养的微生物颗粒,颗粒可以抵抗水力剪切作用而持续增长,其厌氧或兼性区的存在使颗粒具有同步硝化反硝化功能,但由于钙在颗粒中的过量聚集,也导致了颗粒的灰分增加、活性变差,粒径过度增长等不利结果;采用同步硝化反硝化颗粒驯化后培育出具有亚硝酸盐氧化功能的自养型硝化颗粒,其硝化活性很高,但细胞生长缓慢;好氧微生物颗粒的共同特点是孔隙率较大,63%的颗粒具有可渗透性。
     2.采用升流式厌氧污泥床(UASB)反应器培养出了产甲烷和产氢微生物颗粒,并研究了反应器稳定运行过程中颗粒的特性及参数。厌氧颗粒密度较高,内部孔隙较小,颗粒的流体收集效率极低,75%以上的颗粒不可渗透;厌氧颗粒内部的传质主要受分子扩散控制。
     3.针对SBR的湍流特性,利用影像学分析和数学建模表征了反应器的气含率、混合时间、流型转换等重要的水动力学参数。SBR内的混合和扩散均与反应器的构型有很大关系,在高径比较高的反应器中混合更为迅速,液相扩散系数相对较高,其内部也能够保持较高的气含率;建立了定量表征SBR内微生物颗粒表面剪切力的数学模型,基于该模型的计算和分析结果表明,SBR中衰减造成的解吸附远远大于剪切造成的解吸附,而在作用于微生物颗粒表面的剪切力中,水力剪切、气泡剪切和碰撞剪切分别提供不同的贡献;在好氧微生物颗粒的培养条件下,碰撞剪切和气泡剪切是颗粒表面剪切作用的主要来源。
     4.UASB反应器的流态主要由气泡控制。双区域轴向扩散模型的拟合精度明显高于单区域模型,说明UASB反应器内的扩散具有不均匀特性;由于气液流速较低,UASB反应器是扩散控制的反应器,其扩散行为沿反应器高度增加而下降;由此建立描述反应器中扩散不连续行为的变体积槽列模型,该模型拟合精度高,具有普适性。
     5.采用Eulerian方法描述了微生物颗粒反应器中颗粒的运动过程。借助于有限体积法求解三维非稳态计算流体力学的瞬态模型,发现SBR中固相的流速分布与液相的流速分布较为相似,总体上形成了两个较大的环流;气相速度分布的主要特点是沿反应器的轴向高度增加呈波动下降趋势;在UASB反应器中,固相体积分率沿反应器的高度上升而下降,当流场充分发展时,液体速度沿反应器的高度增加而降低。
     6.借助荧光原位杂交和共聚焦激光扫描显微镜(FISH-CLSM)成像技术实现了微生物颗粒的三维重建,并在数字化颗粒的基础上研究微生物颗粒内部孔隙结构的分布特征。在微生物颗粒内部存在大量的小孔和少量的大孔,证明它是以团簇为基本单元的分形聚集体,其生长规则类似于三维的扩散限制聚集(DLA)模型向反应限制聚集(RLA)模型的转变;好氧微生物颗粒的渗透性主要由其内部的大孔控制,通过简化的球-孔模型,可以预测微生物颗粒中有对流发生的必要条件是具有一定尺度的大孔,例如对于1-5mm的微生物颗粒,其大孔孔径应满足大于50-250μm才能保证颗粒内部发生明显对流;采用新型的多孔介质模型更为细致地描述了微生物颗粒中的水动力行为,将之与生化动力学过程相结合,可以预测在自养型硝化颗粒中反应发生的深度在200μm左右;通过与微电极测定的溶解氧在好氧颗粒中的扩散深度比较,可以推测组成微生物颗粒的团簇尺度应至少大于200μm。
     7.计算流体力学的模拟和气含率试验表明,粒径较大的微生物颗粒对流场的干扰作用更为明显,其原因是大颗粒在流场中更容易形成振动性的尾涡,加剧颗粒的不稳定运动,从而使其宏观水动力学行为随着污泥浓度的变化更加显著。
Microbial granule is a special microbial aggregate in the biological wastewater treatment, including aerobic and anaerobic forms. Up to the present, with the formation and development of the granular sludge, research work of granular sludge has been focused on the characteristics of granule-based system. Performance of a biological wastewater treatment system, in terms of organic matter removal and energy yield, is usually governed by two main interrelated factors: microbiological processes and hydrodynamics. The hydrodynamics determines the resultant mass transport processes and accordingly the final performance of a given reactor. Since the microbial granules are usually formed in the special condition, the hydrodynamics in reactor are widely recognized to play an important role in the self-immobilization and stability of microbial granule.
