用户名: 密码: 验证码:
汤浦水库流域氮污染定量源解析与分区分类控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在点源污染逐渐得到控制的情况下,氮、磷等农业非点源营养物已成为水体富营养化的主要原因。汤浦水库位于曹娥江支流小舜江上游,是虞绍平原近300万人的主要饮用水源之一。水库运行十多年来,库体及上游支流大部分水质指标常年达到Ⅰ类标准,总氮则在Ⅳ类和劣Ⅴ类之间。本文针对汤浦水库流域总氮浓度常年超标的现状,开展氮污染定量溯源和分区分类控制研究。核心内容包括水环境容量计算、地表水和地下水污染源污染贡献率分割、地表水污染分类源解析、水环境容量和减排责任分配等。主要结果有:
     采用狄龙模型计算了汤浦水库总氮的水环境容量。以总氮浓度的Ⅱ类水质为标准(GB3838-2002),且分别在90%、75%和50%保证率的年径流量作为入库的水量条件下,汤浦水库的总氮水环境容量分别为402ton、580ton和679ton。
     应用ReNuMa模型模拟了汤浦水库流域主要入库河流双江溪的水文过程和总氮负荷。生活污源、地表水和地下水年平均贡献率分别为11.1±1.1%、34.3±8.9%和54.4+10.4%。水田、旱地、园地、林地、灌木地、草地、水域和建设用地对地表水总氮的年平均贡献率分别为16.9±1.5%、10.6±0.4%、6.4±0.1%、38.9±2.6%、13.4±0.2%、0.2±0.01%、2.0±0.3%和11.6±0.7%。情景模拟结果表明,所有农用地都转为林地,并加上生活污染源得到完全控制,总氮年负荷量削减率才达到22.1%。这解释了自水库建成以来污染控制力度不断加大,但水库总氮污染仍然居高不下的原因。
     鉴于流域模型不易推广应用(数据要求高、参数过多、校正和验证困难等),初步建立了一套普适而又相对简单的流域尺度氮污染分区分类源解析方法。首先,综合应用数字滤波技术和统计学方法,建立了生活点源、地表水污染源和地下水污染源对河流总氮贡献率的分割模型;然后采用遗传算法,优化求解各种土地利用类型的营养物入河系数;最后通过输出系数模型实现非点源污染物的分区分类溯源。双江溪流域年平均生活点源污染、地表水污染和地下水污染对TN入河量的年均贡献率为6.9±1.3%、28.2±2.7%和64.9±4.0%。水田、旱地、园地、林地、灌木地、草地、水域和建设用地年平均TN入河量分别为15.48±1.49kg.hm-2、3.74±0.36kg.hm-2、9.74±0.93kg.hm-2、2.03±0.19kg.hm-2、12.59±1.21kg.hm-2、11.73±1.13kg.hm-2、16.88±1.63kg·hm-2和11.75±1.14/kg.hm-2。
     在搞清楚流域非点源污染过程以后,水环境容量的公平分配和减排责任的认定将是水质控制的核心问题。基尼系数法已被广泛应用于水环境容量分配中,然而在同时考虑多个分配指标是,各个优化目标直接往往会相互矛盾。为解决这个问题,本文建立了基于多维基尼系数法的水环境容量分配模型,并开发了专门的软件。
     考虑到地下水污染的滞后性,提出了可分配水环境容量的概念,即将实际水环境容量扣除地下水的贡献量,才是可分配水环境容量。在总氮达到Ⅱ类水质标准,再以90%、75%和50%保证率的年径流量作为入库的水量条件下,汤浦水库可分配的总氮水环境容量分别为-30ton、148ton和247ton。在总氮达到Ⅱ类水质标准,以及50%保证率的年径流量作为入库的水量条件下,全流域地表水总氮入河量需要削减-68.5ton,削减率为-30.9%,全流域仍有剩余的水环境容量可以分配。运用基于基尼系数法的水环境容量分配模型,得出王院乡、竹溪乡、谷来镇、稽东镇、王坛镇和平水镇分别需要减排2.4ton、2.6ton、-2.5ton、-20.3ton、-37.2ton和-13.5ton,减排率分别为27.5%、21.2%、-4.0%、-35.2%、-63.1%和-59.9%。最后,还针对各乡镇的实际情况讨论了减排方法与措施。
Under the condition that the point source pollution has been gradually controlled, the non-point source pollution becomes the major cause of water eutrophication. Tangpu Reservoir is the important drinking water source for3million people in Yushao Plain, located in the upstream of Xiaoshun River, one of the major tributaries of Cao'E River. Since its operation for more than ten years ago, most of the water quality indexes of the reservoir and the tributaries meet Grade I of environmental guideline of national quality standards for surface waters, China (GB3838-2002). However, the concentration of Total nitrogen (TN) has always been in high level, ranging from Grade IV to worse than Grade V. Aiming at the status aqo of heavy TN pollution in Tangpu Reservoir Watershed, this paper carried out the research on the quantitative source apportionment and control of TN. The major contents include water environmental capacity calculating, partition of the contributions of surface water and base flow, source apportionment of surface water pollution, and the allocation of water environmental capacity, etc. The major results are as follows:
     Applied Dillion Model to calculate the water environmental capacity of TN in Tangpu Reservoir. T With the goal of TN concentration reaches Grade Ⅱ, in conditions the inflows equal to90%,75%and50%guarantees of annual runoff volumes, the water environmental capacities were402ton,580ton and679ton, respectively.
     Applied ReNuMa model in the simulation of hydrological process and TN load in Tangpu Reservoir Watershed. Domestic pollution source, surface water source and base flow source accounted for11.1±1.1%,34.3±8.9%and54.4±10.4%to annual TN inputs to reservoir, while irrigated land, dry land, garden, forest, shrub land, grass land, waters and construction land contributed for16.9±1.5%,10.6±0.4%,6.4±0.1%,38.9±2.6%,13.4±0.2%,0.2±0.01%,2.0±0.3%and11.6±0.7%, respectively. The results of scene simulations showed that the highest reducing rate of TN was22.1%by means of land use conversion, explaining the reason for TN concentration was always in high level even if many pollution control measurements had been putting into practice in the past ten years.
     Established a universal yet simple series of methodologies for quantitative source apportionment of TN according to the regions and pollution sources in watershed scale. Firstly, the contributions of domestic pollution source, surface water source and base flow source to riverine TN was quantitatively separate by means of digital filtering and statistical method. And then, the export coefficients of various landuses were solved by modern optimization algorithm of genetic algorithm. Domestic pollution source, surface water source and base flow source accounted for6.9±1.3%,28.2±2.7%and64.9±4.0%to annual riverine TN. In consideration of the time lag of base flow source pollution, the TN pollution level in this watershed would not be decreased in near future. This conclusion was coinciding with the scene simulation results of ReNuMa model. The annual export coefficients of irrigated land, dry land, garden, forest, shrub land, grass land, waters and construction land were15.48±1.49kg.hm-2,3.74±0.36kg.hm-2,9.74±0.93kg.hm-2,2.03±0.19kg.hm-2,12.59±1.21kg.hm-2,11.73±1.13kg.hm-2,16.88±1.63kg.hm-2and11.75±1.14/kg.hm-2, respectively.
     The fair allocation of water environmental capacity and the confirmation of reduction responsibility were the core issues after the processes of non-point source pollution had been quantified. GiNi coefficient method had been widly applied in the field. However, the traditional GiNi coefficient method was based on two dimensional plane. In order to deal with this problem, we established a water environmental capacity allocation model based on multi-dimensional GiNi coefficient method, making an advance in water environment capacity allocation. In order to expand the application of this model, a softwere was developed.