     In this study, based on the steady-state microbial granule-based system, the hydrodynamic behavior of the reactors was well documented. The characteristics of some certain microbial granules and reactors were comprehensively investigated. In this paper, many methods have been used, e.g., tracer test, mathematic model, computational fluid dynamics analysis and three dimensional reconstructions. Main contents and results are as follow:
     1. Aerobic granules were successfully cultivated in sequencing batch reactors (SBRs) fed with synthetic wastewaters, VFAs-rich wastewater and industrial wastewaters. When the influent was kept at high initial Ca concentration (40 mg L~(-1)), the granules was more steady compared with the granules without Ca accumulation, and the Ca-rich granules had more rigid structure, a higher density, settling velocity and strength. The granule size increased continuously due to its high shear strength, and the average diameter was 4.2 mm. The simultaneous nitrification and denitrification (SND) process was happened in the Ca-rich granules for their big size. However, their bioactivity reduced and the ash content increased after the Ca accumulation inside them, after which scaling and granule deactivation might occur. The NaNO_2-oxidizing aerobic granules were cultivated using the SND granules as seed sludge. The NaNO_2-oxidizing activity of granules was high but the cells growth was very slow. The features of the aerobic granules are high porous and 63% of them are permeable.
     2. The CH_4-producing and H2-producing granules have been cultivated in the upflow anaerobic sludge blanket (UASB) reactor, and the parameters and the characteristics of the granules have been obtained. The density of the anaerobic granules is very high and the pores in them are small. Therefore, the fluid collection efficiency of anaerobic granules is extremely low and more than 75% of them are impermeable. Then the mass transfer in the anaerobic granules should be controlled by the molecule diffusion.
     3. The flow in the SBR is usually turbulent. Combined with the image analysis and mathematic model, the important hydrodynamic parameters, e.g., gas hold up, mixing time and regime transitions, were described in this study. The mixing and the dispersion behavior are all related to the structure of the reactor. The mixing is more rapid and the dispersion coefficient is higher in the reactor with higher height and diameter ratio (H/D). Furthermore, the gas hold up is also higher in the higher H/D reactor. In this paper, the shear force model was established for the SBR, and the calculation of the shear force in the SBR could be quantified. After calculation, we found that the detachment by cell decay was significant higher than by shear. Among the shear forces act on the granular surface, the contribution of the fluid, gas bubble and collision shear is different. In the SBR system, the gas bubble and collision shear are main shear force source on the granular surface.
     4. The flow pattern in the UASB reactor is controlled by the gas bubble. Compared with the single-zone axial-dispersion model, a two-zone axial-dispersion model was found to be more appropriate for simulating the dispersion characteristics of this reactor, suggests that the dispersion in the UASB reactor was non-uniform. Since the gas and liquid flow velocity are very low, the UASB reactor is potentially dispersion-controlled, and the dispersion coefficient decreases along the axial of the UASB reactor. An increasing-sized CSTRs (ISC) model was developed to describe the hydrodynamics of such a bioreactor. Simulation results demonstrate that the ISC model is better to describe the hydrodynamics of the UASB reactors than the other models. This hydrodynamic model might be also useful in simulating other similar reactors.
     5. A three-dimensional computational fluid dynamics (CFD) simulation was performed with an Eulerian-Eulerian three-fluid approach to visualize the flow pattern in reactors. The finite volume method was used as the numerical technique. In SBR, the granular velocity contours are similar with the liquid velocity contours. There are two big circle flows in the reactor. The feature of the gas phase velocity distribution is that the velocity decreases wavyvily along the axial of the SBR. In UASB reactor, the sludge volume fraction decreases along the reactor height, and the velocity magnitude decreases along the UASB reactor height when the flow pattern is fully developed.