     Formulated a TN reduction program according to regions and sources in watershed scale. In consideration of the time lag of base flow source pollution, proposed a concept namely "realistic allocatable water environmental capacity", which was the realistic water environmental capacity minus the portion of base flow source. In conditions the inflows equal to90%,75%and50%guarantees of annual runoff volumes, the realistic allocatable water environmental capacity were-30ton,148ton and247ton, respectively. With the goal of TN concentration reaches Grade Ⅱ, and in conditions the inflows equal to50%guarantees of annual runoff volumes, the total reduction amount of TN was-68.5ton, accounted for-30.9%of the surface source TN. In according to the Water environmental capacity allocation system based on multi-dimensional GiNi coefficient method, regions of Wangyan, Zhuxi, Gulai, Jidong, Wangtan and Pingshui in the watershed should reduce for2.4ton,2.6ton,-2.5ton,-20.3ton,-37.2ton and-13.5ton, respectively, and accounted for27.5%,21.2%,-4.0%,-35.2%,-63.1%and-59.9%to the total reduction amount, respectively. Finally, measurements for TN reduction in according to different regions and sources were proposed.
引文
Al-Abed NA, White HR. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems [J]. Hydrological Processes,2002,16(16):3169-3188.
    Arnold J, Allen P. Automated methods for estimating baseflow and ground water recharge from streamflow records [J]. JAWRA Journal of the American Water Resources Association,1999,35 (2):411-424.
    Arnold JG, Allen PM, Muttiah R, et al. Automated base flow separation and recession analysis techniques [J]. Ground Water,1995,33:1010-1018.
    Bachman LJ, Lindsey BD, Brakebill JW, et al. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, Middle Atlantic Coast:U.S. Geological Survey Water-Resources Investigations Report 98-4059 [R],1998, p.71.
    Boyer EW, Goodale CL, Jaworski NA, et al. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A [J]. Biogeochemistry,2002,57/58: 137-169.
    Borenstein S. On the efficiency of competitive market for operating licenses [J]. Environment and Resources Economics,2004,27(10):1-19.
    Bruno P, Caselli M, Gennaro G, et al. Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model[J]. Fresenius Journal of Analytical Chemistry,2001, (371):1119-1123.
    Bohlke JK, O'Connell ME, Prestegaard K.L. Ground Water Stratification and Delivery of Nitrate to an Incised Stream under Varying Flow Conditions [J]. Journal Environmental Qualality,2007, (36):664-680.
    Bzdusek PA, Christensen ER, Li A, et al. Source apportionment of sediment PAHs in Lake Calumet, Chicago:application of factor analysis with nonnegative constraints [J]. Environmental Science and Technology,2004,38(2):97-103.
    Grunwald S, Nrton LD. Calibration and validation of a non-point source pollution model [J]. Agricultural Water Management,2000,45(1):17-39.
    Haith DA, Shoemaker L L. Generalized watershed loading functions for stream flow nutrients[J]. Water Resources Bulletin,1987,23(3):471-478.
    Hay garth P M, Hepworth A L, Jarvis S C. Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland[J]. European Journal of Soil Science,1998, (49):65-72.
    Hong B, Swaney DP,2007. Regional Nutrient Management (ReNuMa) Model Version 1.0 User's Manual [EB/OL]. http://www.eeb.cornell.edu/biogeo/nanc/usda/renuma.htm.
    Howarth RW, Billen G, Swaney DP, et al. Riverine Inputs of Nitrogen to the North Atlantic Ocean:Fluxes and Human Influences [J]. Biogeochemistry,1996,35:75-139.
    Huang F, Wang XQ, Lou LP, et al. Spatial variation and source apportionment of water pollution in Qiantang River, China, using statistical techniques [J]. Water Research,2010, 44(5):1562-1572.
    Jin SQ, Lu J, Chen DJ, et al. Relationship between catchment characteristics and nitrogen forms in Cao-E River Basin, Eastern China[J]. Journal of Environmental Sciences,2009,21:429-433.
    Lindsey BD, Phillips SW, Donnelly CA, et al. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed:U.S. Geological Survey Water-Resources Investigations Report 03-4035 [R],2003, p:201.
    Liu Y, Guo HC,Yang PJ. Exploring the influence of lake water chemistry on chlorophyll a:A multivariate statistical model analysis[J]. Ecological Modelling,2010, (221):681-688.
    Malueg D A. Welfare consequences of emission credit trading programs [J].Journal of Environmental Economics and Management,1990,18(1):66-77.
    Mclsaac GF, David MB, Gertner GZ, et al. Eutrophication-nitrate flux in the Mississippi River: Nature,2001,414:166-167.
    Mohammed H, Yohannes F, Zeleke G. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia [J]. International Journal of Applied Earth Observation and Geoinformation,2004,6(2):97-109.
    Moriasi DN, Arnold JG, Van Liew MW, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J]. American Society of Agricultural and Biological Engineers,2007,50:885-900.
    Moore K, Pierson D, Pettersson K, et al. Effects of warmer world scenarios on hydrologic inputs to Lake Malaren, Sweden and implications for nutrient loads [J]. Hydrobiologia,2008,599(1): 191-199.
    Muller K, Deurer M, Hartmann H, et al. Hydrological characterisation of pesticide loads using hydrograph separation at different scales in a German catchment [J]. J Hydrol,2003,273:1-17. Nash JE, Sutcliffe JV, River flow forecasting through conceptual models [J], Journal of Hydrology,1970 10:282-290.
    Nasr A, Bruen M, Jordan P, et al. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland [J]. Water Research,2007, 41(5):1065-1073.
    Nair V D, Graetz D A, Portier K M. Forms of phosphorus in soil profiles from dairies of south Florida [J]. Soil Science Society of America Journal,1995, (59):1244-1249.
    Onderka M, Mrafkova L, Krein A, et al. Long-term Persistence of Stream Nitrate Concentrations (Memory Effect) Inferred from Spectral Analysis and Detrended Fluctuation Analysis. Water, Air and Soil Pollution,2012,223:241-252.
    Saleh A, Du B. Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas [J]. Transation of the American Society of Agricultural Engineers,2004,47(4):1039-1049.
    Schiling KE, Kutz DS. Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa [J]. Journal of the American Water Resources Association,2004,40:889-900.
    Schneiderman EM, Pierson DC, Lounsbury DG, et al. Modeling the hydrochemistry of the cannons Ville watershed with Generalized Watershed Loading Functions (GWLF) [J]. Journal of the American Water Resources Association,2002,38(5):1323-1347.
    Schwarz GE, Hoos AB, Alexander RB, et al. The SPARROW surface water-quality model-Theory, application, and user documentation:US Geological Survey Techniques and Methods Report, book 6, chap. B3 [M],2006, p.10.
    Sha J, Liu M, Wang D, et al. Application of the ReNuMa model in the Sha He river watershed: Tools for watershed environmental management [J]. Journal of Environmental Management, 2013,124:40-50.
    Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan[J]. Environmental Modelling and Software,2007,22:464-475.
    Singh K P, Malik A, Kumar R, et al. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere [J]. Environmental Monitoring and Assessment 2008, (136):183-196.
    Simard R R, Beauchemin S, Haygarth P M. Potential for preferential pathways of phosphorus transport [J]. Journal of Environmental Quality,2000, (29):97-105.
    Skulmoski GJ, Hartman FT, Krahn J. The Delphi method for graduate research [J]. Journal of Information Technology Education,2007,6:1-17.
    Stalnacke P Grimvall A, Libiseller C, et al. Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture [J]. Journal of Hydrology,2003,283: 184-205.
    Su SL, Li D, Zhang Q, Wu JP. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China [J]. Water Research,2011,45(4), 1781-1795.
    Sun T, Zhang H, Meng X, et al. The application of environmental Gini coefficient (EGC) in allocating wastewater discharge permit:the case study of watershed total mass control in Tianjin, China [J]. Resources, Conservation and Recycling,2010,54,601-608.