     6. The three-dimensional structures of aerobic granular sludge were identified using the fluorescence in situ hybridization (FISH) and confocal laser scanning microscope (CLSM) images. There are a few large pores and large amounts of small pores in the granule. The reconstructed results indicate that the fractal-cluster model could predict the distribution of the primary particles in the microbial granules. The growth rule of the microbial granule is similar with the transfer from the diffusion-limited-aggregation (DLA) model to the reaction-limited-aggregation (RLA) model. Simulation of a sphere with one straight pore passing through its centre reveals that large pores controlled the advective flow through a granular sludge, and the big pore is a requirement to permit the advective flow happen. Using sphere-tube model, the size of the big pores was predicted to be at least more than 50-250μm when the granular size was in range of 1-5 mm. The new porous media model can be used to describe the micro-hydrodynamics in the microbial granule. Combined with the biochemical process, the nitrification process in an aerobic granule can be predicted that the depth of the reaction is approximately 200μm. Compared with the oxygen penetrating depth measured by microelectrode, the diameter of cluster was predicted to be more than 200μm.
     7. Employing the CFD simulation and the gas hold up experiment, we can find that the bigger granule will disturb the flow field more significantly. Since the von Karman vortex street is usually happen after the bigger granule, then the unsteady moving of the granular is more significantly. Therefore the change of the macro-hydrodynamics with the sludge concentration should be more significant with bigger granule.
引文
Alpkvist E,Picioreanu C,van Loosdrecht MCM,Heyden A.2006.Three-dimensional biofilm model with individual cells and continuum EPS matrix.Biotechnol. Bioeng. 94:961-979.
    Batstone DJ, Hernandez JLA, Schmidt JE. 2005. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng.91:387-391.
    
    Beun JJ, Hendriks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ.1999. Aerobic granulation in a sequencing batch reactor. Water Res. 33:2283-2290.
    Beun JJ, Loosdrecht MCM, Heijnen JJ. 2002. Aerobic granulation in a Sequencing batch airlift reactor. Water Res. 36: 702-712.
    Bolle WL, van Breugel J, van Eybergen G, Kossen N, van Gils W. 1986. An integral dynamic model for the UASB reactor. Biotechnol. Bioeng. 28:1621-1636.
    Chen MY, Lee DJ, Tay JH. 2007. Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol. 73:1463-1469.
    Chilekar VP, Warmer MJF, van der Schaaf J, Kuster BFM, Schouten JC. 2005. Bubble size estimation in slurry bubble columns from pressure fluctuations. AIChE J. 51:1924-1937.
    Chiu ZC, Chen MY, Lee DJ, Tay STL, Tay JH, Show KY. 2006. Diffusivity of oxygen in aerobic granules. Biotechnol. Bioeng. 94: 505-513.
    Chu CP, Lee DJ, Tay JH. 2005. Floc model and intrafloc flow. Chem. Eng. Sci.60:565-575.
    Chu CP, Lee DJ. 2004. Advective flow in a sludge floc. J. Colloid Interface Sci.277:387-395.
    Costello DJ, Greenfield PF, Lee PL.1991. Dynamic modeling of a single stage high-rate anaerobic reactor II: model verification. Water Res. 25: 859-871.
    Diez L, Zima BE, Kowalczyk W, Delgado A. 2007. Investigation of multiphase flow in sequencing batch reactor (SBR) by means of hybrid methods. Chem Eng Sci.62:1803-1813.
    Doshi YK, Pandit AB. 2005. Effect of internals and sparger design on mixing behavior in sectionalized bubble column. Chem. Eng. J. 112:117-129.
    Grimm L.H., Kelly S., Volkerding I.I., Krull R., Hempel D.C. 2005. Influence of mechanical stress and surface interaction on the aggregation of aspergillus niger conidia. Biotechnol Bioeng. 92(7):879-888.
    Heertjes PM, Kuijvenhoven LJ. 1982. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol Bioeng. 24:443-459.
    Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res. 38:1376-1389.
    Jang A, Yoon YH, Kim IS, Kim KS, Bishop PL. 2003. Characterization and evaluation of aerobic granules in sequencing batch reactor. Journal of Biotechnology 105: 71-82.
    Johnson CP, Li XY, Logan B. 1996. Settling velocities of fractal aggregates. Environ.Sci.Technol.30:1911-1918.
    Kalyuzhnyi S, Fedorovich V, Lens P. 2006. Dispersed plug flow model for UASB reactors focusing on sludge dynamics, J. Ind. Microb. Biotech. 33:221-237.