    Thurston G, Spengler J. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston [J]. Atmospheric Environment, 1985,(19):9-25.
    Vaidya OS, Kumar S. Analytic hierarchy process:An overview of applications [J]. European Journal of Operational Research,2006,169(1):1-29.
    Worrall F, Burt TP. A univariate model of river water nitrate time series [J]. Journal of Hydrology,1998,214:74-90.
    Yang J, Reichert P, Abbaspour KC, et al. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference [J]. Journal of Hydrology,2007, 340:167-182.
    Zhang B, Liu H, Yu QQ, et al. Equity-based optimization of regional water pollutant discharge amount allocation:a case study in the Tai Lake Basin [J]. Journal of Environmental Planning and Management,2012,55,885-900.
    Zhang Q, Xu CY, Chen YD, et al. Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China[J]. Hydrological Process,2008,22:4997-5003.
    Zhang YK, Schilling K. Temporal variations and scaling of streamflow and baseflow and their nitrate-nitrogen concentrations and loads [J]. Advances in Water Resources,2005,28:701-710.
    陈丁江,吕军,沈晔娜,等.饮用水水源保护区河流水环境容量计算模型[J].环境科学,2008,29(9):2437-2440.
    陈丁江,吕军,沈晔娜.区域间水环境容量多目标公平分配的水环境基尼系数法[J].环境污染与防治,2010,32(1):88-91.
    陈丁江,吕军,金培坚,等.非点源污染河流水环境容量的不确定性分析[J].环境科学,2010,31(5):1215-1219.
    陈燕燕,尹颖,王晓蓉,等.太湖表层沉积物中PAHs和PCBs的分布及风险评价[J].中国环境科学,2009,29(2):118-124.
    崔玉洁,刘德富,宋林旭,等.数字滤波法在三峡库区香溪河流域基流分割中的应用.水文,2011,31(6):18-23.
    毕雪,王晓媛.基于输出系数模型的洞庭湖流域面源污染分析[J].人民长江,2012,43(11):74-77.
    邓欧平,孙嗣旸,吕军.长乐江流域非点源氮素污染的关键源区识别[J].环境科学学报,2013,33(8):2307-2313
    丁晓雯,沈珍瑶,刘瑞民.长江上游非点源氮素负荷时空变化特征研究[J].农业汉奸科学学报,2007,26(3):836-841.
    丁晓雯,沈珍瑶,刘瑞民,等.基于降雨和地形特征的输出系数模型改进及精度分析[J].长江流域资源与环境,2008,17(2):306-309.
    竺维佳,童秀华,陈听杰.绍兴市饮用水源水污染现状调查及防治对策[J].水科学与工程技术,2006,(5):1-3.
    韩其飞,罗格平,白洁,等.基于多期数据集的中亚五国土地利用/覆盖变化分析[J].干旱区地理,2012,35(6):909-918.
    何因,秦保平,李云生,等GWLF模型的原理、结构及应用[J].城市环境与城市生态,2009,22(6):24-27.
    金树权.水库水源地水质模拟预测与不确定性分析[D].浙江大学,2008,p.24.
    李恒鹏,陈伟民,杨桂山,等.基于湖库水质目标的流域氮、磷减排与分区管理——以天目湖沙河水库为例[J].湖泊科学,2013,25(6):785-798.
    黎坤,林凯荣,江涛,等.数字滤波法在点源和非点源污染负荷分割中的应用[J].环境科学研究,2010,23(30):298-303.
    李满林,杜 雷,闻英友,等.多目标优化遗传算法在移动网络规划中的应用[J].控制与决策,2003,18(4):4441-445.
    梁涛,宋文冲,王凌青,等.不同类型外源稀土化合物与农业面源磷流失关联性的对比[J].农业环境科学学报2010,29(4):752-757.