    Kulkami AA, Ekambara K, Joshi JB. 2007. On the development of flow pattern in a bubble column reactor: experiments and CFD. Chem Eng Sci. 62:1049-1072.
    Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ. 1998.Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 58,400-407.
    Lapin A, Lubert A. 1994. Numerical simulation of the dynamics of two phase gas-liquid flows in bubble columns reactors. Chem. Eng. Sci. 49:3661-3674.
    Li DH, Ganczarczyk J. 1988. Flow through activated sludge flocs. Water Res.22:789-792.
    Li H, Prakash A. 2000. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column. Powder Technol.113:158-167.
    Li XY, Yuan Y. 2002. Settling velocities and permeabilities of microbial aggregates.Water Res. 36: 3110-3120.
    
    Liu Y, Tay JH. 2002. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36:1653-1665.
    Monahan SM, Vitankar VS, Fox RO. 2005. CFD predictions for flow-regime transitions in bubble columns. AIChE J. 51:1897-1923.
    Morgenroth E, Sherden T. 1997. Aerobic granular sludge in a sequencing batch reactor. Water Res. 31:3191-3194.
    Mu Y, Ren TT, Yu HQ. 2008. Drag coefficient of porous and permeable microbial granules.Environ. Sci. Technol. 42:1718-1723.
    Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules I: physicochemical characteristics of hydrogen-producing granules.Biotechnol. Bioeng. 94: 980-985.
    Narnoli SK, Mehrotra I. 1997. Sludge blanket of UASB reactor: mathematical simulation. Water Res. 31: 715-726.
    Pena MR, Mara DD, Avella GP. 2006. Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Res. 40:445-452.
    Picioreanu C, Batstone DJ, van Loosdrecht MCM. 2005. Multidimensional modeling of anaerobic granules. Water Sci. Technol. 52: 501-507.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 1998. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58:101-116.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 2001. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol.Bioeng. 72(2): 205-218.
    Qin L, Tay JH, Liu Y. 2004. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem. 39: 579-584.
    Ramasamy P., Zhang X. 2005. Effects of shear stress on the secretion of extracellular polymeric substances in biofilms. Water Sci. Technol. 52: 217-223.
    Schafer R, Merten C, Eigenberger G. 2002. Bubble size distributions in a bubble column reactor under industrial conditions. Exp. Therm. Fluid Sci. 26:595-604.
    Scurati A, Feke DL, Ica Manas-Zloczower. 2005. Analysis of the kinetics of agglomerate erosion in simple shear flows. Chem. Eng. Sci. 60:6564-6573.
    Su KZ, Yu HQ. 2006. A generalized model for aerobic granule-based sequencing batch reactor. 1. model development. Environ. Sci. Technol. 40: 4703-4708.
    Su KZ, Yu HQ. 2005. Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor. Biochem. Eng. J. 25:209-215.
    Tambo N, Watanabe Y. 1979. Physical characteristics of flocs, I: the floc density ruction and aluminum floc. Water Res. 13:409-419.
    Tang CZ, Heindel TJ. 2006. Estimating gas holdup via pressure difference measurements in a cocurrent bubble column. Int. J. Multiph. Flow 32: 850-863.
    Tay JH, Liu QS, Liu Y. 2004. The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Sci. Technol.49: 35-40.
    Tay JH, Tay STL, Ivanov V, Pan S, Jiang HL, Liu QS. 2003. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett. Appl.Microbiol.36: 297-301.
    Van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ.1995. Biofilm Structures. Wat. Sci. Technol. 32:35-43.
    Vesvikar MS, Al-Dahhan MH. 2005. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnol Bioeng. 89(6): 719-732.
    Wang Q, Du GC, Chen J. 2004. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochem. 39: 557-563.
    Wang XH, Zhang HM, Yang FL, Xia LP, Gao MM. 2007. Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enzyme Microb. Technol. 41:205-211.
    Wen JP, Xu SL. 1998. Local hydrodynamics in a gas-liquid-solid three-phase bubble column reactor. Chem. Eng. J. 70:81-84.
    Wu BX, Chen SL. 2008. CFD Simulation of non-Newtonian fluid flow in anaerobic digesters. Biotechnol Bioeng. 99(3):700-711.
    Zeng Y, Mu SJ, Lou SJ, Tartakovsky B, Guiot SR, Wu P. 2005. Hydraulic modeling and axial dispersion analysis of UASB reactor. Biochem. Eng. J. 25:113-123.
    朱亮,徐向阳,罗伟国,查钰明。2007。废水生物处理好氧污泥颗粒化研究进展。环境科学 28(11):2657-2664。
    Alphenaar PA, Groeneveld N, van Aelst AC. 1994. Scanning electron microscopical method for internal structure analysis of granular sludge. Micron. 25:129-133.
    Alphenaar PA, Sleyster R, de Reuver P, Ligthart GJ, Lettinga G. 1993. Phosphorus requirement in high-rate anaerobic waste water treatment. Water Res.27:749-756.
    APHA. 1998. Standard methods for the examination of water and wastewater. 19~(th) ed. New York: American Public Health Association.
    Battistoni P, Fava G, Pavan P, Musacco A, Cecchi F. 1997. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals:preliminary results. Water Res. 31:2925-2929.
    Beun JJ, Loosdrecht MCM, Heijnen JJ. 2002. Aerobic granulation in a sequencing batch airlift reactor. Water Res. 36:702-712.
    de Haas DW, Wentzel MC, Ekama GA. 2000. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal Part 2: Method development for fractionation of phosphate compounds in activated sludge. Water SA 26:453-466.
    Fang HHP, Liu H, 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 82:87-93.
    Grotenhuis JTC, van Lier JB, Plugge CM, Stams AJM, Zhender AJB. 1991. Effect of ethyle glycol-bis (P-aminoethyl ether)-N,N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge, Appl. Microb. Biotechnol.36:109-114.
    Johnson CP, Li XY, Logan BE. 1996. Settling velocities of fractal aggregates.Environ. Sci. Technol. 30:1911-1918.
    Lee YJ, Miyahara T, Noike T. 2001. Effect of iron concentration on hydrogen fermentation. Bioresource Technol. 80:227-231.
    Liu QS, Tay JH, Liu Y. 2003. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ. Technol. 24:1235-1243.
    Liu Y, Yang SF, Tay JH. 2003. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl. Microbiol. Biotechnol.61:556-561.
    Liu Y, Lin YM, Tay JH. 2005. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors. Process Biochem.40:3258-3262.
    Mikkelsen LH, Keiding K. 2002. The shear sensitivity of activated sludge: an evaluation of the possibility for a standardized floc strength test. Water Res.36:2931-2940.
    Mikkelsen LH, Keiding K. 1999. Equilibrium aspects of the effects of shear and solids content on aggregate deflocculation. Adv. Colloid Interface Sci.80:151-182.
    Mikkelsen LH, Keiding K. 2002. The shear sensitivity of activated sludge: an evaluation of the possibility for a standardized floc strength test. Water Res.36:2931-2940.
    Montastruc L, Azzaro-Pantel C, Biscans B, Cabassud M, Domenech S. 2003. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chem. Eng. J. 94:41-50.
    Morgan JW, Forster CF, Evison LW. 1990. Comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res.24:743-750.
    Pan S, Tay JH, He YX, Tay STL. 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett. Appl Microbiol. 38:158-163.
    Pereboom JHF. 1994. Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Sci. Technol. 30:211-221.
    Pereboom JHF. 1997. Strength characterisation of microbial granules. Water. Sci.Technol. 36:141-148.
    Quarmby J, Forster CF. 1995. An examination of the structure of UASB granules. Water Res. 29:2449-2454.
    Tijhuis L, Hijman B, Van Loosdrecht MCM, Heijnen JJ. 1995. Influence of detachment, substrate loading and reactor scale on the formation of biofilms in airlift reactors. Appl. Microbiol. Biotechnol. 45:7-17.
    Tijhuis L, van Loosdrecht MCM, Heijnen JJ. 1994. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.Biotechnol. Bioeng. 44:595-608.
    van Hullebusch ED, Gieteling J, van Daele W, Defrancq J, Lens PNL. 2007. Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge. Biochem. Eng. J. 33:168-177.
    Wang ZW, Li Y, Liu Y. 2007. Mechanism of calcium accumulation in acetate-fed aerobic granule. Appl. Microbiol. Biotechnol. 74 (2):467-473.
    Yu HQ, Tay JH, Fang HHP. 2001. The roles of calcium in sludge granulation during UASB reactor start-up. Water Res. 35:1052-1060.