    林凯荣,陈晓宏,江涛,等.数字滤波进行基流分割的应用研究[J].水力发电,2008,34(6):28-30.
    刘敏,谢阳村,王东,等.基于ReNuMa模型的长春石头口门水库流域非点源污染负荷模拟[J].水资源与水工程学报,2012,23(6):70-73.
    刘娜.汾河水库水环境承载能力研究[J].山西水利,2012,(6):3-4.
    马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578.
    马振邦,倪宏刚,魏建兵,等.城市小集水区降雨径流污染来源解析[J].生态环境学报2011,20(3):468-473.
    孟祥明,张宏伟,孙韬,等.基尼系数法在水污染物总量分配中的应用[J].中国给水排水,2008,24(23):105-108.
    欧阳丽,诸葛亦斯,刘德富.三峡水库香溪河库湾水环境容量研究[J].人民长江,2008,39(20):12-16.
    任家宽.基于遗传算法-BP神经网络的水库富营养化研究——以海南省万宁水库为例[D].重庆大学,2008,p.45.
    沈荣根,童秀华.提高汤浦水库供水水质的探索与实践[J].河海大学学报(自然科学版),2010,38(S2):78-81.
    沈晔娜.流域非点源污染过程动态模拟及其定量控制[D].浙江大学,2010,p.106.
    沈晔娜,吕军,陈军华,等.水源区河流非点源污染物入河量计算的水质方程反演方法[J].环境科学,2010,31(8):1768-1774.
    施练东.汤浦水库数字流域水质管理模型研究[D].浙江大学,2009,p.45-49.
    施练东,俞海平,朱建坤,等.基于SWAT模型的汤浦水库流域非点源污染模拟[J].水生态 学杂志,2011,32(3):66-70.
    施展,陈庆伟.基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J].控制与决策,2011,26(4):540-547.
    孙文章,曹升乐,徐光杰.应用WASP对东昌湖水质进行模拟研究[J].山东大学学报(工学版),2008,38(2):1-4.
    王维红,张弓,吴彦洲,孙婧.基尼系数法在新疆COD总量分配中运用探讨[J].环境污染与防治,2011,33(3):92-95.
    王媛,牛志广,王伟.尼系数法在水污染物总量区域分配中的应用[J].中国人口、资源与环境,2008,18(3):177-180.
    王 媛,张宏伟,杨会民,等.信息熵在水污染物总量区域公平分配中的应用[J].水利学报,2009,40(9):1103-1108.
    吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究,2006,19(2):66-70.
    肖捷颖,葛京凤,沈彦俊,等.基于TM和ETM+遥感分析的石家庄市土地利用/覆被变化研究[J].地理科学,2005,25(4):495-500.
    谢阳村.基于BMPs的农业非点源污染主导流域总氮总量控制目标研究[D].中国地质大学(北京),2012,p.44.
    幸 娅,张万顺,王 艳,等.层次分析法在太湖典型区域污染物总量分配中的应用[J].中国水利水电科学研究院学报,2011,9(2):155-160.
    徐崇刚,胡远满,常禹,等.像元尺度上不确定性对空间景观直观模型模拟的影响[J].生态学报,2004,24(9):1938-1950.
    严 刚,王金南.中国的排污交易实践与案例[M].中国环境科学出版社,2011,p.3.余雷.三峡库区产流模拟研究[D].西南大学,2006.p36-40.
    于术桐,黄贤金,程绪水,等.流域排污权初始分配模型构建及应用研究——以淮河流域为例[J].资源开发与市场,2010,26(5):400-404.
    张琰.GIS支持下流域非点源污染负荷通用模型(GWLF)应用——以宝象河为例[D].云南师范大学,2007,p29-30.
    张 颖,王 勇.我国排污权初始分配的研究[J].生态经济,2005,(8):50-52.
    赵洁,徐宗学,刘星才,等.辽河河流水体污染源解析[J].中国环境科学,2013,33(5):838-842.
    郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700