    Anderson GK,Campos CMM,Chemicharo CAL,Smith LC.1991.Evaluation of the inhibitory effects of lithium when used as a tracer for anaerobic digesters.Water Res.25:755-760.
    APHA.1995.Standard Methods for the Examination of Water and Wastewater.19~(th)ed.New York:American Public Health Association.
    Batstone DJ,Hemandez JLA,Schmidt JE.2005.Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket(UASB)reactors.Biotechnol.Bioeng.91:387-391.
    Beun JJ,Hendriks A,van Loosdrecht MCM,Morgenroth E,Wilderer PA,Heijnen JJ.1999.Aerobic granulation in a sequencing batch reactor.Water Res. 33:2283-2290.
    Bolle WL, van Breugel J, van Eybergen G, Kossen N, van Gils W. 1986. An integral dynamic model for the UASB reactor. Biotechnol. Bioeng. 28:1621-1636.
    Borroto JI, Dominguez J, Griffith J, Fick M, Leclerc JP. 2003. Technetium-99m as a tracer for the liquid RTD measurement in opaque anaerobic digester: application in a sugar wastewater treatment plant. Chem. Eng. Process 42:857-865.
    Brenner H. 1962. The diffusion model of longitudinal mixing in beds of finite length.Chem. Eng. Sci. 17:229-237.
    Chisti Y, Moo-Young M. 1988. Hydrodynamics and oxygen transfer in pneumatic bioreactor devices. Biotechnol. Bioeng. 31:487-494.
    Chisti Y, Moo-Young M. 1989. on the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol. Bioeng. 34:1391-1392.
    Costello DJ, Greenfield PF, Lee PL. 1991. Dynamic modeling of a single stage high-rate anaerobic reactor II: model verification. Water Res. 25:859-871.
    de Nardi IR, Zaiat M, Foresti E. 1999. Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors. Bioprocess Eng. 21:469-476.
    Diez L, Zima BE, Kowalczyk W, Delgado A. 2007. Investigation of multiphase flow in sequencing batch reactor (SBR) by means of hybrid methods. Chem. Eng. Sci.62:1803-1813.
    Doshi YK, Pandit AB. 2005. Effect of internals and sparger design on mixing behavior in sectionalized bubble column.Chem. Eng. J. 112:117-129.
    Fan LT, Neogi D, Yashima M, Nassar R. 1990. Stochastic analysis of a three-phase fluidized bed: Fractal approach. AIChE J. 36:1529-1535.
    Field RW, Davidson JF. 1980. Axial dispersion in bubble column. Trans. Inst. Chem.Engrs. 58 (4):228-236.
    Ganzeveld KJ, Chisti Y, Moo-Young M. 1995. Hydrodynamic behaviour of animal cells grouwn in microcarrier suspensions in split-cylinder airlift bioreactors.Bioprocess Eng. 12:239-247.
    Gavrilescu M, Tudose RZ. 1999. Residence time distribution of the liquid phase in a concentric-tube airlift reactor. Chem. Eng. Process. 38:225-238.
    Gjaltema A, Vinke JL, van Loosdrecht MCM, Heijnen JJ. 1997. Abrasion of Suspended Biofilm Pellets in Airlift Reactors: Importance of Shape, Structure,and Particle Concentrations. Biotechnol. Bioeng. 53:88-99.
    Grima EM, Chisti Y, Moo-Young M. 1997. Characterization of shear rates in airlift bioreactors for animal cell culture. J. Biotechnol. 54:195-210.
    Heertjes PM, Kuijvenhoven LJ. 1982. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater, Biotechnol. Bioeng.24:443-459.
    Iliuta I, Thyrion FC, Muntean O. 1998. Axial dispersion of liquid in gas-liquid co-current downflow and upflow fixed-bed reactors with porous particles. Trans.Chem. Eng. 76:64-72.
    Jang A, Yoon YH, Kim IS, Kim KS, Bishop PL. 2003. Characterization and evaluation of aerobic granules in sequencing batch reactor. J. Biotechnol. 105:71-82.
    Janos P. 2003. Sorption of basic dyes onto iron humate. Environ. Sci. Technol. 37(24):5792-5798.
    Jian LZ, Shukla V, Wenger K, Fordyce A, Gade P A, Marten M. 2002. Effects of increased impeller power in a production scale Aspergillus oryzae fermentation.Biotechnol. Prog. 18:437-444.
    Kalyuzhnyi S, Fedorovich V, Lens P, Pol LH, Lettinga G. 1998. Mathematical modelling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria. Biodegradation 9:187-199.
    Kalyuzhnyi S, Fedorovich V, Lens P. 2006. Dispersed plug flow model for UASB reactors focusing on sludge dynamics. J. Ind. Microb. Biotech. 33(3):221-237.
    Kalyuzhnyi S, Fedorovich V. 1997. Integrated mathematical model of UASB reactor for competition between sulphate reduction and methanogenesis. Wat. Sci.Technol. 36:201-208.
    Letzel HM,Schouten JC,Krishna R et al.l997.Characterzation of regimes and regime transition in bubble column by chaos analysis of pressure signals. Chem. Eng.Sci. 52(24):4447-4459.
    Levenspiel O.1999. Chemical reaction engineering. 3rd ed. New York: Wiley.
    
    Li H, Prakash A. 2000. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column. Powder Technol.113:158-167.
    Lin TJ, Juang RC, Chen YC, Chen CC. 2001. Predictions of flow transitions in a bubble column by chaotic time series analysis of pressure fluctuation signals.Chemical Engineering Science 56:1057-1065.
    Lin TJ, Tsuchiya K, Fan LS.1998. Bubble flow characteristics in bubble columns at elevated pressure and temperature. AIChE J. 44:545-560.
    Liu Y, Tay JH. 2002. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36:1653-1665.
    Lou SJ, Tartakovsky B, Zeng Y, Wu P, Guiot SR. 2006. Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.Chemosphere 65:1212-1220.
    Makinia J, Wells SA. 2005. Evaluation of empirical formulae for estimation of the longitudinal dispersion in activated sludge reactors. Water Res. 39:1533-1542.
    Martin AD. 2000. Interpretation of residence time distribution data. Chem. Eng. Sci.55:5907-5917.
    Matsuo T, Unno H. 1981. Forces acting on floc and strength of floc. J. Env. Eng. Div.Am. Soc. Civ. Eng. 107:527-545.
    Merchuk JC, Berzin I. 1995. Distribution of energy dissipation in airlift reactors.Chem. Eng. Sci. 50(14):2225-2233.
    Mikkelsen LH, Keiding K. 2002. The shear sensitivity of activated sludge: an evaluation of the possibility for a standardized floc strength test. Water Res.36:2931-2940.
    Monahan SM, Vitankar VS, Fox RO. 2005. CFD predictions for flow-regime transitions in bubble columns. AIChE J. 51:1897-1923.
    Mu Y, Yu HQ. 2006. Biological hydrogen production in a UASB reactor with granules I: physicochemical characteristics of hydrogen-producing granules.Biotechnol. Bioeng. 94:980-985.
    Pan Y, Dudukovic MP, Chang M. 2000. Numerical investigation of gas driven flow in 2D bubble columns. AIChE J. 46:434-449.
    Parker DS, Kaufman WJ, Jenkins D. 1972. Floc breakup in turbulent flocculation Process. J. San. Eng. Dev. ASCI. 98-SAl:79-99
    Pena MR, Mara DD, Avella GP. 2006. Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Res.40:445-452.
    Peng DC, Bernet N, Delgenes JP, Moletta R. 1999. Aerobic granular sludge-A case report. Water Res. 33:890-893.
    Pereboom JHF. 1997. Strength characterisation of microbial granules. Water. Sci.Technol.36:141-148.
    Pevere A, Guibaud G, van Hullebusch E, Lens P, Baudu M. Viscosity evolution of anaerobic granular sludge. Biochem. Eng. J. 27:315-322.
    Pilz RD, Hempel DC. 2005. Mechanical stress on suspended particles in two- and three-phase airlift loopreactors and bubble columns. Chem. Eng. Sci.60:6004-6012.
    Pires EC, Hanisch WS, Andrade MAN. 2000. An original procedure for physical simulation of upflow anaerobic sludge blanket reactors. Bioprocess Eng.23:389-395.
    Qin L, Tay JH, Liu Y. 2004. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem. 39:579-584.
    Reichert P. 1994. AQUASIM-a tool for simulation and data analysis of aquatic systems. Wat. Sci. Technol. 30:21-30.
    Rittmann BE. 1982. The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng.24:501-506.
    Singhal A, Gomes J, Praveen VV, Ramachandran KB. 1998. Axial dispersion model for upflow anaerobic sludge blanket reactors. Biotechnol. Prog. 14:645-648.
    Sokolichin A, Eigenberger G, Lapin A, Lubert A. 1997. Dynamic numerical simulation of gas-liquid two-phase flows: Euler/Euler versus Euler/Lagrange.Chem. Eng. Sci. 52:611-626.
    Su KZ,Yu.HQ.2005.Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor.Biochem.Eng.J.25:209-215.
    Talvy S,Cockx A,Line A.2007.Modeling hydrodynamics of gas-liquid airlift reactor.AIChE J.53:335-353.
    Tay JH,Liu QS,Liu Y.2001.The effect of shear force on the formation,structure and metabolism of aerobic granules.Appl.Microbiol.Biotechnol.57:227-233.
    van Benthum WAJ,van den Hoogen JHA,van der Lans RGJM,van Loosdrecht MCM,Heijnen JJ.1999.The biofilm airlift suspension extension reactor.Part Ⅰ:Design and two-phase hydrodynamics.Chem.Eng.Sci.54:1909-1924.
    Vesvikar MS,Al-Dahhan MH.2005.Flow pattern visualization in a mimic anaerobic digester using CFD.Biotechnol.Bioeng.89(6):719-732.
    Wu BX,Chen SL.2008.CFD Simulation of non-Newtonian fluid flow in anaerobic digesters.Biotechnol.Bioeng.99(3):700-711.
    Wu JJ,Wang D,Li LH,Zhou JT.2005.Characterization of flow regimes in bubble columns through CCF analysis of pressure fluctuations.Chem.Eng.Technol.28(10):1109-1113.
    Zeng Y,Mu SJ,Lou SJ,Tartakovsky B,Guiot SR,Wu P.2005.Hydraulic modeling and axial dispersion analysis of UASB reactor.Biochem.Eng.J.25:113-123.
    戚以政,汪叔雄。生化反应动力学与反应器。化学工业出版社。北京。1999。
    Chandran K,Smets BF.2000.Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnol. Bioeng.70(1):54-64.
    Chu CP, Lee DJ, Tay JH. 2005. Floc model and intrafloc flow. Chem. Eng. Sci. 60:565-575.
    Chu CP, Lee DJ. 2004. Advective flow in a sludge floc. J. Colloid Interface Sci.277:387-395.
    Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen LGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kunen JG. 1999.The anaerobic oxidation of ammonium. FEMS. Microbiol. Rev. 22:421-37.
    Li XY, Logan BE. 2001. Permeability of fractal aggregates. Water Res. 35:3373-3380.
    Li XY, Yuan Y. 2002. Settling velocities and permeabilities of microbial aggregates.Water Res. 36:3110-3120.
    
    Liu SY, Liu G, Tian YC, Chen YP, Yu HQ, Fang F. 2007. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules.Environ. Sci. Technol. 41:5447-5452.
    Mu Y, Yu HQ, Wang G. 2006. Permeabilities of anaerobic CH_4-producing granules.Water Res. 40:1811-1815.
    Mu Y, Yu HQ. 2006. Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. Water Res. 40:3596-3602.
    Pilz RD, Hempel DC. 2005. Mechanical stress on suspended particles in two- and three-phase airlift loopreactors and bubble columns. Chem. Eng. Sci.60:6004-6012.
    Su KZ, Yu HQ. 2005. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean processing wastewater. Environ. Sci.Technol. 88:854-860.
    Tay JH, Tay STL, Ivanov V, Pan S, Jiang HL, Liu QS. 2003. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett. Appl.Microbiol. 36:297-301.
    Beun JJ,Hendriks A,van Loosdrecht MCM,Morgenroth E,Wilderer PA,Heijnen JJ.1999.Aerobic granulation in a sequencing batch reactor.Water Res.33:2283-2290.
    Jang A,Yoon YH,Kim IS,Kim KS,Bishop PL.2003.Characterization and evaluation of aerobic granules in sequencing batch reactor.J.Biotechnol.105:71-82.
    Peng DC,Bemet N,Delgenes JP,Moletta R.1999.Aerobic granular sludge-A case report.Water Res.33:890-893.
    Tay JH,Liu QS,Liu Y.2001.The effect of shear force on the formation,structure and metabolism of aerobic granules.Appl.Microbiol.Biotechnol.57:227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700